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Parsing with word separation
Parsing of “whom have you seen ?” (q′ ≤Pr s)

whom have you seen
q′ollql qpl2π

l
2 π2 p2o

l

q′ollql, qpl2π
l
2, π2

[1]
[1]

, p2o
l

[2]
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Free pregroup

(Id)
p(n) ≤ p(n)

X ≤ Y Y ≤ Z
(CUT )

X ≤ Z

XY ≤ Z
(AG)

Xp(n)p(n+1)Y ≤ Z

X ≤ Y Z
(AD)

X ≤ Y p(n+1)p(n)Z

Xp(k)Y ≤ Z
(INDG)

Xq(k)Y ≤ Z

X ≤ Y p(k)Z
(INDD)

X ≤ Y q(k)Z

q ≤Pr p if k is even or p ≤Pr q if k is odd
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Free pregroup grammar and language
A grammar G = (Σ, (Pr,≤Pr), I, s):

Σ finite alphabet
(Pr,≤) finite partially ordered set (primitive types)
that defines free pregroup (Tp,≤Tp)
I ⊂ Σ× Tp, a lexicon, assigns a finite set of types to
each c ∈ Σ

s ∈ Pr is a primitive type for correct sentences
The language L(G) ∈ Σ+:

v1 · · · vn ∈ L(G)
iff

for 1 ≤ i ≤ n, ∃Xi ∈ I(vi) such that X1 · · ·Xn ≤Tp s
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Parsing using rewriting (1)
Because s is a primitive type, v1 · · · vn ∈ L(G) iff
for 1 ≤ i ≤ n, ∃Xi ∈ I(vi) and ∃s′ ∈ Pr such that:

{
X1 · · ·Xn

(1)∗−→ s′

s′ ≤Pr s
(1)∗−→ : the reflexive and transitive closure of (1)−→:

Xp(n)q(n+1)Y
(1)−→ XY

if q ≤Pr p and n is even or if p ≤Pr q and n is odd
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Parsing using rewriting (1) : example
Parsing of “whom have you seen ?” (q′ ≤Pr s)

whom have you seen
q′ollql qpl2π

l
2 π2 p2o

l

q′ollqlqpl2π
l
2π2p2o

l (1)−→ q′ollpl2π
l
2π2p2o

l

(1)−→ q′ollpl2p2o
l

(1)−→ q′ollol
(1)−→ q′

and q′ ≤Pr s
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Parsing using rewriting (1) : “proof net”
Parsing of “whom have you seen ?” (q′ ≤Pr s)

whom have you seen
q′ollql qpl2π

l
2 π2 p2o

l

q′ollqlqpl2π
l
2π2p2o

l (q′ ≤Pr s)
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Parsing with word separation (list)
Three rewriting rules (Γ,∆ ∈ Tp∗, X, Y ∈ Tp, p, q ∈ Pr):

[M] (merge): Γ, X, Y,∆
M−→ Γ, XY,∆.

[I ] (internal): Γ, Xp(n)q(n+1)Y,∆
I−→ Γ, XY,∆, if q ≤Pr p

and n is even or if p ≤Pr q and n is odd.

[E ] (external): Γ, Xp(n), q(n+1)Y,∆
E−→ Γ, X, Y,∆, if

q ≤Pr p and n is even or if p ≤Pr q and n is odd.
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Parsing with word separation (example)
Parsing of “whom have you seen ?” (q′ ≤Pr s)

whom have you seen
q′ollql qpl2π

l
2 π2 p2o

l

q′oll ql, q pl2π
l
2, π2, p2o

l E−→ q′oll, pl2π
l
2, π2 , p2o

l

M−→ q′oll, pl2π
l
2π2, p2o

l

I−→ q′oll, pl2, p2 o
l

E−→ q′oll, , ol

M−→ q′ oll, ol
E−→ q′

and q′ ≤Pr s
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Parsing with word separation (lemma)

Parsing (for a pregroup grammar) can be done using MIE∗−→ :
v1 · · · vn ∈ L(G) iff
for 1 ≤ i ≤ n, ∃Xi ∈ I(vi) and ∃s′ ∈ Pr such that:

{
X1, · · · , Xn

MIE∗−→ s′

s′ ≤Pr s
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Internal before Merge/External (lemma)
I−→ can be performed before M−→ and E−→:
v1 · · · vn ∈ L(G) iff
for 1 ≤ i ≤ n, ∃Xi ∈ I(vi), ∃Yi ∈ Tp and ∃s′ ∈ Pr such that:





for 1 ≤ i ≤ n,Xi
I∗−→ Yi

Y1, · · · , Yn ME∗−→ s′

s′ ≤Pr s
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Internal before Merge/External (example)

q′oll ql, q pl2π
l
2, π2, p2o

l E−→ q′oll, pl2π
l
2, π2 , p2o

l

M−→ q′oll, pl2π
l
2π2, p2o

l

I−→ q′oll, pl2, p2 o
l

E−→ q′oll, , ol M−→ q′ oll, ol E−→ q′

becomes:
q′oll ql, q pl2π

l
2, π2, p2o

l E−→ q′oll, pl2 π
l
2, π2 , p2o

l

E−→ q′oll, pl2, , p2o
l

M−→ q′oll, pl2, p2 o
l

E−→ q′oll, , ol M−→ q′ oll, ol E−→ q′
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Partial composition
E∗−→ and M−→ corresponding to the same couple of types are

joined together in C−→ :

[C] (partial composition): For k ∈ N,
Γ, Xp

(n1)
1 · · · p(nk)

k , q
(nk+1)
k · · · q(n1+1)

1 Y,∆
E−→ Γ, XY,∆, if

qi ≤Pr pi and ni is even or if pi ≤Pr qi and ni is odd, for
1 ≤ i ≤ k.
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Partial composition (example)

q′oll ql, q pl2π
l
2, π2, p2o

l E−→ q′oll, pl2 π
l
2, π2 , p2o

l

E−→ q′oll, pl2, , p2o
l

M−→ q′oll, pl2, p2 o
l

E−→ q′oll, , ol M−→ q′ oll, ol E−→ q′

becomes:

q′oll ql, q pl2π
l
2, π2, p2o

l E−→ q′oll, pl2π
l
2, π2

[1]

, p2o
l

C−→ q′oll, pl2, p2 o
l

E−→ q′oll, , ol
[0] C−→ q′ oll, ol E−→ q′
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Partial composition (lemma)
Lemma:
For a list of types Γ and p ∈ Pr, Γ

ME∗−→ p iff Γ
C∗−→ p

Corollary:
v1 · · · vn ∈ L(G) iff
for 1 ≤ i ≤ n, ∃Xi ∈ I(vi), ∃Yi ∈ Tp and ∃s′ ∈ Pr such that:





for 1 ≤ i ≤ n,Xi
I∗−→ Yi

Y1, · · · , Yn C∗−→ s′

s′ ≤Pr s
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Partial composition (example)

q′oll ql, q pl2π
l
2, π2, p2o

l E−→ q′oll, pl2 π
l
2, π2 , p2o

l

E−→ q′oll, pl2, , p2o
l

M−→ q′oll, pl2, p2 o
l

E−→ q′oll, , ol M−→ q′ oll, ol E−→ q′

becomes:

q′ollql, qpl2π
l
2

[1]

, π2, p2o
l C−→ q′ollpl2π

l
2, π2

[1]

, p2o
l

C−→ q′ollpl2, p2o
l

[2]

C−→ q′
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Partial composition (parse tree)

q′ollql, qpl2π
l
2

[1]

, π2, p2o
l C−→ q′ollpl2π

l
2, π2

[1]

, p2o
l

C−→ q′ollpl2, p2o
l

[2]

C−→ q′

corresponds to the following parse tree:

q′ollql, qpl2π
l
2

[1]
, π2

[1]

, p2o
l

[2]
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Parsing using partial composition
Partial composition does not give a polynomial parsing
algorithm because the result of partial composition is not
bounded by the lexicon:

Γ, q′ollql, qpl2π
l
2

[1]

,∆
C−→ Γ, q′ollpl2π

l
2,∆

3 , 3 4
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Majority partial composition

A partial composition C−→ is a majority partial composition
(noted @−→) if the width of the result is less or equal to the
maximum of the widths of the arguments

A non majoritory partial composition:

Γ, q′ollql, qpl2π
l
2

[1]

,∆
C−→ Γ, q′ollpl2π

l
2,∆

A majoritory partial composition:

Γ, q′ollql, qolπl2

[2]

,∆
@−→ Γ, q′πl2,∆
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Parsing using majority composition
Main theorem:
v1 · · · vn ∈ L(G) iff
for 1 ≤ i ≤ n, ∃Xi ∈ RI∗(I)(vi), and ∃s′ ∈ Pr such that:

{
X1, · · · , Xn

@∗−→ s′

s′ ≤Pr s

where RI∗(I) is the completion of I by I∗−→

Proof: property of (planar) proof nets. there exists a type in
Γ that is only linked to its immediate neighour(s)

q′ollql, qpl2π
l
2, π2, p2o

l
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Parsing using @ (example)

q′ollql, qpl2π
l
2

[1]

, π2, p2o
l C−→ q′ollpl2π

l
2, π2

[1]

, p2o
l

C−→ q′ollpl2, p2o
l

[2]

C−→ q′

is transformed into:

q′ollql, qpl2π
l
2, π2

[1]

, p2o
l @−→ q′ollql, qpl2

[1]

, p2o
l

@−→ q′ollpl2, p2o
l

[2]

@−→ q′
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Polynomial parsing using @
Partial composition gives a polynomial parsing algorithm
because the result of partial composition is bounded by the
maximum width of the types of the lexicon.

For a grammar G and a list of words v1, · · · , vn ∈ Σ+, we
compute for 1 ≤ i ≤ j ≤ n, TGv1,··· ,vn(i, j) ⊂ Tp, the possible
types associated to the sublist of words vi, · · · , vj using
majority partial composition:

i = j : TGv1,··· ,vn(i, j) = RI∗(I)(vi)

i < j : TGv1,··· ,vn(i, j) =
⋃j−1
k=i




Z

∣∣∣∣∣∣∣

∃X ∈ TGv1,··· ,vn(i, k)

∃Y ∈ TGv1,··· ,vn(k + 1, j)

X, Y
@−→ Z




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Polynomial parsing using @
v1, · · · , vn ∈ L(G) iff
∃s′ ∈ Pr such that s′ ∈ TGv1,··· ,vn(1, n) and s′ ≤Pr s

Algorithm:
1. Search the types associated by G to each word

2. Add the types deduced by I∗−→
3. Compute recursively the possible types associated to a

contiguous segment of words of the string using @−→
4. Look at the primitive types associated to the complete

string
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Polynomial parsing using @ (example)
Parsing of “whom have you seen ?”

1. Lexicon:

∣∣∣∣∣∣∣∣∣

whom 7→ {q′ollql}
have 7→ {qpl2πl2}
you 7→ {π2}
seen 7→ {p2o

l}

2. Completion of the lexicon using I−→: nothing to add
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Polynomial parsing using @ (example)
Parsing of “whom have you seen ?”

3. Types associated to segment of words:

Length = 1: whom have you seen
{q′ollql} {qpl2πl2} {π2} {p2o

l}

Length = 2: whom have have you you seen
∅ {qpl2} ∅

Length = 3: whom have you have you seen
{q′ollpl2} {qol}

Length = 4: whom have you seen
{q′ and q′ollol}
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Polynomial parsing using @ (example)
Parsing of “whom have you seen ?”

4. Primitive types for the string: q′ and q′ ≤Pr s
=⇒ this is a correct sentence

Workshop on Pregroups and Linear Logic – Chieti, 6-7 May 2005 – p. 27



Polynomial parsing using @ (example)
Associativity usually gives several parse trees:

q′ollql, qpl2π
l
2, π2

[1]
[1]

, p2o
l

[2]

q′ollql, qpl2π
l
2, π2

[1]
, p2o

l

[1]
[2]

Remark:

q′ollql, qpl2π
l
2

[1]
, π2

[1]

, p2o
l

[2]

is not a parse tree (one partial composition is not a majority
partial composition)
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Conclusion
Polynomial parsing algorithm using majority partial
composition of types associated to the words of a string
Need to complete the lexicon with types deduced using
“internal” rewriting
Can be adapted to associative Lambek calculus (using
modules)
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