
Parsing pregroup grammars using
partial composition

Denis Béchet(1), Annie Foret(2) and Isabelle Tellier(3)

(1) LINA, University of Nantes
(2) IRISA, University of Rennes
(3) LIFL, University of Lilles III

Workshop on Pregroups and Linear Logic – Chieti, 6-7 May 2005 – p. 1



Parsing with word separation
Parsing of “whom have you seen ?” (q′ ≤Pr s)

whom have you seen
q′ollql qpl2π

l
2 π2 p2o

l

q′ollql, qpl2π
l
2, π2

[1]
[1]

, p2o
l

[2]

Workshop on Pregroups and Linear Logic – Chieti, 6-7 May 2005 – p. 2



PLAN
Introduction
Background

Free pregroup
Pregroup grammar and language
Parsing

Parsing with word separation
Rewriting
Partial composition
Majority partial composition

Conclusion

Workshop on Pregroups and Linear Logic – Chieti, 6-7 May 2005 – p. 3



Free pregroup

(Id)
p(n) ≤ p(n)

X ≤ Y Y ≤ Z
(CUT )

X ≤ Z

XY ≤ Z
(AG)

Xp(n)p(n+1)Y ≤ Z

X ≤ Y Z
(AD)

X ≤ Y p(n+1)p(n)Z

Xp(k)Y ≤ Z
(INDG)

Xq(k)Y ≤ Z

X ≤ Y p(k)Z
(INDD)

X ≤ Y q(k)Z

q ≤Pr p if k is even or p ≤Pr q if k is odd

Workshop on Pregroups and Linear Logic – Chieti, 6-7 May 2005 – p. 4



Free pregroup grammar and language
A grammar G = (Σ, (Pr,≤Pr), I, s):

Σ finite alphabet
(Pr,≤) finite partially ordered set (primitive types)
that defines free pregroup (Tp,≤Tp)
I ⊂ Σ× Tp, a lexicon, assigns a finite set of types to
each c ∈ Σ

s ∈ Pr is a primitive type for correct sentences
The language L(G) ∈ Σ+:

v1 · · · vn ∈ L(G)
iff

for 1 ≤ i ≤ n, ∃Xi ∈ I(vi) such that X1 · · ·Xn ≤Tp s

Workshop on Pregroups and Linear Logic – Chieti, 6-7 May 2005 – p. 5



Parsing using rewriting (1)
Because s is a primitive type, v1 · · · vn ∈ L(G) iff
for 1 ≤ i ≤ n, ∃Xi ∈ I(vi) and ∃s′ ∈ Pr such that:

{
X1 · · ·Xn

(1)∗−→ s′

s′ ≤Pr s
(1)∗−→ : the reflexive and transitive closure of (1)−→:

Xp(n)q(n+1)Y
(1)−→ XY

if q ≤Pr p and n is even or if p ≤Pr q and n is odd

Workshop on Pregroups and Linear Logic – Chieti, 6-7 May 2005 – p. 6



Parsing using rewriting (1) : example
Parsing of “whom have you seen ?” (q′ ≤Pr s)

whom have you seen
q′ollql qpl2π

l
2 π2 p2o

l

q′ollqlqpl2π
l
2π2p2o

l (1)−→ q′ollpl2π
l
2π2p2o

l

(1)−→ q′ollpl2p2o
l

(1)−→ q′ollol
(1)−→ q′

and q′ ≤Pr s

Workshop on Pregroups and Linear Logic – Chieti, 6-7 May 2005 – p. 7



Parsing using rewriting (1) : “proof net”
Parsing of “whom have you seen ?” (q′ ≤Pr s)

whom have you seen
q′ollql qpl2π

l
2 π2 p2o

l

q′ollqlqpl2π
l
2π2p2o

l (q′ ≤Pr s)

Workshop on Pregroups and Linear Logic – Chieti, 6-7 May 2005 – p. 8



Parsing with word separation (list)
Three rewriting rules (Γ,∆ ∈ Tp∗, X, Y ∈ Tp, p, q ∈ Pr):

[M] (merge): Γ, X, Y,∆
M−→ Γ, XY,∆.

[I ] (internal): Γ, Xp(n)q(n+1)Y,∆
I−→ Γ, XY,∆, if q ≤Pr p

and n is even or if p ≤Pr q and n is odd.

[E ] (external): Γ, Xp(n), q(n+1)Y,∆
E−→ Γ, X, Y,∆, if

q ≤Pr p and n is even or if p ≤Pr q and n is odd.

Workshop on Pregroups and Linear Logic – Chieti, 6-7 May 2005 – p. 9



Parsing with word separation (example)
Parsing of “whom have you seen ?” (q′ ≤Pr s)

whom have you seen
q′ollql qpl2π

l
2 π2 p2o

l

q′oll ql, q pl2π
l
2, π2, p2o

l E−→ q′oll, pl2π
l
2, π2 , p2o

l

M−→ q′oll, pl2π
l
2π2, p2o

l

I−→ q′oll, pl2, p2 o
l

E−→ q′oll, , ol

M−→ q′ oll, ol
E−→ q′

and q′ ≤Pr s

Workshop on Pregroups and Linear Logic – Chieti, 6-7 May 2005 – p. 10



Parsing with word separation (lemma)

Parsing (for a pregroup grammar) can be done using MIE∗−→ :
v1 · · · vn ∈ L(G) iff
for 1 ≤ i ≤ n, ∃Xi ∈ I(vi) and ∃s′ ∈ Pr such that:

{
X1, · · · , Xn

MIE∗−→ s′

s′ ≤Pr s

Workshop on Pregroups and Linear Logic – Chieti, 6-7 May 2005 – p. 11



Internal before Merge/External (lemma)
I−→ can be performed before M−→ and E−→:
v1 · · · vn ∈ L(G) iff
for 1 ≤ i ≤ n, ∃Xi ∈ I(vi), ∃Yi ∈ Tp and ∃s′ ∈ Pr such that:





for 1 ≤ i ≤ n,Xi
I∗−→ Yi

Y1, · · · , Yn ME∗−→ s′

s′ ≤Pr s

Workshop on Pregroups and Linear Logic – Chieti, 6-7 May 2005 – p. 12



Internal before Merge/External (example)

q′oll ql, q pl2π
l
2, π2, p2o

l E−→ q′oll, pl2π
l
2, π2 , p2o

l

M−→ q′oll, pl2π
l
2π2, p2o

l

I−→ q′oll, pl2, p2 o
l

E−→ q′oll, , ol M−→ q′ oll, ol E−→ q′

becomes:
q′oll ql, q pl2π

l
2, π2, p2o

l E−→ q′oll, pl2 π
l
2, π2 , p2o

l

E−→ q′oll, pl2, , p2o
l

M−→ q′oll, pl2, p2 o
l

E−→ q′oll, , ol M−→ q′ oll, ol E−→ q′

Workshop on Pregroups and Linear Logic – Chieti, 6-7 May 2005 – p. 13



Partial composition
E∗−→ and M−→ corresponding to the same couple of types are

joined together in C−→ :

[C] (partial composition): For k ∈ N,
Γ, Xp

(n1)
1 · · · p(nk)

k , q
(nk+1)
k · · · q(n1+1)

1 Y,∆
E−→ Γ, XY,∆, if

qi ≤Pr pi and ni is even or if pi ≤Pr qi and ni is odd, for
1 ≤ i ≤ k.

Workshop on Pregroups and Linear Logic – Chieti, 6-7 May 2005 – p. 14



Partial composition (example)

q′oll ql, q pl2π
l
2, π2, p2o

l E−→ q′oll, pl2 π
l
2, π2 , p2o

l

E−→ q′oll, pl2, , p2o
l

M−→ q′oll, pl2, p2 o
l

E−→ q′oll, , ol M−→ q′ oll, ol E−→ q′

becomes:

q′oll ql, q pl2π
l
2, π2, p2o

l E−→ q′oll, pl2π
l
2, π2

[1]

, p2o
l

C−→ q′oll, pl2, p2 o
l

E−→ q′oll, , ol
[0] C−→ q′ oll, ol E−→ q′

Workshop on Pregroups and Linear Logic – Chieti, 6-7 May 2005 – p. 15



Partial composition (lemma)
Lemma:
For a list of types Γ and p ∈ Pr, Γ

ME∗−→ p iff Γ
C∗−→ p

Corollary:
v1 · · · vn ∈ L(G) iff
for 1 ≤ i ≤ n, ∃Xi ∈ I(vi), ∃Yi ∈ Tp and ∃s′ ∈ Pr such that:





for 1 ≤ i ≤ n,Xi
I∗−→ Yi

Y1, · · · , Yn C∗−→ s′

s′ ≤Pr s

Workshop on Pregroups and Linear Logic – Chieti, 6-7 May 2005 – p. 16



Partial composition (example)

q′oll ql, q pl2π
l
2, π2, p2o

l E−→ q′oll, pl2 π
l
2, π2 , p2o

l

E−→ q′oll, pl2, , p2o
l

M−→ q′oll, pl2, p2 o
l

E−→ q′oll, , ol M−→ q′ oll, ol E−→ q′

becomes:

q′ollql, qpl2π
l
2

[1]

, π2, p2o
l C−→ q′ollpl2π

l
2, π2

[1]

, p2o
l

C−→ q′ollpl2, p2o
l

[2]

C−→ q′

Workshop on Pregroups and Linear Logic – Chieti, 6-7 May 2005 – p. 17



Partial composition (parse tree)

q′ollql, qpl2π
l
2

[1]

, π2, p2o
l C−→ q′ollpl2π

l
2, π2

[1]

, p2o
l

C−→ q′ollpl2, p2o
l

[2]

C−→ q′

corresponds to the following parse tree:

q′ollql, qpl2π
l
2

[1]
, π2

[1]

, p2o
l

[2]

Workshop on Pregroups and Linear Logic – Chieti, 6-7 May 2005 – p. 18



Parsing using partial composition
Partial composition does not give a polynomial parsing
algorithm because the result of partial composition is not
bounded by the lexicon:

Γ, q′ollql, qpl2π
l
2

[1]

,∆
C−→ Γ, q′ollpl2π

l
2,∆

3 , 3 4

Workshop on Pregroups and Linear Logic – Chieti, 6-7 May 2005 – p. 19



Majority partial composition

A partial composition C−→ is a majority partial composition
(noted @−→) if the width of the result is less or equal to the
maximum of the widths of the arguments

A non majoritory partial composition:

Γ, q′ollql, qpl2π
l
2

[1]

,∆
C−→ Γ, q′ollpl2π

l
2,∆

A majoritory partial composition:

Γ, q′ollql, qolπl2

[2]

,∆
@−→ Γ, q′πl2,∆

Workshop on Pregroups and Linear Logic – Chieti, 6-7 May 2005 – p. 20



Parsing using majority composition
Main theorem:
v1 · · · vn ∈ L(G) iff
for 1 ≤ i ≤ n, ∃Xi ∈ RI∗(I)(vi), and ∃s′ ∈ Pr such that:

{
X1, · · · , Xn

@∗−→ s′

s′ ≤Pr s

where RI∗(I) is the completion of I by I∗−→

Proof: property of (planar) proof nets. there exists a type in
Γ that is only linked to its immediate neighour(s)

q′ollql, qpl2π
l
2, π2, p2o

l

Workshop on Pregroups and Linear Logic – Chieti, 6-7 May 2005 – p. 21



Parsing using @ (example)

q′ollql, qpl2π
l
2

[1]

, π2, p2o
l C−→ q′ollpl2π

l
2, π2

[1]

, p2o
l

C−→ q′ollpl2, p2o
l

[2]

C−→ q′

is transformed into:

q′ollql, qpl2π
l
2, π2

[1]

, p2o
l @−→ q′ollql, qpl2

[1]

, p2o
l

@−→ q′ollpl2, p2o
l

[2]

@−→ q′

Workshop on Pregroups and Linear Logic – Chieti, 6-7 May 2005 – p. 22



Polynomial parsing using @
Partial composition gives a polynomial parsing algorithm
because the result of partial composition is bounded by the
maximum width of the types of the lexicon.

For a grammar G and a list of words v1, · · · , vn ∈ Σ+, we
compute for 1 ≤ i ≤ j ≤ n, TGv1,··· ,vn(i, j) ⊂ Tp, the possible
types associated to the sublist of words vi, · · · , vj using
majority partial composition:

i = j : TGv1,··· ,vn(i, j) = RI∗(I)(vi)

i < j : TGv1,··· ,vn(i, j) =
⋃j−1
k=i




Z

∣∣∣∣∣∣∣

∃X ∈ TGv1,··· ,vn(i, k)

∃Y ∈ TGv1,··· ,vn(k + 1, j)

X, Y
@−→ Z





Workshop on Pregroups and Linear Logic – Chieti, 6-7 May 2005 – p. 23



Polynomial parsing using @
v1, · · · , vn ∈ L(G) iff
∃s′ ∈ Pr such that s′ ∈ TGv1,··· ,vn(1, n) and s′ ≤Pr s

Algorithm:
1. Search the types associated by G to each word

2. Add the types deduced by I∗−→
3. Compute recursively the possible types associated to a

contiguous segment of words of the string using @−→
4. Look at the primitive types associated to the complete

string

Workshop on Pregroups and Linear Logic – Chieti, 6-7 May 2005 – p. 24



Polynomial parsing using @ (example)
Parsing of “whom have you seen ?”

1. Lexicon:

∣∣∣∣∣∣∣∣∣

whom 7→ {q′ollql}
have 7→ {qpl2πl2}
you 7→ {π2}
seen 7→ {p2o

l}

2. Completion of the lexicon using I−→: nothing to add

Workshop on Pregroups and Linear Logic – Chieti, 6-7 May 2005 – p. 25



Polynomial parsing using @ (example)
Parsing of “whom have you seen ?”

3. Types associated to segment of words:

Length = 1: whom have you seen
{q′ollql} {qpl2πl2} {π2} {p2o

l}

Length = 2: whom have have you you seen
∅ {qpl2} ∅

Length = 3: whom have you have you seen
{q′ollpl2} {qol}

Length = 4: whom have you seen
{q′ and q′ollol}

Workshop on Pregroups and Linear Logic – Chieti, 6-7 May 2005 – p. 26



Polynomial parsing using @ (example)
Parsing of “whom have you seen ?”

4. Primitive types for the string: q′ and q′ ≤Pr s
=⇒ this is a correct sentence

Workshop on Pregroups and Linear Logic – Chieti, 6-7 May 2005 – p. 27



Polynomial parsing using @ (example)
Associativity usually gives several parse trees:

q′ollql, qpl2π
l
2, π2

[1]
[1]

, p2o
l

[2]

q′ollql, qpl2π
l
2, π2

[1]
, p2o

l

[1]
[2]

Remark:

q′ollql, qpl2π
l
2

[1]
, π2

[1]

, p2o
l

[2]

is not a parse tree (one partial composition is not a majority
partial composition)

Workshop on Pregroups and Linear Logic – Chieti, 6-7 May 2005 – p. 28



Conclusion
Polynomial parsing algorithm using majority partial
composition of types associated to the words of a string
Need to complete the lexicon with types deduced using
“internal” rewriting
Can be adapted to associative Lambek calculus (using
modules)

Workshop on Pregroups and Linear Logic – Chieti, 6-7 May 2005 – p. 29


	Parsing with word separation
	PLAN
	Free pregroup
	Free pregroup grammar and language
	Parsing using rewriting (1)
	Parsing using rewriting (1)
: example
	Parsing using rewriting (1)
: ``proof net''
	Parsing with word separation (list)
	Parsing with word separation (example)
	Parsing with word separation (lemma)
	Internal before Merge/External (lemma)
	Internal before Merge/External (example)
	Partial composition
	Partial composition (example)
	Partial composition (lemma)
	Partial composition (example)
	Partial composition (parse tree)
	Parsing using partial composition
	Majority partial composition
	Parsing using majority composition
	Parsing using @ (example)
	Polynomial parsing using @
	Polynomial parsing using @
	Polynomial parsing using @ (example)
	Polynomial parsing using @ (example)
	Polynomial parsing using @ (example)
	Polynomial parsing using @ (example)
	Conclusion

