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Dependency Structure Grammars

Denis Béchet †, Alexander Dikovsky ‡, and Annie Foret §

Abstract. In this paper, we define Dependency Structure Grammars
(DSG), which are rewriting rule grammars generating sentences together
with their dependency structures, are more expressive than CF-grammars
and non-equivalent to mildly context-sensitive grammars.
We show that DSG are weakly equivalent to Categorial Dependency
Grammars (CDG) recently introduced in [6, 3]. In particular, these de-
pendency grammars naturally express long distance dependencies and
enjoy good mathematical properties.

1 Introduction

Dependency grammars (DGs) are formal grammars, which define syntactic re-
lations between words in the sentences. Following to the tradition going back
to L.Tesnière, the DGs are lexicalized and define the surface syntactic structure
in terms of syntactic valences of individual words and of constraints imposed
on valency saturation, in particular, on licensed feature values and on word or-
der. There are numerous and rather different definitions of DGs (cf. [1, 2]). Most
of them are not generative string or graph-substitution rule based grammars.
This can be simply explained by the absence of substructure markers (nonter-
minals) in the dependency structures. Meanwhile, the formalization of depen-
dency syntax in the form of generative style grammars is an important issue for
various reasons. Firstly, such grammars allow for a straightforward interface re-
lying compositional dependency structure with other compositional structures,
for instance, with constituent structure or with semantic structure of some kind.
Secondly, sometimes they allow for improvement of parsing performance, in par-
ticular, for disambiguiation using meta-rules or other means of compact encoding
of unifiable substructures. Thirdly but not lastly, the rule-based formal gram-
mars have remarkable mathematical properties, which are the source of well
founded and efficient methods of analysis, translation, optimization and seman-
tical interpretation of grammars.

Some definitions of generative dependency grammars can be found in the
literature (cf. [7, 4, 5, 2]). In this paper, we develop the idea put forward in [4, 5]
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to distinguish between local and long distance dependencies and to treat them
differently: the former by the composition of right-hand-side dependency trees
of the rules, and the latter by the unique global rule of pairing a long distance
dependency valency with the first available (i.e. the closest not used) dual va-
lency: FA-rule. Recently, this idea was implemented in the form of calculus of
syntactic types: Categorial Dependency Grammars (CDG) generalizing classical
categorial grammars [6, 3]. In this paper, we dramatically simplify the rather
technical definition of polarized dependency grammars of [4, 5] by renouncing the
tree constraints and considering general graph dependency structures. The re-
sulting generalized Dependency Structure Grammars (gDSG) prove to be weakly
equivalent to generalized Categorial Dependency Grammars (gCDG) resulting
from CDG by a similar dependency structure generalization. This equivalence
of two completely different simple and elegant formal models shows the invari-
ant nature of the rule FA. At the same time, this equivalence proves that the
languages in this family have an efficient polynomial parsing algorithm due to
their gCDG definition, and that they enjoy good mathematical properties due
to their gDSG definition.

The paper is organized as follows. In section 2, we introduce the generalized
Dependency Structure Grammars and some their important particular cases. In
the next section, we summarize the main definitions and notation of the Catego-
rial Dependency Grammars and define the generalized Categorial Dependency
Grammars. In section 3, we prove the equivalence of the two definitions. Finally,
in section 4, we establish the results characterizing the expressive power and
main properties of this class of dependency grammars.

2 Dependency Structure Grammars

2.1 Dependency valency

We follow the proposals in [5, 6] and specify long distance (in particular, non-
projective discontinuous) dependencies by polarized dependency types, which
we call valences. A positive valency specifies the name and the direction of an
outgoing long distance dependency. The corresponding negative valency with
the same name has the opposite direction and specifies the end of this incoming
dependency (we say that the two valences are dual). Long distance dependencies
are specified by correctly paired dual valences. In this pairing, positive valences
needing the corresponding negative valency on the right and negative valences
needing the corresponding positive valency on the right are considered as left
brackets. Symmetrically, the valences needing the corresponding dual valences
on the left are considered as right brackets.

For instance, the first member of the french discontinuous negation ne .. pas
must have the left positive valency (↗n−compound), whereas the second mem-
ber must have the dual right negative valency (↘n−compound). Together they
define the long distance dependency n−compound.

Formally, we consider a finite set C of elementary dependency types and
introduce four polarities: left and right positive: ↗,↖ (outgoing from left (re-
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spectively, right) to right (respectively, left)) and left and right negative: ↙,↘
(incoming from right (respectively, left) to left (respectively, right)). For each
polarity v, there is the unique “dual” polarity v̆: ↗̆ =↘, ↖̆ =↙, ↙̆ =↖,
↘̆ =↗. A polarized valency is an expression (vC), in which v is one of the four
polarities and C ∈ C. For instance, in the phrase upon what dependency theory
we rely, the right positive valency (↖ pre−UPON−obj) of the transitive verb
rely requires the beginning of the long distance dependency pre−UPON−obj re-
lating this verb with the subordinate object dependency theory dislocated from
right to left and headed by the preposition ‘UPON’. The end of this dependency
will be required by the type of the preposition UPON through the dual left
negative valency (↙pre−UPON−obj) 1.
↗C,↖C,↙C and↘C denote the corresponding sets of polarized valences.

For instance, ↗ C = {(↗ C) | C ∈ C} is the set of left positive valences.
V +(C) =↗C ∪ ↖C is the set of positive valences, V −(C) =↘C ∪ ↙C is
the set of those negative.

2.2 Generalized dependency structures

Definition 1 Potentials. A potential is a string Γ ∈ P=df (V +(C)∪V −(C))∗.
Let Γ = Γ1(vC)Γ2(v̆C)Γ3 and Γ ′ = Γ1Γ2Γ3 be two potentials such that

(vC) = (↗ A), (v̆C) = (↘ A) or (vC) = (↙ A), (v̆C) = (↖ A). We say that
(vC) is first available (FA) for (v̆C) in Γ and both are neutralized in Γ ′

(denoted Γ�FAΓ ′) if Γ2 has no occurrences of (vC) and (v̆C). This reduction
of potentials �FA is terminal and confluent. So each potential Γ has a unique
FA-normal form 2 denoted [Γ ]FA. Therefore, we can define the product � of
potentials as follows: Γ1 � Γ2=df [Γ1Γ2]FA.

Clearly, this product is associative. So we obtain the monoid of potentials P =
(P ,�) under the product � with the unit ε.

Definition 2 Generalized dependency structures. Let W and N be two
disjoint sets of terminals and nonterminals. A generalized dependency structure
(gDS) over W ∪N is a graph δ with linearly ordered nodes in which :

- the nodes are labeled by symbols in W ∪N,
- one maximal connected component D0 and one node n0 ∈ D0 are selected,

called respectively head component and head of δ 3. The decomposition of δ into
maximal connected components (called below just components) will be denoted by
δ = {D0, D1, . . . , Dk}.

Due to the linear order, δ determines the string of node labels w(δ) ∈ (W ∪
N)+ called framework of δ. We will also say that δ is a gDS of w(δ). In particular,
each component Di is a gDS of the corresponding string w(Di).

1 See [6] and [3] for more details.
2 Irreducible potential.
3 We visualize D0 underlining its head n0 if δ has at least two components.
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Example 1 For instance, the following graphs are dependency structures:

δ11 : NP RC δ12 : NP

subj

V Pmod Vmod Vtr UPON

inf−obj prep−obj

δ13 :

a cδ14 : b δ15 : a B c bB

gDS δ11 has two components, the second is head. gDS δ12, δ13 are dependency
trees. The head of δ14 is B and the head of δ15 is b.

Definition 3 Composition of gDS. Let δ1 = {D0, D1, . . . , Dk} be a gDS. Let
a nonterminal A have an occurrence in δ1: w(δ1) = xAy and δ2 be a gDS with
the head n0. Then the composition of δ2 into δ1 in the selected occurrence of A,
denoted δ1[A\δ2], is the gDS δ resulting from the union of δ1 and δ2 by unifying
A and n0 and by defining the order and labeling by the string substitution of
w(δ2) in the place of A in w(δ1). Formally:
1. nodes(δ)=df (nodes(δ1)− {A}) ∪ nodes(δ2).
2. arcs(δ)=df arcs(δ2)∪( arcs(δ1)−{d ∈ arcs(δ1)||∃n(d = (A, n)∨d = (n, A))} ) ∪
{(n0, n)||∃n((A, n) ∈ arcs(δ1))} ∪ {(n, n0)||∃n((n, A) ∈ arcs(δ1))}.
3. The order of nodes(δ) is uniquely defined by equation w(δ) = xw(δ2)y.
4. The head of δ is the head of the component resulting from D0.

δ = δ0[A1, . . . , An\δ1, . . . , δn] will denote the result of simultaneous composi-
tion of DS δ1, . . . , δn into A1, . . . , An in δ0.

Example 2 The following gDS are compositions of the gDS in example 1:

Vmod Vtr UPON
� �

prep−objinf−obj

δ21 :

δ22 :

NP
�

subj

Vmod Vtr UPON
� �

prep−objinf−obj

NP
�

subj

NP

δ24 : a a B c b c b
� �

δ23 : a a B c b c b
�� � �

��

Namely, δ21 = δ12[VPmod\δ13], δ22 = δ11[CR\δ21], δ23 = δ14[B\δ14], δ24 =
δ14[B\δ15].

2.3 Grammar definition

Definition 4 A generalized Dependency Structure Grammar (gDSG)
is a system G = (W, N,C, S, R), where W, N and C are finite sets of terminals
(words), nonterminals and elementary types, S ∈ N is the axiom and R is a finite
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set of rules. Each rule r consists of a substitution s(r) of the form A→ δ, where
A ∈ N and δ is a gDS, and of potential assignments of the form ω(r, a)[Γ ],
where ω(r, a) is an occurrence of a terminal a in δ and Γ is a (unique) potential
in normal form 4 assigned to this occurrence.

For each substitution A→ δ, A→ w(δ) is the corresponding framework rule.
The framework cf-grammar f(G) consists of all framework rules of G.

Definition 5 Derivations. In definition 4, s is a many-to-one relation between
the rules of G and f(G). It is naturally extended to trees. A terminal derivation
tree 5 T0 of f(G) corresponds through s to a composition tree T of G if T results
from T0 by assigning to each non-terminal node n a rule r(n) ∈ R such that s(r)
is applied to n in T0.

For each node n of a composition tree T, we define its potential π(T, n) and
gDS gDS(T, n) induced by n in T as follows:
1. Let n = ai ∈ W be a terminal node of T, n′ be its parent node, ω(r, ai) be
the occurrence of ai in the right-hand side of rule r = r(n′) and ω(r, ai)[Γ ] be its
potential assignment. Then gDS(T, n) = ai and π(T, n) = Γ. We suppose that
each valency v ∈ Γ keeps the position i of ai in the generated string w (denoted
vi). The positions are needed only for gDS construction and can be neglected if
the gDS are not pertinent.
2. Let n = A ∈ N be a node in T with assigned rule r(n) = (A → δ), whose
framework rule is A→ α1 . . . αk. This means that n has in T k sons: n1, . . . , nk

corresponding to α1, . . . , αk (in this order). Let the potentials and the gDS of the
sons be defined as: π(T, ni) = Γi and gDS(T, ni) = δi, 1 ≤ i ≤ k. Then

π(T, n)=df Γ1 � . . .� Γk

gDS(T, n)=df δ[α1 . . . αk\gDS(T, n1) . . . gDS(T, nk)] ∪∆n,

where ∆n is the set of all long distance dependencies (ai
C←− aj) or (ai

C−→ aj)
between terminals ai, aj , induced by neutralization of dual valences (↙C)i, (↖
C)j (respectively (↗C)i, (↘C)j).

The maximal length of potentials π(T, n) in T is called valency deficit of T
(denoted σ(T )).

A composition tree T is derivation tree if the potential of its root S is neutral:
π(T, S) = ε. We set G(D, w) if there is a derivation tree T of G from the axiom
S, such that D = gDS(T, S) and w = w(D).

∆(G) = {D | ∃w ∈ W+ G(D, w)} is the gDS-language generated by G.
L(G) = {w ∈W+ | ∃D G(D, w)} is the language generated by G.

Intuitively, the derivation trees are induced by the framework grammar deriva-
tion trees, which correspond through s to composition trees. Only those composi-
tion trees derive gDS, in which all valencies are neutralized. Each derivation step
can neutralize some dual dependency valences, and in this way, establish long
distance dependencies between the words to which these valences are assigned.

4 For instance, the rule r = (A → a[↘D1 ↗D2] B) has the substitution s(r) = (A →
a B) and the assignment ω(r, a)[↘D1 ↗D2]. We omit assignmens ω(r, a)[ε].

5 I.e., in which all leaves are terminal.
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Example 3 For instance, the gDSG

G1 :

a[↙a] S ||

b[↖a] A c || b[↖a]

S → cA

A →
generates the language L(G1) = {anbncn || n ≥ 1} and the gDS-language gDS(G1) =
{d(3)

abc || n ≥ 1}, where e.g., d
(3)
abc has the form:

a a b b b c c cad
(3)
abc :

The gDSG can generate dependency structures, which are arbitrary ordered
graphs and not dependency trees. Even in the case, where the gDS in the rules
have only dependency tree components, the generated structures may have cy-
cles as it is the case of the following trivial gDSG:

S → a[(↙A)(↗B)] b[(↘B)(↖A)] c.
If we want that the grammars generate only dependency trees, then some addi-
tional constraints must be imposed.

2.4 Dependency Structure Grammars

We show the constraints, which guarantee only that the gDSG have the most
important property of dependencies: the uniqueness of the governor. In partic-
ular, these constraints do not guarantee connectedness and cycle-freeness. The
resulting Dependency Structure Grammars represent a reasonable compromise
between acceptable divergence from classical dependency trees on the one hand,
and simplicity of grammar rules and elimination of excess technical details on
the other hand.

We split the set of nonterminals N in two parts: N = N+∪N−, N+∩N− = ∅.
N− corresponds to dependency structures with negative potential, and N+

embodies the inherited through derivation impossibility of negative valences.

Definition 6 Dependency structures. Let us call an oriented graph P unique
governor if each node in P is entered by at most one arrow.

A gDS δ = {D0, D1, . . . , Dm} is a dependency structure (DS) if it is a unique
governor graph and if each nonterminal B labelling a dependent node 6 is posi-
tive: B ∈ N+.

Clearly, the composition preserves such dependency structures.

Proposition 1 For any DS δ, δ1, . . . , δk, δ[A1, . . . , An\δ1, . . . , δk] is a DS.

Definition 7 We call a potential Γ non-negative if Γ ∈ (V +(C))∗, neutral if
Γ = ε and definitely negative if Γ ∈ (V +(C))∗V −(C)(V +(C))∗.
6 I.e. a node, into which a dependency enters.
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Definition 8 A Dependency Structure Grammar (DSG) is a gDSG G = (W, N,C, S,
R), in which N = N+ ∪N−, N+ ∩N− = ∅, S ∈ N+ and:
(c1) in potential assignments ω(r, a)[Γ ], Γ is either neutral, or non-negative, or
definitely negative;
(c2) in substitutions r = (A→ {D0, D1, . . . , Dm}), if a terminal a ∈ W labels a
non-head node of a component of Di or it labels the head n0 of D0 and A ∈ N+,
then only a non-negative potential Γ can be assigned to a through an assignment
rule ω(r, a)[Γ ];
(c3) if in a substitution A → δ A ∈ N+ and the head n0 of δ is labeled with a
nonterminal B, then B ∈ N+.

We denote the structure language of a DSG G by DS(G). This notation is
justified by the following proposition.

Proposition 2 If G is a DSG, then gDS(G) contains only terminal DS.

Proof. Proposition 2 is immediately implied by the following lemma.

Lemma 1 Let T be a derivation tree of a gDS δT with the head node ah. Then:
1. If T is a derivation tree from a positive nonterminal A ∈ N+, then ah has no
negative valences.
2. For all nodes n in T and for each terminal node a of gDS(T, n), if among
the valences assigned to a there is one not neutralized negative valency v, then
a is not dependent in gDS(T, n).

Can be proven by induction on the structure of the derivation tree T. �

3 Categorial Dependency Grammars

In this section, we summarize the main notions related with the Categorial De-
pendency Grammars needed to define some their generalization.

3.1 Dependency types

Categorial dependency grammars are simply related with classical categorial
grammars. They use “curried” variants of first order types: [l1\ . . . \m/ . . . /r1].
In these types, all subtypes: left argument (li), right argument (ri) and main (m)
can be elementary or polarized. The elementary subtypes define local dependen-
cies and the polarized subtypes define long distance dependencies. In particular,
elementary left argument type l corresponds to the beginning of the local depen-
dency l outgoing to the left, whereas main subtype l corresponds to the end of
incoming local dependency l. As in DSG, the polarized subtypes represent long
distance dependency valences. They have the same meaning. There is however a
fundamental difference between the two formal models. In DSG, the linear order
is directly defined by the right-hand-side gDS of rules. Categorial dependency
grammars are completely lexicalized. To define a linear order on long distance
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dependencies, they use so called “anchored” valences. For instance, in the sen-
tence It was yesterday that they had this meeting the discontinuous dependency
it−cleft starting from the conjunction that must enter the expletive pronoun
It in the position immediately preceding the main verb. To express this re-
quirement, two adjacency markers: # and 	 are applied to dependency valences.
Assigning to It the type #(↙ it−cleft) one requires that the long distance de-
pendency it−cleft must enter It from the right and that the position of It must
be anchored to some host word. To make was the host word for It, the type
[	(↙ it−cleft)\S/subj/circ] is assigned to was. This type requires that the end
of the long distance dependency it−cleft must immediately precede was (i.e. be
anchored on its left), that two local dependencies subj and circ must start from
was to its right and that was becomes the root of the dependency tree if the
three requirements are met. Below we summarize the definitions of dependency
types and type calculus and address the reader to [6, 3] for more details.

We call syntactic types categories. Let C be a nonempty set of elementary
categories. Elementary categories, e.g. subj, inf-subj, dobj, det, modif, etc. are
dependency names. For instance, subj is the dependency, whose subordinate is
a noun or a pronoun in the syntactic role of the subject and whose governor
is a verb. Elementary categories may be iterated. For a ∈ C, a∗ denotes the
corresponding iterative category. For instance, modif∗ is the type of iterated
category modif . For a set X ⊆ C, X∗ = {C∗ | C ∈ X}. The elementary and
iterated categories are local.

The negative valences in V −(C) do not constrain the position of the end of
the required long distance dependency. So they are called loose.

To specify the positions of the ends of long distance dependencies, we use two
markers: # (anchor) and 	 (host). For each negative valency vC ∈ V −(C), the
expressions #(vC) and 	(vC) are the corresponding anchor and host valences.
We distinguish left-argument and right-argument host valences and the corre-
sponding left and right positioned anchor valences:
Hostl(C)=df {	l(α) | α ∈ V −(C)},
Hostr(C)=df {	r(α) | α ∈ V −(C)},
Host(C)=df Hostl(C) ∪Hostr(C),

Ancl(C)=df {#l(α) | α ∈ V −(C)},
Ancr(C)=df {#r(α) | α ∈ V −(C)},
Anc(C)=df Ancl(C) ∪Ancr(C).

The sets Hostl(C), Hostr(C), Ancl(C) and Ancl(C) are supposed to be disjoint.

Definition 9 The set Cat(C) of categories is the least set such that:
1. C ∪ V −(C) ∪Anc(C) ⊂ Cat(C).
2. For C ∈ Cat(C), A1 ∈ (C ∪ C∗ ∪ Hostl(C) ∪ ↖ C ∪ ↘ C) and A2 ∈
(C ∪C∗ ∪Hostr(C) ∪ ↗C ∪ ↙C), the categories [A1\C] and [C/A2] also
belong to Cat(C).

Categories, which cannot have left arguments in ↘C and right arguments
in ↙C are called dependency categories (denoted DCat(C)); those which do not
have subcategories in V −(C)∪V +(C), are called continuous dependency categories
(denoted CCat(C)).

We suppose that the constructors \, / are associative. So every complex category
α can be presented in the form α = [Lk\ . . . L1\C/R1 . . . /Rm].

8



D
ra
ft

For instance, [	l(↙clit−dobj)\subj\S/aux] is one of possible categories of an
auxiliary verb in French, which defines it as the host word for a cliticized direct
object, requires a local subordinate subject on its left and a local subordinate
through dependency aux on its right.

3.2 Definition of Categorial Dependency Grammars

Definition 10 A generalized Categorial Dependency Grammar (gCDG) is a sys-
tem G = (W,C, S, δ), where W is a finite set of words, C is a finite set of
elementary categories containing the selected category S, and δ - called lexicon
- is a finite-set-valued function on W such that δ(a) ⊂ Cat(C) for each word
a ∈W. G is a Categorial Dependency Grammar (CDG) if δ(W ) ⊆ DCat(C).

We index categories by their positions in a string of categories related by G with
a given sentence w = a1 . . . an : αi is a (positioned) category of a dependency
structure with the root position ai. As in gDSG, these indices serve only to define
dependency structures.

Definition 11 A D-sentential form of a sentence w = a1 . . . an ∈ W+ is a
pair (∆, Γ ), where ∆ is an oriented labelled graph with the set of nodes V =
{a1, . . . , an} and a set of arcs labeled by elementary categories, and Γ is a
nonempty string of positioned categories.

An initial D-sentential form of w = a1 . . . an is an expression ((V, ∅), C1
1 . . . Cn

n ),
in which Ci ∈ δ(ai) for all 1 ≤ i ≤ n. D-sentential forms (∆, Sj) are terminal.

gCDG derivations are proofs in the following dependency calculus.

Definition 12 Sub-commutative dependency calculus (only left constructor rules
Rl are presented; the corresponding right constructor rules Rr are similar).
Local dependency rule:

Ll. ((V, E), Γ1C
i[C\β]jΓ2) � ((V, E ∪ {ai

C←− aj}), Γ1β
jΓ2) for C ∈ C.

Iterative dependency rules:

Il. ((V, E), Γ1C
i[C∗\α]jΓ2) � ((V, E ∪ {ai

C←− aj}), Γ1[C∗\α]jΓ2) for C ∈ C.
Ωl. ((V, E), Γ1[C∗\α]iΓ2) � ((V, E), Γ1α

iΓ2) for C ∈ C.
Argument valency rule:
Vl. ((V, E), Γ1[β\α]iΓ2) � ((V, E), Γ1β

iαiΓ2), where β is a host or polarized
valency.
Anchored dependency rule:
Al. ((V, E), Γ1#l(α)i	l(α)jΓ2) � ((V, E), Γ1α

iΓ2) for #l(α) ∈ Ancl(C) and
	l(α) ∈ Hostl(C).
Sub-commutativity rule:
Cl. ((V, E), Γ1 Ciαj Γ2) � ((V, E), Γ1 αjCi Γ2) if α ∈ (V −(C) ∪ V +(C) and

(i) C ∈ Host(C) or
(ii) C ∈ Cat(C) and C has no subexpressions α, #(α), 	(α), and ᾰ.

Long distance dependency rule:

Dl. ((V, E), Γ1(↙C)i(↖C)jΓ2) � ((V, E ∪ {ai
C←− aj}), Γ1Γ2) for

(↙C) ∈↙C and (↖C) ∈↖C.
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The one-step provability relation in this calculus is denoted by �R, where R
is one of the rules above, or just by �, if R is irrelevant. The transitive closure
of this relation is denoted by �∗ .

Besides this sub-commutative calculus, we consider its restriction to the con-
tinuous categories in CCat(C) with the additional equivalence #α(t) ≡ 	α(t)
and to the first three rules L, I and Ω. We call this restricted calculus projective.

The one-step provability relation in the projective calculus is denoted by �R
p

(or just �p). Its transitive closure is denoted by �∗p .

We see that rule L is a direct analogue of the classical elimination rule. Rules
I and Ω extend L to the iterative categories. In projective calculus, anchor
and host types are not distinguished, e.g. [α/	r(d)]#r(d) �p α. Particular are
the polarized valences’ rules. Rule V extracts non-local valences from complex
categories. Rule C moves the valences in the indicated directions towards the
first available valency, to which one can apply rules A or D. Rule D adds a
long distance dependency C, when two loose dual valences with the same name
C become adjacent. The crucial difference between gCDG and CDG is that
due to negative argument subtypes available in gCDG, the rule D can violate
the uniqueness of the governor, which is impossible in CDG, where non-local
argument subtypes are positive or host. Rule A verifies that an anchored valency
#(α) has become adjacent to the corresponding host valency 	(α), consumes 	(α)
and looses 	(α). Intuitively, this means that α is well-placed with respect to the
category with the corresponding host argument. If this test succeeds, α becomes
available to the long distance dependency rule D. We address the reader to [6,
3] for linguistic examples.

Definition 13 Let G = (W,C, S, δ) be a gCDG. A gDS D is assigned by G to a
sentence w (denoted G(D, w)) if (∆0, Γ0) �∗ (D, Sj) for some initial sentential
form (∆0, Γ0) of w and some 1 ≤ j ≤ n.
The D-language generated by G is the set of gDS gDS(G)=df {D | ∃w G(D, w)}.
The language generated by G is the set of sentences L(G)=df {w | ∃D G(D, w)}.

Proposition 3 1. For each CDG G, gDS(G) contains only DS.
2. If gCDG is projective, it is a CDG and DS(G) contains only projective DS.

We denote by L(gCDG),L(CDG) and L(pCDG) the families of languages gen-
erated by gCDG, CDG and projective CDG. If G is a CDG, then we use notation
DS(G) in the place of gDS(G).

gCDG have the following fundamental property established in [3].

Definition 14 Local projection ‖γ‖l of γ ∈ Cat(C)∗ is defined as follows:
l1. ‖ε‖l = ε; ‖Cγ‖l = ‖C‖l‖γ‖l for C ∈ Cat(C) and γ ∈ Cat(C)∗.
l2. ‖C‖l = C for C ∈ C ∪C∗ ∪Anc(C).
l3. ‖C‖l = ε for C ∈ V +(C) ∪ V −(C).
l4. ‖[α]‖l = ‖α‖l for all α ∈ Cat(C).
l5. ‖[a\α]‖l = [a\ ‖α‖l] and ‖[α/a]‖l = [‖α‖l/a] for a ∈ C ∪C∗ ∪ Host(C)
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and α ∈ Cat(C).
l6. ‖[(↖a)\α]‖l = ‖[α/(↗a)]‖l = ‖α‖l for all a ∈ C and α ∈ Cat(C).
Valency projection ‖γ‖v of a string γ ∈ Cat(C)∗ is defined as follows:
v1. ‖ε‖v = ε; ‖Cγ‖v = ‖C‖v‖γ‖v for C ∈ Cat(C) and γ ∈ Cat(C)∗.
v2. ‖C‖v = ε for C ∈ C ∪C∗.
v3. ‖C‖v = C for C ∈ V +(C) ∪ V −(C).
v4. ‖#(C)‖v = C for C ∈ V −(C).
v5. ‖[α]‖v = ‖α‖v for all [α] ∈ Cat(C).
v6. ‖[a\α]‖v = ‖[α/a]‖v = ‖α‖v for a ∈ C ∪C∗ ∪Host(C).
v7. ‖[a\α]‖v = a ‖α‖v, if a ∈ V +(C).
v8. ‖[α/a]‖v = ‖α‖v a, if a ∈ V +(C).

Definition 15 For a category C = [αD∗\β], the categories [αβ], [αD\β],
[αD\D\β], [αD\D\D\β], etc. are realizations of C (similar for right iterative
categories). To obtain a realization of a string of categories γ ∈ Cat(C)+, each
of its elements having iterative subcategories should be replaced by one of its
realizations. Let R(γ) denote the set of all realizations of γ.

Theorem 1 Let G = (W,C, S, δ) be a gCDG. x ∈ L(G) iff there is a string of
categories α ∈ δ(x) such that for some its realization γ ∈ R(α):
1. ‖γ‖l �∗p S, 2. [‖γ‖v]FA = ε.

In fact, this property is proven for CDG but the proof holds for gCDG too.

Corollary 1 [3] There is a polynomial time parsing algorithm for gCDG.

4 Expressive power of gDSG

Definition 16 A gDSG G = (W, N,C, S, R) is in generalized Greibach normal
form (GNF) iff for each rule A→ δ ∈ R, w(δ) ∈ WN∗.

Remark 1 The condition w(δ) ∈ WN∗ is the conjunction of three conditions:
(i) all w(δ) are not empty, (ii) the first symbol of w(δ) must be a terminal,
(iii) all other symbols in w(δ) must be non-terminals.

The first condition is always true for gDSG and the third one is not difficult
to obtain because it is always possible to introduce, for each terminal, a new non-
terminal that replaces it in the right members of the rules, where the condition
is not true. Thus, only the second condition is not trivial.

Proposition 4 For any gDSG G, a weakly equivalent gDSG G′ in generalized
GNF can be constructed.

Proof. Let G = (W, N,C, S, R) be a gDSG. As we are interested only in weak
equivalence, we can chose arbitrary heads and dependencies to transform the
frame rules to the form N →W (W ∪N)∗. We follow the Greibach’s construction
and proceed by induction on the number of critical non-terminals, i.e. the non-
terminals occurring in the first position of right-hand-sides of framework rules:

n = #({A ∈ N || ∃(B → δ) ∈ R (w(δ) ∈ A(W ∪N)∗})).

11
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– In the case of n = 0, we already have a gDSG in generalized GNF.
– If n > 0, let A be one of these n non-terminals. Let A′ be a new non-

terminal and N ′=df N ∪ {A′}. Let us classify the rules of R corresponding
to the following framework rules:

A→ A (1)
A→ B1 · · ·Bk k ≥ 1, B1 · · ·Bk ∈ (W ∪N)+, B1 �= A (2)
A→ AB1 · · ·Bk k ≥ 1, B1 · · ·Bk ∈ (W ∪N)+ (3)
C → AB1 · · ·Bk k ≥ 0, B1 · · ·Bk ∈ (W ∪N)∗, C ∈ N, C �= A (4)

For 1 ≤ i ≤ 4, we denote R(i) ⊂ R the rules in the class (i). The rules in
R(3) and R(4) need to be modified. We define successively:

RA = R(2) ∪ {A→ δA′ || A→ δ ∈ R(2)}
RA′ = {A′ → δ[A\ε] || A→ δ ∈ R(3)} ∪ {A′ → δ[A\ε]A′ || A→ δ ∈ R(3)}
RC = {A′ → δ[A\δ′] || C → δ ∈ R(4) ∧A→ δ′ ∈ RA}
R′ = (R−R(1) −R(2) −R(3) −R(4)) ∪RA ∪RA′ ∪RC

G′ = (W, N ′,C, S, R′)

The framework languages of G and G′ are the same. Let T be a derivation tree of
a string w in G. There exists a derivation tree T ′ of w in the framework grammar
of G′. In T , each leaf is associated to a potential. Let us keep in T ′ the same
potentials assignment as in T and extend the frame rules to the corresponding
dependency structure rewriting rules. Then T ′ will become a composition tree in
G′. Given that the product � is associative, in the transformed tree T ′ exactly
the same potential is calculated. So T ′ is a derivation tree for w in G′, which
proves that w ∈ L(G′) and L(G) ⊆ L(G′). The reverse inclusion is similar, so
G and G′ are weakly equivalent. Now, the induction hypothesis can be applied
because the critical non-terminals of G′ are fewer than those of G. �

Theorem 2 gDSG and gCDG are weakly equivalent.

Proof. (⇒) To prove that L(gDSG) ⊆ L(gCDG), we use a gDSG in generalized
GNF. Let G = (W, N ′,C, S, R′) be such a gDSG. We will simulate G by the
gCDG G′ = (W,C, S, λ), where the lexicon λ is computed from G as follows.

Let r = (A → δ) ∈ R be a rule of G, whose framework rule has the form
A→ aB1 · · ·Bi, a ∈W, and let ω(r, a)[Γ ] be a potential assignment. Keeping in
mind the associativity of potential product and the sub-commutativity rule C,
we can group together similar valences and represent Γ in the form:
Γ ≡ (↖ C1) · · · (↖ Cj)(↙ D1) · · · (↙ Dk)(↘ E1) · · · (↘ El)(↗ Fn) · · · (↗ Fn).
To these rules we associate in λ(a) the category:

(↖ C1)\ · · · \(↖ Cj)\(↙ D1)\ · · · \(↙ Dk)\A/B1/ · · ·
· · · /Bi/(↘ E1)/ · · · /(↘ El)/(↗ Fn)/ · · · /(↗ Fn).

The equivalence L(G) = L(G′) is relatively evident 7. The first part L(G) ⊆
L(G′) holds because a derivation tree of any string w ∈ L(G) uniquely determines
7 This construction cannot serve to prove the strong equivalence, because in the case,

when the head valency is negative, the resulting type has a negative argument sub-
type, which is impossible in CDG.
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a sequence of reduction steps of categories assigned to w by G′. Indeed, the
potential of a leaf of the derivation tree constitutes the part of the category
determining the same long distance dependencies of a as those defined by the
rule r. The rest of the category is uniquely determined by the rule r. One should
first eliminate all long distance dependency valences (which is always possible),
and then apply the category to its argument subtypes. This application is also
possible because it directly simulates the application of the framework rule w(r).
This means that, using this tactics, the sequence of categories assigned by λ to
the string w following the structure of the derivation tree of w in G will be
reduced to S.

The converse inclusion L(G′) ⊆ L(G) is similar and follows from the fact that
in a reduction to S of categories assigned by the lexicon λ, we can always start
with reductions of long distance dependencies and continue with reductions of
local dependencies.

(⇐) The converse relation between the two families is stronger: for each gCDG
G1 = (W,C, S, λ), we can construct a gDSG G2 = (W, N,C, S, R) such that
∆(G2) = ∆(G1). This strong simulation is implied by theorem 1. Namely, the
grammar G2 is defined as the union

⋃

a∈W,C∈λ(a)

M(a, C), where each module

M(a, C) is defined as follows.
Let us suppose for simplicity that in ‖C‖l = [α\B/β] α �= ε and β = ε. The

three other cases are similar. Then α = Bn\ · · · \B1 for some n > 0. In this case,

M(a, C)=df {r(0), r(1), . . . , r(n), r(n+1)},

where r(0) = (MC → Λ M
(1)
aC Λ), MC = B, if B �= ε and MC = E otherwise,

r(n+1) = (M (n+1)
aC → a[‖C‖v]), Λ ∈ {E, ε}, and the resting rules r(i) are as fol-

lows:

Bi Λr(i) = (M
(i)
aC → Λ M

(i+1)
aC )

if Bi is not iterative and

Bi Λr(i) = (M
(i)
aC → Λ M

(i)
aC || Λ M

(i+1)
aC )

if it is iterative. In this construction, E and M
(i)
aC are new pairwise different non-

terminals different from all types. The equality ∆(G2) = ∆(G1) immediately
follows from theorem 1. �

Without constraint that gDS must be trees, the main result of [5] can be easily
carried over to gDSG.

Theorem 3 If in a gDSG G the valency deficit σ(T ) of correct terminal deriva-
tion trees is uniformly bounded by a constant c then G generates a CF-language.
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Proof. We can simply consider nonterminals A[Γ ], where Γ is a potential of the
size not exceeding c, and define the rules so that for each node n of a complete
derivation tree T its label should be A[π(T, n)], A being the original nonterminal
label of n. Clearly, S[ε] becomes the axiom. �

Using the classical constructions, one can easily prove that L(gDSG) is an
abstract family of languages.

Proposition 5 L(gDSG) is closed under ε-free homomorphism, inverse homo-
morphism, intersection with regular sets, union, concatenation and +.

Seemingly, L(gDSG) is not closed under intersection and complementation.

Conjecture The copy language Lcopy = {wcw | w ∈ {a, b}∗} cannot be gener-
ated by a gDSG.

Meanwhile, the complement of Lcopy is linear and so belongs to L(gDSG). It
is also well-known that Lcopy is generated by a basic TAG. On the other hand,
in [6, 3] it is proven that each language L(m) = {d0a

n
0d1a

n
1 . . . dman

mdm+1|n ≥ 0}
is generated by a CDG. So they can be generated by gCDG. Meanwhile, start-
ing from m = 5, the languages L(m) cannot be generated by basic TAG. The
languages L(m) are mildly context-sensitive [9]. This leads to the question of
comparison of mildly CS languages and gDSG-languages. Seemingly, the two
families are incomparable. Indeed, there is another strong conjecture that the
mildly CS grammars cannot generate the language MIX of Emmon Bach con-
sisting of all permutations of words anbncn, n > 0:

MIX = {w ∈ {a, b, c}+ | |w|a = |w|b = |w|c}.
At the same time, we show that MIX is generated by a CDG.

Theorem 4 There is a CDG generating MIX.

Proof. We can construct a CDG Gmix with only loose valences and with only
anchored valences. We show the former, because it is simpler:

TABLE OF CATEGORY ASSIGNMENTS
left right middle
a �→ [↖B \ ↖C \ S] a �→ [S /↗C /↗B] a �→ [↖B \ S /↗C], [↖C \ S /↗B]
a �→ [↖B \ ↖C \ S \ S] a �→ [S \ S /↗C /↗B] a �→ [↖B \ S \ S /↗C], [↖C \ S \ S /↗B]
b �→ ↙B b �→ ↘B
c �→ ↙C c �→ ↘C

Inclusion (⊆). L(Gmix) ⊆MIX.
Let us consider the following commutative group interpretation of non-iterative
categories (where kl,x, kr,x are new symbols for each elementary x):
< p >= p for elementary p,
< [x \ y] >=< x >−1< y >, < [y / x] >=< y >< x >−1,
<↙x >= k−1

l,x , <↘x >= k−1
r,x, <↖x >= kl,x, <↗x >= kr,x.

Fact. Γ � S implies < Γ >= S. (By evident induction on the derivation length.)
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Being applied to the categories of Gmix, this interpretation shows that the num-
ber of a, b and c is the same in all w ∈ L(Gmix).

Inclusion (⊇). MIX ⊆ L(Gmix).
Let us consider a word w0 ∈ MIX. We construct a canonical assignment of
categories to the occurrences of a, b, c in w0 as follows.
Canonical assignment algorithm CCA
w := w0;
WHILE w �= ε
DO

Phase I. Basic triangulation
FIND in w the leftmost occurrences α, β such that:
w = u1αu2βu3, where u2 ∈ c∗, α �= β, α, β ∈ {a, b};
FIND in w the occurrence γ of c closest to α, if α = a, else closest to β;
IF the selected a ∈ {α, β} is leftmost in w0

THEN X := S;
ELSE X := S\S
END;
CASE

w = v1γv2αv3βv4 ∧ α = a → α := [↖C\X/↗B]; γ :=↙C; β :=↘B;
w = v1γv2αv3βv4 ∧ α = b → β := [↖B\↖C\X ]; γ :=↙C; α :=↙B;
w = v1αv2γv3βv4 ∧ α = a → α := [X/↗B/↗C]; γ :=↘C; β :=↘B;
w = v1αv2γv3βv4 ∧ α = b → β := [↖C\↖B\X ]; γ :=↙C; α :=↙B;
w = v1αv2βv3γv4 ∧ α = a → α := [X/↗C/↗B]; γ :=↘C; β :=↘B;
w = v1αv2βv3γv4 ∧ α = b → β := [↖B\X/↗C]; γ :=↘C; α :=↙B

END;
Phase II. Elimination
w := v1v2v3v4

END

It is easy to see that CCA exits successfully the loop on the condition w = ε
for each w0 ∈ MIX. Being applied to w0, CCA defines the canonical assign-
ment of categories CCA(w0). The inclusion MIX ⊆ L(Gmix) is implied by the
following fact.

Fact. CCA(w0) � S holds for all w0 ∈MIX.
(By evident induction on the number of a.) �

5 Conclusions

We can resume the relations between structure languages and languages gener-
ated by the dependency grammars considered in this paper as follows:

D(CDGproj) � D(CDG) � D(gCDG) ⊆ D(gDSG) and
CFL = L(CDGproj) = L(gDSGσ<ω) � L(CDG) ⊆ L(gCDG) = L(gDSG),

where CDGproj is the class of projective CDG and gDSGσ<ω is the class of
gDSG with bounded valency deficit.
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The dependency structure and categorial dependency grammars can be eas-
ily adopted to practical large scale definitions of surface dependency syntax of
natural languages. For this, one should relate dependency names with bounded
length feature value products admitting feature unification and value propaga-
tion through dependencies. Besides this, the explicit use of anchored categories
in DSG and CDG make possible to express a variety of word order constraints. In
fact, the potential assignments are closely related to Debusmann and Duchier’s
formulation of dependency grammar [8]. However, the FA-constraint excludes
crossing of similarly labeled long distance dependencies.

CDG and DSG have an efficient parsing algorithm (O(n5) in the worst
case) [3]. In practice, the valency deficit is bounded by a small constant (2 or 3).
In this situation, this parsing algorithm has complexity O(n3) even if there are
discontinuous long distance dependencies. So the dependency grammars studied
in this paper represent an interesting class of grammars competitive with respect
to mild context-sensitive grammars.
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1. Les grammaires de dépendance. In Sylvain Kahane, editor, Traitement automatique
des langues, volume 41, Paris, 2000. Hermes.

2. Proc. of the workshop “Recent Advances in Dependency Grammars”. in conjunc-
tion with coling 2004. In Geert-Jan M. Kruijff and Denys Duchier, editors, “Re-
cent Advances in Dependency Grammars”. COLING’04 Workshop, August 28 2004,
Geneva, Switzerland, August 2004.

3. Michael Dekhtyar and Alexander Dikovsky. Categorial dependency grammars. In
Proc. of Int. Conf. on Categorial Grammars, pages 76–91, Montpellier, France, 2004.

4. Alexander Dikovsky. Grammars for local and long dependencies. In Proc. of the
39th Intern. Conf. ACL’2001, pages 156–163. ACL & Morgan Kaufman, 2001.

5. Alexander Dikovsky. Polarized non-projective dependency grammars. In Ph.
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