
D
ra
ft

k-Valued Non-Associative Lambek Grammars

are Learnable from Generalized

Functor-Argument Structures

Denis Béchet and Annie Foret a,b

a LINA – CNRS FRE 2729, Université de Nantes, France
b IRISA – Université de Rennes 1, France

Abstract

This paper is concerned with learning categorial grammars from positive examples
in the model of Gold. Functor-argument structures (written FA) are usual syntac-
tical decompositions of sentences in sub-components distinguishing the functional
parts from the argument parts defined in the case of classical categorial grammars
also known as AB-grammars. In the case of non-associative type-logical grammars,
we propose a similar notion that we call generalized functor-argument structures
and we show that these structures capture the essence of non-associative Lambek
calculus (NL) without product.

We show that (i) rigid and k-valued non-associative Lambek (NL without pro-
duct) grammars are learnable from generalized functor-argument structured sen-
tences.

We also define subclasses of k-valued grammars in terms of arity. We first show
that (ii) for each k and each bound on arity the class of FA-arity bounded k-valued
NL languages of FA structures is finite and (iii) that FA-arity bounded k-valued NL
grammars are learnable both from strings and from FA structures as a corollary.

Result (i) is obtained from (ii); this learnability result (i) is interesting and sur-
prising when compared to other results: in fact we also show that (iv) this class
has infinite elasticity. Moreover, these classes are very close to classes like rigid as-
sociative Lambek grammars learned from natural deduction structured sentences
(that are different and much richer than FA or generalized FA) or to k-valued
non-associative Lambek grammars unlearnable from strings or even from brack-
eted strings. Thus, the class of k-valued non-associative Lambek grammars learned
from generalized functor-argument sentences is at the frontier between learnable
and unlearnable classes of languages.

Key words: grammatical inference, categorial grammars, non-associative Lambek
calculus, learning from positive examples, model of Gold

Preprint submitted to Elsevier Science 14 April 2005

D
ra
ft

1 Introduction

Lexicalized grammars of natural languages are well adapted to learning per-
spectives. The model of Gold [1] used here consists in defining, given a class G
of grammars, an algorithm on a finite set of structured sentences, computing a
grammar in G ; given any infinite sequence enumerating a language of a gram-
mar in G, this algorithm must converge to obtain a grammar in G generating
the same language.

After pessimistic unlearnability results in [1], learnability of non trivial classes
has been proved in [2,3]. Recent works[4,5] following [6] have answered the
problem for different sub-classes of classical categorial grammars (the whole
class of classical categorial grammars and the whole class of (non)-associative
Lambek grammars are equivalent to context free grammars and thus are not
learnable in Gold’s model).

In fact, the learnable-or-unlearnable problem for a class of grammars depends
both on the information that the input structures carry and on the model that
defines the language associated to a given grammar. The input information
can be just a string, the list of words of the input sentence. It can be a tree that
describes the sub-components with or without the indication of the head of
each sub-component. More complex input informations give natural deduction
structure or semantics informations. For k-valued categorial grammars 1 , clas-
sical categorial grammars [7], noted AB grammars, are learnable from strings,
the simplest form of informations[4]. Rigid (1-valued) associative Lambek cat-
egorial grammars [8], denoted L grammars, are learnable from natural deduc-
tion structures [9] (that are different from functor-argument structures) but
not from strings [10,11] ; in their commutative-associative version, 1-valued
Lambek grammars are neither not learnable from strings [12,13].

Non-associative Lambek categorial grammars [14], denoted NL grammars, lie
between classical categorial grammars and associative Lambek grammars sin-
ce for the same assignments of types to the lexicon of a categorial grammar
G, the associated language LNL(G) includes the corresponding classical cat-
egorial language LAB(G) but is a subset of the associative Lambek language
from the same lexicon, LL(G). Thus, the learnability problem for this class is
interesting.

Usually, to prove that a class of language is learnable in Gold’s model, we
prove that the class has finite elasticity [15,16]. However, we show here that

Email addresses: Denis.Bechet@univ-nantes.fr, Annie.Foret@irisa.fr
(Denis Béchet and Annie Foret).
1 A k-valued lexicalized grammar is a lexicalized grammar where each word has at
most k entries ; in the case of categorial grammars, this means at most k types.

2

D
ra
ft

this does not hold for k-valued non-associative Lambek categorial grammars.
However, we can bypass this difficulty. In fact, this class is learnable as it is
shown in the paper. This is not the first example of a learnable class with
infinite elasticity : the famous class of languages recognized by k-reversible
automata does not have finite elasticity, but is nevertheless learnable [17] .

The paper is organized as follows. Section 2 gives some background knowledge
on non-associative Lambek categorial grammars and on learning in Gold’s
model. In section 3 we define alternative deduction rules for NL-grammars
(without product) and we define generalized FA-structures; in fact these rules
are extensions of the cancelation rules of classical categorial grammars that
lead to the generalization of FA-structures proposed here. Section 4 presents
the proof that the class of 1-valued (and thus k-valued) non-associative Lam-
bek categorial grammars have infinite elasticity and thus is not easily learnable
in Gold’s model. Section 5 shows that k-valued non-associative Lambek cate-
gorial grammars are learnable from generalized FA-structures in Gold’s model.
Section 6 concludes.

2 Background

2.1 Categorial Grammars

The reader not familiar with Lambek Calculus and its non-associative version
will find nice presentation in the first articles written by Lambek [8,14] or
more recently in [18–23]. We use in the paper non-associative Lambek calculus
without empty sequence and without product.

Definition 1 (Types) The types Tp, or formulas, are generated from a set
of primitive types Pr, or atomic formulas, by two binary connectives 2 “/”
(over) and “\” (under):

Tp ::= Pr | Tp\Tp | Tp/Tp
Definition 2 (Rigid and k-valued categorial grammars) A categorial gram-
mar is a structure G = (Σ, I, S) where:

• Σ is a finite alphabet (the words in the sentences);
• I : Σ 7→ Pf(Tp) is a function (called a lexicon) that assigns a finite set of

types to each element of Σ (the possible categories of each word);
• S ∈ Pr is the main type associated to correct sentences.

If X ∈ I(a), we say that G associates X to a and we write G : a 7→ X. A

2 no product connective is used in the paper

3

D
ra
ft

k-valued categorial grammar is a categorial grammar where, for every word
a ∈ Σ, I(a) has at most k elements. A rigid categorial grammar is a 1-valued
categorial grammar.

2.2 Non-associative Lambek Calculus NL

2.2.1 NL derivation `NL

As a logical system, we use Gentzen-style sequent presentation. A sequent
Γ ` A is composed of a binary tree of formulas Γ (the set of such trees is
noted TTp) which is the antecedent configuration and a succedent formula A.
A context Γ[·] is a binary tree of formulas with a hole. For X, a formula or a
binary tree of formulas, Γ[X] is the binary tree obtained from Γ[·] by filling
the hole with X.

Definition 3 (NL) A sequent is valid in NL and is noted Γ `NL A iff Γ ` A
can be deduced from the following rules:

Ax
A ` A

(Γ, B) ` A
/R

Γ ` A/B
(A,Γ) ` B

\R
Γ ` A\B

Γ ` A ∆[A] ` B
Cut

∆[Γ] ` B
Γ ` A ∆[B] ` C

/L
∆[(B/A,Γ)] ` C

Γ ` A ∆[B] ` C
\L

∆[(Γ, A\B)] ` C

Cut elimination. We recall that the cut rule can be eliminated in `NL : every
derivable sequent has a cut-free derivation.

2.2.2 NL languages

E+ denotes the set of non-empty strings over E . Let TE denote the set of
(non-empty) well-bracketed lists (binary trees) of elements of E .

Definition 4 (Yield) If T is a tree where the leaves are elements of a set E,
yieldE(T) ∈ E+ is the list of leaves of T .

This notation will be used for well-bracketed lists of words yieldΣ, for binary
trees of formulas yieldTp and will be extended to FA structures (see further
Definition 11).

Definition 5 (Language) Let G = (Σ, I, S) be a categorial grammar.

• G generates a well-bracketed list of words T ∈ TΣ (in NL model) iff there
exists Γ a binary tree of types, c1, . . . , cn ∈ Σ and A1, . . . , An ∈ Tp such

4

D
ra
ft

that:

G : ci 7→ Ai (1 ≤ i ≤ n)

Γ = T [c1 → A1, . . . , cn → An]

Γ `NL S
where T [c1 → A1, . . . , cn → An] means the binary tree obtained from T

by substituting the left to right occurrences of c1, . . . , cn by A1, . . . , An.
• G generates a string c1 · · · cn ∈ Σ+ iff there exists T ∈ TΣ such that
yieldΣ(T) = c1 · · · cn and G generates T .

• The language of well-bracketed lists of words corresponding to G, written
BLNL(G), is the set of well-bracketed lists of words generated by G.

• The language of strings corresponding to G, written LNL(G), is the set of
strings generated by G.

Example 1 Let Σ1 = {John,Mary, likes} and let Pr1 = {S,N}. We define:

G1 =

John 7→ N

Mary 7→ N

likes 7→ N \(S/N)

G1 is a rigid (or 1-valued) grammar. We can prove that ((N, N\(S/N)), N) `NL
S. Thus, we get:

John likes Mary ∈ LNL(G1)

((John likes) Mary) ∈ BLNL(G1)

One interest of NL when compared to classical categorial grammars lies in its
possibility to easily encode a restriction on the use of a basic category. For
instance when we want to distinguish between a noun phrase and pronouns in
subject position or object position, we can proceed as follows.

Example 2 Let Σ2 = {John,Mary, likes, he, she, him, her} and let Pr2 =
{S,N,X1, X2}. We define the following rigid grammar:

G2 =

John,Mary 7→ N

he, she 7→ N1

him, her 7→ N2

likes 7→ N1\(S/N2)

where N1 = X1/(N \X1) and N2 = X2/(N \X2).

We get: ((He likes) Mary) ∈ BLNL(G2) but: John likes she 6∈ LNL(G2)

5

D
ra
ft

2.3 Learning and Elasticity

Definition 6 (Grammar System) A grammar system is a triple 〈G,S,L〉
where:

• G is a “hypothesis space” (hereafter a set of grammars, for example catego-
rial grammars on Σ)

• S is a “sample space” (for example Σ∗ or structured sentences like TΣ)
• L is a function from G to subsets of S (for instance LNL or BLNL)

Let 〈G,S,L〉 denote a grammar system. A learning algorithm φ on G is an
algorithm that takes as input a finite list of S (a list of (structured) sentences)
and returns an element of G (a grammar) as follows.

Definition 7 (Learning function) In a grammar system 〈G,S,L〉 a func-
tion φ is said to learn G in Gold’s model iff for any G ∈ G and for any
enumeration 〈ei〉i∈N of L(G) there exists n0 ∈ N and a grammar G′ ∈ G such
that L(G′) = L(G) and ∀n ≥ n0, φ(〈e0, . . . , en〉) = G′. A class of grammars of
〈G,S,L〉 is said learnable when there exists a computable function that learns
G. It is said unlearnable otherwise.

Definition 8 (Finite and infinite elasticity) A class C of languages has
infinite elasticity iff there exists an infinite sequence 〈ei〉i∈N of sentences and
an infinite sequence 〈Li〉i∈N of languages in C such that ∀n ∈ N : en 6∈ Ln
and {e0, . . . , en−1} ⊆ Ln. A class C of languages has finite elasticity iff it does
not have infinite elasticity.

Theorem 9 (Finite elasticity implies learnability [Wright [15]]) If the
languages corresponding to a class of grammars G of a grammar system 〈G,S,L〉
have finite elasticity then G is learnable in Gold’s model (provided that the
class of grammars is recursively enumerable and the universal membership
problem for this class is decidable).

We now examplify categorial grammar inference in the simpler variant of AB-
rigid grammars, with positive structured examples (called FA-structures in the
AB framework); this structure represents the decompositions of sentences in
sub-components distinguishing the functional parts from the argument parts;
the internal nodes indicate the direction of application (forward by FApp or
backward by BApp) 3 . W. Buszkowski and G. Penn have provided a unifica-
tion algorithm on types to construct the most general lexicon generating the
positive examples. This method has been used and extended in [4]. We give
below an example that illustrates the algorithm.

3 with a left application rule: A/B,B → A and a right application rule: B,B\A→ A

6

D
ra
ft

Example 3 We consider the following two structured examples :

\
\\

�
��

\
\\

�
��

John likes

BApp

FApp

Mary \
\\

�
��

\
\\

�
��

Mary likes

JohnBApp

FApp

Argument types are first generated: the root is labelled S, distinct variables label
the argument nodes ; here X1 and X2 for the first sentence, X3 and X4 for the
second one. Next step is the computation of the types for functor nodes. The
final step is the unification of the types associated to the same lexical entry.
This is summarized in the following table :

John X2, X3 X2 = X3 X1

likes X2 \ (S/X1), X2 = X4

X4 \ (S/X3) X3 = X1 X1 \ (S/X1)

Mary X1, X4 X1 = X4 X1

3 GAB deductions and generalized FA-structures

3.1 FA structures over a set E

We give a general definition of FA structures over a set E , whereas in practice
E is either an alphabet Σ or a set of types such as Tp.

Definition 10 (FA structures) Let E be a set, a FA structure over E is a
binary tree where each leaf is labelled by an element of E and each internal
node is labelled by FApp (forward application) or BApp (backward application):

FAE ::= E | FApp(FAE ,FAE) | BApp(FAE ,FAE)

Definition 11 (Tree yield) The well-bracketed list of words obtained from
a FA structure F over E by forgetting FApp and BApp labels is called the tree
yield of F over E (notation treeE(F)).

7

D
ra
ft

3.2 GAB deductions

Definition 12 (GAB Deduction) Generalized AB deductions (GAB deduc-
tions) over Tp are the deductions built from formulas on Tp (the base case)
using the following conditional rules (C `NL B must be valid in NL):

A/B C
FApp

A

C B\A
BApp

A

C `NL B valid in NL

GAB deductions can be seen as a generalization of AB deductions in the fol-
lowing sense: for AB application rules C and B must be the same formula.

Definition 13 (FA structure of a GAB deduction) To each GAB deduc-
tion P, we associate a FA structure, written FATp(P), such that each internal
node corresponds to the application of a rule in P and is labelled by the name
of this rule and where the leaves are the same as in P.

\
\\

�
��

\
\\

�
��

\
\\
�
��

�
��

J
J
JJ FApp

FApp FApp

BApp

NNP/N

NP/N N
(NP \S)/NP

NP/N N
FApp

NP

(NP \S)/NP

NP/N N
FApp

NP
FApp

NP \S
BApp

S

Here, NP = X/(NP \X) and thus NP `NL NP

Definition 14 (GAB Deductions of F `GAB A or Γ `GAB A)

• For a FA structure over types F ∈ FATp and A ∈ Tp, we say that P is a 4

GAB deduction of F `GAB A when A is the type of the conclusion of P and
when FATp(P) = F .

• For a tree over types Γ ∈ TTp and A ∈ Tp, we say that P is a GAB de-
duction of Γ `GAB A when A is the type of the conclusion of P and when
treeTp(FATp(P)) = Γ.

4 in fact, given a FA structure F , there is at most one GAB deduction P s.t.
FATp(P) = F

8

D
ra
ft

3.2.1 GAB Languages

Similarly to classical categorial grammars, we can associate to each categorial
grammar a language of FA structures.

Definition 15 (GAB Languages) Let G = (Σ, I, S) be a categorial grammar
over Tp :

• G = (Σ, I, S) generates a FA structure F ∈ FAΣ (in the GAB deriva-
tion model) iff there exists a GAB derivation of a FA structure D ∈ FATp,
c1, . . . , cn ∈ Σ and A1, . . . , An ∈ Tp such that:

G : ci 7→ Ai (1 ≤ i ≤ n)

D = F [c1 → A1, . . . , cn → An]

D `GAB S

where F [c1 → A1, . . . , cn → An] means the FA structure obtained from
F by substituting respectively the left to right occurrences of c1, . . . , cn by
A1, . . . , An.

• G generates a well-bracketed list of words T ∈ TΣ iff there exists F ∈ FAΣ

such that treeΣ(F) = T and G generates F .
• G generates a string c1 · · · cn ∈ Σ+ iff there exists F ∈ FAΣ such that
yieldΣ(treeΣ(F)) = c1 · · · cn and G generates F .

• The language of FA structures corresponding to G, written FLGAB(G), is
the set of FA structures generated by G.

• The language of well-bracketed lists of words corresponding to G, written
BLGAB(G), is the set of well-bracketed lists of words generated by G.

• The language of strings corresponding to G, written LGAB(G), is the set of
strings generated by G.

Example 4 If we take the categorial grammar that is defined in Example 2,
we get:

He likes Mary ∈ LGAB(G2)

((He likes) Mary) ∈ BLGAB(G2)

FApp(BApp(He, likes),Mary) ∈ FLGAB(G2)

because we can build the following deduction (where N2 = X2/(N \X2) that
entails N ` N2):

He︷︸︸︷
N1

likes︷ ︸︸ ︷
N1\(S/N2)

BApp
S/N2

Mary︷︸︸︷
N

FApp
S

9

D
ra
ft

however:

Mary likes he 6∈ LGAB(G2)

3.3 NL and GAB languages

In fact, there is a strong correspondence between GAB deductions and NL
derivations. In particular with Theorem 16, we show that the respective string
languages and binary tree languages are the same.

Theorem 16 If A is an atomic formula, Γ `GAB A iff Γ `NL A

Corollary 17 BLNL(G) = BLGAB(G) and LNL(G) = LGAB(G)

We write, for the rest of the paper, FL(G), BL(G) and L(G) in place of
FLGAB(G), BLGAB(G) = BLNL(G) and LGAB(G) = LNL(G).

Proof of Γ `GAB A⇒ Γ `NL A (A does not need to be atomic) : This is
relatively easy because a GAB deduction is just a mixed presentation of an NL
proof using a natural deduction part and a NL derivation part (hypotheses on
nodes). We can transform recursively a GAB deduction. Suppose that the last
rule of a GAB deduction corresponding to a FA structure FApp(F1, F2) is:

P1

...

A/B

P2

...

C
FApp

A

We know that C `NL B and we have two sub-deductions P1 and P2 that
correspond to F1 and F2. The first one, P1, concludes with A/B and the
second, P2, with C. By induction hypothesis, the two deductions correspond
to two NL derivations of treeTp(F1) `NL A/B and treeTp(F2) `NL C. Now,
using (/L) for (A/B,B) ` A and two cuts, we find that treeTp(FApp(F1, F2)) =
(treeTp(F1), treeTp(F2)) `NL A. The other possibility ((BApp) as first rule) is
very similar and the base case is obvious.

Proof of Γ `NL A ⇒ Γ `GAB A (A atomic) : This property results from an
alternative presentation of NL where contexts are in a limited form [19]:

10

D
ra
ft

Ax
A ` A

(C,B) ` A
/R∗

C ` A/B
(A,C) ` B

\R∗
C ` A\B

D ` C ∆[B] ` A
/L∗

∆[(B/C,D)] ` A
D ` C ∆[B] ` A

\L∗
∆[(D,C\B)] ` A

Aarts and Trautwein in [19] have proved the equivalence of NL and this system
called NLD∗∗0 . Now, if we have a NL derivation of Γ `NL A with A atomic, the
first rule on the main branch of the derivation must be a left rule. For instance,
for (/L), Γ can be written ∆[(B/C,D)] and we get a NLD∗∗0 derivation of D `
C and another one of ∆[B] ` A. We can apply our hypothesis to the second
derivation. At this point, we have a GAB deduction P [B] of ∆[B] `GAB A. In
this deduction, we replace the leaf node corresponding to B by a new node
corresponding to the conclusion of (FApp) rule:

B

...

P
→

B/C D
FApp

B

...

P

This transformation gives a GAB deduction corresponding to ∆[(B/C,D)]
since D ` C. The other possibility for (\L) is symmetrical and the base case
where the derivation is an axiom is obvious.

4 Infinite Elasticity Theorem

We prove, in this section that, the class of rigid (also k-valued for each k) NL
languages of FA structures has infinite elasticity. Thus, the learning problem
which is solved in section 5 is difficult for this class.

The problem here is to find an infinite sequence < Gi >i∈N of categorial
grammars and an infinite sequence < Fi >i∈N of FA structures such that, for
all n ∈ N :

Fn 6∈ FL(Gn)

{F0, . . . , Fn−1} ⊆ FL(Gn)

Construction of the Infinite Sequences

The primitive types are Pr = {A, S}. We define by induction formulas D0 = A

11

D
ra
ft

and Dn+1 = Dn/(Dn\Dn). The alphabet is Σ = {a, b, c}. We define:

Gn :

a 7→ A\A
b 7→ Dn

c 7→ S/Dn

We define by induction FA structures E0 = b and En+1 = FApp(En, a). Finally
the sequence of FA structures is defined by < Fn = FApp(c, En+1) >.

Theorem 18 The class of rigid (also k-valued for each k) NL languages of
FA structures over Σ has infinite elasticity.

Proof of ∀n ∈ N : {F1, . . . , Fn} ⊆ FL(Gn+1) : In fact we can first prove that
∀n ∈ N, Dn `NL Dn+1. This is easy because Dn+1 = Dn/(Dn\Dn) is a type-
raising of Dn. Thus, if 0 ≤ i ≤ n, we have Di `NL Dn. Secondly, we can prove
by induction that A\A `NL Dn\Dn. For n = 0, it is obvious and for n > 0, by
hypothesis, we have A\A `NL Dn−1\Dn−1 and because Dn−1 `NL Dn, we have
(Dn−1/(Dn−1\Dn−1), A\A) `NL Dn. Then A\A `NL (Dn−1/(Dn−1\Dn−1))\Dn =
Dn\Dn. For the rest, we have to check that we can put these derivation on
the unique FA structure on Tp that corresponds to Fn (Gn is rigid and there
is no choice for the type of each element of Σ).

Proof of Fn 6∈ FL(Gn) : In fact, with FA structures, we know the structure of
a corresponding derivation and we just have to find a justification for internal
rules. For a derivation corresponding to Fn in FL(Gn), since G : b 7→ Dn and
G : a 7→ A\A, the deepest internal node for n > 0 is:

b︷ ︸︸ ︷
Dn = Dn−1/(Dn−1\Dn−1)

a︷ ︸︸ ︷
A\A

FApp

Dn−1

...

If we go from the deepest node to the root, we find successively formulas
Dn−1, But, because the FA structure has n + 1 “a”, the derivation looks
like:

c︷ ︸︸ ︷
S/Dn

...

D0 = A

a︷ ︸︸ ︷
A\A

FApp
?
FApp

S

which is impossible because A is atomic and can not be the functor in a

12

D
ra
ft

functor-argument rule (this is the reason why a “?” appears on the deduc-
tion).

5 Learnability Theorems

Previous section shows that the class of rigid (also k-valued for each k) NL
languages of FA structures over Σ has infinite elasticity. Thus, usual general
properties given by learning theory do not apply here. To solve this problem,
we define sub-classes of NL grammars (in terms of arity) and prove that the
corresponding classes of languages are finite (and thus have finite elasticity).
Then, we prove the learnability of the class of rigid (also k-valued for each k)
NL languages of FA structures over Σ.

5.1 Type-arity, FA-arity and related subclasses

The arity of types is defined as usual on formulas, but in curryfied and non-
commutative forms where \ and / stand for right anf left implications. We
recall the definition below in Definition 19. We then introduce another kind of
arity, that is based directly on FA structures rather than on types. When we
consider the lexicon of a grammar and the languages that are generated, these
two measures are in fact connected as shown after. Whereas the t-arity on
types can be computed directly on the lexicon, the fa-arity on FA structures
can be computed directly on the data given in a learning process.

Definition 19 (Type-arity) The arity of a type, written t-arity is :

t-arity(A) = 0 if A ∈ Pr
t-arity(A/B) = t-arity(B\A) = t-arity(A) + 1

The type-arity of a grammar G, written t-arity(G) is the maximum arity of
the types assigned by G.

Definition 20 (FA-arity of FA structures over E) The FA-arity of a FA
structure on E corresponds to the maximum number of arguments of each

13

D
ra
ft

function in the structure. It is defined by:

fa-arity(A) = 0 if A ∈ E
fa-arity(FApp(F1, F2)) = fa-arity(BApp(F2, F1)) = fa-arity(F1) + 1

FA-arity(A) = 0 if A ∈ E
FA-arity(FApp(F1, F2)) = FA-arity(BApp(F2, F1))

= max(fa-arity(F1) + 1, FA-arity(F1), FA-arity(F2))

These definitions are extended to finite sets as the maximum computed for the
given set (and possibly on infinite sets when such a maximum exists).

Note that the FA-arity on FATp does not correspond to the usual arity of a
functional expression, but is bounded by the maximum t-arity of the types
on the leaves of the structure as shown below.

\
\
\
\

�
�
�
�

�
�
�
�

\
\
\
\

�
�
�
�

\
\
\
\

�
�
�
�

\
\
\
\

PP
PP

PP
PPi

PP
PP

PP
PP

PP
PPi

fa-arity = 1

FA-arity = 1

t-arity = 2

NP/N
the

FApp

BApp

N
cat

(NP \S)/NP
ate

FApp

FApp

NP/N
a

N
mouse

Property 21 Let F denote a FA structure on Tp, we have

for F ∈ FATp : FA-arity(F) ≤ max{t-arity(Ai) | Ai ∈ Tp leaf of F}

We can formulate a similar property for FA structures on Σ, provided we can
relate the type and the word by a lexicon I :

for F ∈ FAΣ : FA-arity(F) ≤ max{t-arity(Ai) | Ai ∈ I(c) and c leaf of F}

Proof : in fact we show a more detailed property : (1) for any subtree F of a
FA structure on Tp :

(1) fa-arity(F) + t-arity(root(F)) = t-arity(F̂)
where F̂ is the leaf type that labels the ultimate functor 5 of F and root(F)

5 More formally : Â = A if A ∈ Tp; ̂FApp(F1, F2) = F̂1 = ̂BApp(F2, F1)

14

D
ra
ft

is the type that labels the root in the GAB-derivation corresponding to F .

Property (1) entails the desired property since the FA-arity of a given FA
structure is also the maximum fa-arity on the FA structures that occur in it.

We now prove (1) by induction on the structure F . In the base case where
F is a leaf node (1) clearly holds because fa-arity(F) = 0 and root(F) = F̂ .
Let F = FApp(F1, F2), we have F̂ = F̂1, fa-arity(F) = 1 + fa-arity(F1) and
root(F1) must be root(F)/B for some type B (such that rule FApp can apply
in the derivation) therefore t-arity(root(F1)) = 1 + t-arity(root(F)), hence by
induction (1) holds for F . The case F = BApp(F1, F2) is similar

Property 21 allows to define the FA-arity of a grammar as follows.

Definition 22 (FA-arity of a grammar) For a categorial grammar G or
the corresponding language FL(G), we define their FA-arity as the maximum
FA-arity of the FA structures of FL(G):

FA-arity(G) = FA-arity(FL(G)) =max{FA-arity(F) | F ∈ FL(G)}

This maximum exists for a k-valued categorial grammar because: (i) the FA-
arity of a set of FA structures on Σ is the same as the FA-arity of the FA
structures on Tp that generate these structures; (ii) from Property 21, each
FA structure on Tp has a FA-arity that is bounded by the maximum t-arity
of the types on the leaves of the structure; (iii) the t-arity of the types on the
leaves of the structure are bounded by the maximum arity of the types that
appear in the grammar (in finite number).

Definition 23 (FA-arity bounded subclasses) We consider the following
subclasses of NL languages and grammars (over Σ):

• the class of NL grammars whose FA-arity is bounded by n is noted CG(FA-arity≤n);
the corresponding classes of languages of FA structures and of strings are
written CFL(FA-arity≤n) and CL(FA-arity≤n);

• the class of NL k-valued categorial grammars, whose FA-arity is at most n,
is written CG(FA-arity≤n)

k ; we write CFL(FA-arity≤n)
k and CL(FA-arity≤n)

k for the
classes of NL languages of FA structures and of strings generated by these
grammars.

5.2 Each class of rigid arity-bounded languages CFL(FA-arity≤n)
1 is finite.

We first give some technical definitions and properties related toGAB-deductions.

15

D
ra
ft

Definition 24 The main subtype of depth n for a given type is defined by

main0(A) = A

mainn(A) = is undefined if A is atomic and n > 0

mainn(A/B) = mainn(B\A) = mainn−1(A) if n > 0

Remark. if A/B (or B\A) is the main subtype of depth k for a formula C
then A is the main subtype of depth k + 1 for this formula C.

Theorem 25 (Types in GAB-deductions) The types that appear in a GAB-
deduction P are main subtypes of the leaves of P with a depth less or equal to
the FA-arity of the FA structure associated to P, that is they belong to :

{mainn(Ai) | Ai leaf of P ∧ n ≤ FA-arity(FATp(P)) ∧mainn(Ai) is defined }

Proof : by induction on the GAB-deduction P , we also show that (o) the
conclusion of P is a main subtype of a leaf in P of depth fa-arity(FATp(P)).
- The base case when P is a formula on Tp is obvious since a formula is also
its main subtype of depth 0.
- Suppose P ends with the application of FApp on two sub-deductions P1 of
A/B and P2 of C, such that C `NL B; let F1 = FATp(P1) and F2 = FATp(P2),
we have FATp(P) = FApp(F1, F2).

P1

...

A/B

P2

...

C
FApp

A

* We first get (o) since A/B is a main subtype of a leaf in P1 with a
depth equal to fa-arity(F1), which implies that A must be a main subtype of
this leaf with a depth equal to 1 + fa-arity(F1) = fa-arity(FApp(F1, F2)) =
fa-arity(FATp(P)).

* Then by induction hypothesis: the types that appear in P1 are main
subtypes of the leaves of P1 with a depth ≤ FA-arity(F1) and similarly for P2

with a depth ≤ FA-arity(F2). We conclude the FApp case using:
FA-arity(FApp(F1, F2)) = max(fa-arity(F1) + 1, FA-arity(F1), FA-arity(F2))
- The case when P ends with the application of BApp is similar.

Given a grammar G, the main subtypes of the types assigned by G are used
to define tables that are intended to capture its NL-derivation possibilities.

16

D
ra
ft

Definition 26 (Deduction table) Let G = (Σ, I, S) be a rigid categorial
grammar, its deduction table of depth n is:

Tab(G;n)[〈a, i〉, 〈b, j〉] ∈ {⊥, FApp,BApp}

= FApp iff ∃A,B,C,D :

I(a) = {A}, I(b) = {B},
mainj(B) = C/D,maini(A) `NL D

= BApp iff ∃A,B,C,D :

I(a) = {A}, I(b) = {B},
mainj(B) = D\C,maini(A) `NL D

= ⊥ elsewhere

where a, b ∈ Σ and 0 ≤ i, j ≤ n.

Theorem 27 Two grammars with the same deduction tables for each depth,
(or equivalently for their maximum FA-arity) generate the same FA-structure

languages : let n ≥ 0, G = (Σ, I, S), G′ = (Σ, I ′, S) with G,G′ ∈ CG(FA-arity≤n)
1 :

if Tab(G;n)=Tab(G’;n) then FL(G) = FL(G′)

Proof : by induction on a GAB-deduction P for Γ ` C, where Γ is a tree
of only main subtypes of G of depth ≤ FA-arity(G), we show that a similar
GAB-deduction P ′ is obtained for the types of G′ by replacing each main
subtype for G in P by the corresponding main subtype for G′ (that is each
occurrence maini(A) where I(a) = {A} for a ∈ Σ is replaced by maini(A

′)
where I ′(a) = {A′})

Theorem 28 For each n, CFL(FA-arity≤n)
1 is finite. 6

Proof : let us fix n ≥ 0 ; the number of deduction tables of depth n is finite
(since Σ is finite and fixed for the class). From Theorem 27, all grammars in

CG(FA-arity≤n)
1 with the same deduction tables have the same langage, therefore

CFL(FA-arity≤n)
1 is finite

This property is essential in this work. Moreover, this result can also be ex-
tended to k-valued grammars. As a consequence, all these classes are learnable
in the Gold’s model and we can find a learning algorithm for each of them.

5.3 FA-arity bounded k-valued NL languages are learnable from strings

We get as a corollary that FA-arity bounded k-valued NL languages are learn-
able from strings as explained below.

6 each class corresponds to a given finite alphabet often left implicit

17

D
ra
ft

We have seen that the class of FA-arity bounded k-valued NL languages of FA
structures is finite. We can deduce that the class of FA-arity bounded k-valued
NL languages of strings is finite and thus learnable from positive examples.

Corollary 29 CL(FA-arity≤n)
k is finite for each k and n and thus the corre-

sponding classes of grammars CG(FA-arity≤n)
k are learnable from strings.

A similar corollary holds for well-bracketed strings using similar arguments

5.4 k-valued NL languages are learnable from FA structures

We now adress languages of FA structures that are not necessarily arity bounded
and we show in this section a more general result.

Property 30 CFLk has infinite elasticity for each k whereas the correspond-
ing classes of grammars CGk are learnable from FA-structures.

Proof: Because, for each n and k, the class CFL(FA-arity≤n)
k has finite elasticity,

there exists an algorithm φnk that learns the languages of this class from FA
structures in Gold’s model. We define the following algorithm φk that takes
a finite list of FA structures F1, . . . , Fl and returns a categorial grammar (or
fails):

(1) Compute the maximum FA-arity r of the l input FA structures.
(2) Apply algorithm φrk on F1, . . . , Fl.

This algorithm defines a learning mechanism for k-valued NL grammars from
FA structures because for a language L that corresponds to a k-valued NL
grammar, there exists at least one FA structure F such that FA-arity(F) =
FA-arity(L). Thus, for every enumeration on the FA structure of L, there
exists an integer r1 such that for every l ≥ r1, the number r computed by φk
is FA-arity(L). From this integer, φk applies the proper algorithm φ

FA-arity(L)
k

that converges to L.

6 Conclusion

Learnability from functor-argument structures. We have shown first
in the paper how we can define languages of functor-argument structures of
sentences based on non-associative Lambek calculus. Secondly, we have proved
that, for each k ≥ 0, the class of k-valued non-associative Lambek languages
of functor-argument structures has infinite elasticity and thus is difficult to

18

D
ra
ft

learn in Gold’s model. Finally, we have shown how we can bypass this problem
and define a learning algorithm for this class of languages.

Learnability from strings and well-bracketed lists of words. Unfor-
tunately, the learning algorithm on functor-argument structures can not be
adapted to the problems of learning non-associative Lambek languages from
strings or from well-bracketed lists of words because we need to bound the
effective arity of each element of the lexicon. This information is given by FA
structures but not by strings or well-bracketed strings. In fact, as shown in
[24,25] by limit points, each class of k-valued non-associative Lambek gram-
mar is unlearnable from strings and even from well-bracketed strings. This
result expresses the need for further restrictions or for an adequate structure
on strings like the notion of FA-arity bounded language.

Learnable subclasses. Another recent work in [26] applies in particular
to unidirectional k-valued NL-grammars and yields their learnability from
strings. [27] deals with k-valued NL-grammars with types of t-arity at most
n and their learnability from strings only, these latter classes being based
on a bound on types rather than on the FA-structures generated. Here, we
have shown that FA-arity bounded k-valued NL languages are learnable from
strings. In fact, these results of [27] can be recovered from results in this paper
using Property 21.

We now give a summary of some results on the learnability of NL classes of
grammars from (structured) examples (∗ is proved in the article) :

Restriction\Structure strings Well bracketed
strings

Generalized FA

all no no no

k-valued no [24] no [25] yes∗

k-valued and
t-arity bounded

yes [27] yes
corollary of [27]

yes
corollary of [27]

k-valued and
FA-arity bounded

yes∗ yes∗ yes∗

References

[1] E. Gold, Language identification in the limit, Information and control 10 (1967)
447–474.

[2] D. Angluin, Inductive inference of formal languages from positive data,
Information and Control 45 (1980) 117–135.

19

D
ra
ft

[3] T. Shinohara, Inductive inference from positive data is powerful, in: The 1990
Workshop on Computational Learning Theory, Morgan Kaufmann, San Mateo,
California, 1990, pp. 97–110.

[4] M. Kanazawa, Learnable classes of categorial grammars, Studies in Logic,
Language and Information, FoLLI & CSLI, 1998, distributed by Cambridge
University Press.

[5] J. Nicolas, Grammatical inference as unification, Rapport de Recherche RR-
3632, INRIA, http://www.inria.fr/RRRT/publications-eng.html (1999).

[6] W. Buszkowski, G. Penn, Categorial grammars determined from linguistic data
by unification, Studia Logica 49 (1990) 431–454.

[7] Y. Bar-Hillel, A quasi arithmetical notation for syntactic description, Language
29 (1953) 47–58.

[8] J. Lambek, The mathematics of sentence structure, American mathematical
monthly 65 (1958) 154–169.

[9] R. Bonato, C. Retoré, Learning rigid Lambek grammars and minimalist
grammars from structured sentences, Third workshop on Learning Language
in Logic, Strasbourg (september 2001) 23–34.

[10] A. Foret, Y. Le Nir, Lambek rigid grammars are not learnable from strings, in:
COLING’2002, 19th International Conference on Computational Linguistics,
Taipei, Taiwan, 2002, pp. 274–279.

[11] A. Foret, Y. Le Nir, On limit points for some variants of rigid Lambek grammars,
in: ICGI’2002, the 6th International Colloquium on Grammatical Inference, no.
2484 in Lecture Notes in Artificial Intelligence, Springer-Verlag, 2002, pp. 106–
119.

[12] C. C. Florêncio, A limit point for rigid associative-commutative Lambek
grammars, in: A. Copestake, J. H. c (Eds.), Proceedings of EACL2003, Tenth
Conference of the European Chapter of the Association for Computational
Linguistics, 2003, pp. 72–82.

[13] C. C. Florêncio, Learning categorial grammars, Ph.D. thesis, Utrecht Institute
of Linguistics OTS, Utrecht University (Nov. 2003).

[14] J. Lambek, On the calculus of syntactic types, in: R. Jakobson (Ed.), Structure
of language and its mathematical aspects, American Mathematical Society,
1961, pp. 166–178.

[15] K. Wright, Identifications of unions of languages drawn from an identifiable
class, in: The 1989 Workshop on Computational Learning Theory, Morgan
Kaufmann, San Mateo, Calif., 1989, pp. 328–333.

[16] T. Motoki, T. Shinohara, K. Wright, The correct definition of finite elasticity:
Corrigendum to identification of unions, in: The fourth Annual Workshop on
Computational Learning Theory, Morgan Kaufmann, San Mateo, Calif., 1991,
p. 375.

20

D
ra
ft

[17] D. Angluin, Inference of reversible languages, Journal of the ACM (JACM)
29 (3) (1982) 741–765.

[18] M. Kandulski, The non-associative Lambek calculus, in: W. M. W. Buszkowski,
J. V. Bentem (Eds.), Categorial Grammar, Benjamins, Amsterdam, 1988, pp.
141–152.

[19] E. Aarts, K. Trautwein, Non-associative Lambek categorial grammar in
polynomial time, Mathematical Logic Quaterly 41 (1995) 476–484.

[20] W. Buszkowski, Mathematical linguistics and proof theory, in: van Benthem
and ter Meulen [28], Ch. 12, pp. 683–736.

[21] M. Moortgat, Categorial type logic, in: van Benthem and ter Meulen [28], Ch. 2,
pp. 93–177.

[22] P. de Groote, Non-associative Lambek calculus in polynomial time, in: 8th
Workshop on theorem proving with analytic tableaux and related methods,
no. 1617 in Lecture Notes in Artificial Intelligence, Springer-Verlag, 1999, pp.
128–139.

[23] P. de Groote, F. Lamarche, Classical non-associative Lambek calculus, Studia
Logica 71(3) (2002) 355–388.

[24] D. Béchet, A. Foret, k-valued non-associative Lambek categorial grammars are
not learnable from strings, in: ACL (Ed.), Proccedings of the 41st Annual
Meeting of the Association for Computational Linguistics (ACL 2003), 2003,
pp. 351–358.

[25] D. Béchet, A. Foret, On intermediate structures for non-associative Lambek
grammars and learnability, in: Proccedings of the 7th conference on Categorial
Grammars (CG2004), Montpellier, France, 2004, pp. 180–194.

[26] Y. Le Nir, Structures des analyses syntaxiques catégorielles. application à
l’inférence grammaticale, Ph.D. thesis, Rennes 1 University (Dec. 2003).

[27] D. Béchet, A. Foret, Apprentissage des grammaires de Lambek rigides et d’arité
bornée pour le traitement automatique des langues, in: Actes de la Conférence
d’APprentissage 2003 (CAP’2003), 2003, pp. 155–167.

[28] J. van Benthem, A. ter Meulen (Eds.), Handbook of Logic and Language, North-
Holland Elsevier, Amsterdam, 1997.

21

