Chapter 1

k-Valued Link Grammarsare L earnable from
Strings

DENIS BECHET

ABSTRACT. The article is concerned with learning link grammars in the model of Gold. We
show that rigid and k-valued link grammars are learnable from strings. In fact, we prove that the
languages of link structured lists of words associated to rigid link grammars have finite elasticity
and we show a learning algorithm. As a standard corollary, this result leads to the learnability
of rigid or k-valued link grammars learned from strings.

1.1 Introduction

Link grammars, introduced in Sleator and Temperley (1991, 1993), are a formal
grammatical system for natural language processing. A sentence is recognized if
there is a way to connect correctly the specification of the words in the lexicon
using links. Very close to dependency grammars Mel’cuk (1988), link grammars
have the advantage to show directly the connections of words in a graph (not only
as a tree like dependency grammars) which can be useful for a direct translation
from syntax to semantics.

Since link grammars are completely lexicalized, they are well adapted to learn-
ing perspectives and an actual way of research is to determine what are the lexical-
ized grammars that remain learnable in the sense of Gold (1967). In fact, learning
link grammars was mainly studied for probabilistic variants Pietra et al. (1994);
Fong and Wu (1995); Kiibler (1998) or with a context where only one word is
unknown and has to be inferred in a sentence Pedersen and Chen (1995).

Here, we recall that learning consists to define an algorithm on a finite set of
sentences that converge to obtain a grammar in the class that generates the exam-
ples. Let G be a class of grammars that we wish to learn from positive examples.
Formally, let £(G) denote the language associated with grammar G, and let V be a
given alphabet. A learning algorithm is a function ¢ from finite sets of words in V' *
to G, such that for G € G with L(G) = (e;)qen there exist a grammar G’ € G and
no € N such that: Vn > ng, ¢({e1,...,en}) = G € Gand L(G') = L(G). Af-
ter the initial pessimism following the unlearnability results in Gold (1967), there
has been a renewed interest due to learnability of non trivial classes from Angluin

1
Proceedings of Formal Grammar 2003

G. Jager, P. Monachesi, G. Penn & S. Wintner (editors).
Chapter 1, Copyright (©)2003, Denis Béchet.

k-Valued Link Grammars are Learnable from Strings: Denis Béchet 2

(1980) and Shinohara (1990). Recent works from Kanazawa (1998) have answered
the problem for different classes associated to classical categorial grammars. In the
paper, we try to answer to the question for link grammars: are they learnable from
strings?

The paper is organized as follows. Section 2 presents link grammars. Section 3
reminds some useful properties on languages and learning algorithms. Section 4
gives the main lemma: rigid untyped link net grammars have finite elasticity and
thus is learnable. This section ends with a learning algorithm for this class of
structured languages. Section 5 extends this result and proves that k-valued link
grammars are learnable from strings. Section 6 concludes and gives some perspec-
tives.

1.2 Link Grammar
A link grammar connects the words of a sentence by links so as to satisfy:
e Planarity: The links do not cross.
e Connectivity: The graph is connected.
e Ordering: The lexicon gives the left and right possible linkages of each word.
e Exclusion: No two links may connect the same pair of words.

For instance, the link grammar with the following nodes:

O e—
— + —
D o—’ ,—o S D 0—’
cat/mouse cat/mouse
+ - +
D" STem 0
the eats

accepts the sentence “the cat eats the mouse”:
@)
| | |

the cat eats the mouse

A link is annotated with a primitive type that must match the left and right con-
straints of the two linked words. It corresponds to a functional dependency: S for
subject, D for determinant, O for object.

3\

Formal Grammar 2003

1.2.1 Formal Definitions

e Let X be an alphabet and Pr a set of primitive types.

e A link net is a non-empty, planar and connected graph with a total order on ver-

tices which must be on the border of the graph and where edges are annotated
by primitive types and vertices by words. The set of link nets over X is noted
Np.(X2). Formally, let (V, <) be a totally ordered set (N for instance), a link
net is a structure (V, w, E, t) where:

- V C Y, the vertices, is a non-empty finite subset of V written (vy,...,vy)

wheren = #V and vy < -+ < vy

- w: V +— ¥ maps each vertex to a word,;

- E C V xV,the edges, is a symmetrical® and anti-reflexiveZsubset of V x V;
- t: E — Pr maps each edge to a primitive type;
The edges do not cross®: if (a,b) € E and (c,d) € E such that a < b and
c < dthenitisnotpossiblethata < c<b<dorc<a<d<h.
The graph (V, E) is connected.

Bs (0]
| | | | | |

the cat who chased the mouse died

Figure 1.1: A link net

e An untyped link net is a link net where edges are not annotated by primitive

types. If N = (V,w, E, t) is a link net, we write untyped(N) = (V,w, E) the
corresponding untyped link net. The set of untyped link nets over X is noted
N(Z).

e The yield of a link net N = ((vy,...,v,),w, E,t) or of an untyped link net

N = ((viy...,vn),w, E) isyield(N) = w(vy) - - - w(v,) € 7.

e The set of link nodes over Pr noted Tp is the set of pairs of finite lists of Pr. A

link node X has a left list of ports noted ¢, . . . , t; and a right list of ports noted
t,...,t5. The left arity noted a'(X) is n and the right arity noted a”(X) is
m. A link node is noted by its ports ¢, ... ,tl‘,tf, ..., . An untyped link
node is just characterized by its left and right arity.

e Foreach vertex v of alink net N = (V, w, E, t), the set of edges ending in v can

be split into a left and a right lists (z,, v),..., (z1,v) and (v,y1), ..., (V,Ym)
wherezr, <z, 1< - <21 <<y < < Ymo1 < Ym. ThUs, v is asso-
ciated to the link node node(v) = t(xy,,v)5. .., t(z1,v) t(v,y1) T .t (v, ym) ™.

A relation E is symmetrical iff (z,y) € E < (y,z) € E

2A relation F is anti-reflexive iff (v, z) ¢ E

3Thus the graph (V, E) is planar and the vertices are on its border.
%i.e. for every couple of vertices, there exists a path between them.

k-Valued Link Grammars are Learnable from Strings: Denis Béchet 4

"] *
Gy--G, D:?L'“Df

word

Figure 1.2: A link node
A link grammar is a structure G' = (%, I) where I : 3 +— P/ (Tp) is a function
that maps to each element of X a finite set of link nodes.
Fora € X, if A € I(a), G associates A to a (written G : a — A).

A link net ((vy,...,v,),w, E,t) is generated by G iff G : w(v;) — t(v;) for
all4,0 <i <n.

An untyped link net N is generated by G iff it exists a link net N/ such that
N = untyped(N') and N’ is generated by G.

A sentence c; - -- ¢, € X7 is generated by G iff it exists a link net IV such that
c1---¢p = yield(N) and N is generated by G.

The language of link nets of G, noted £y, () (G) is the set of link nets gener-
ated by G.

The language of untyped link nets of G, noted £ (x,)(G) is the set of untyped
link nets generated by G.

The language of strings of G, noted Lx+(G) is the set of sentences generated
by G.

Link grammars that associate at most & link nodes to each symbol of X are
called k-valued.

1-valued grammars are also called rigid.

1.3 Learnability and Finite Elasticity

We have seen in the introduction that a class of languages described by a class
of grammars G is learnable iff there exists a learning algorithm ¢ from finite sets
of words to G that converges to G° for any G € G and for any growing partial
enumeration of £(G).

Learnability and unlearnability properties have been widely studied from a the-

oretical point of view. A very useful property for our purpose is the finite elasticity
property of a class of languages. This term was first introduced in Wright (1989);
Motoki et al. (1991) and, in fact, it induces learnability. A very nice presentation
of this notion can be found in Kanazawa (1998).

®In fact, it is not the output grammars that converge but their associated languages.

5\ Formal Grammar 2003

Definition
e A class CL of languages has infinite elasticity iff 3(e;);en an infinite sequence
of sentences, 3(L;);en an infinite sequence of languages of CL such that Vi €
N : ¢ ¢ L; and {60,. .. ,62‘,1} C L.

e A class has finite elasticity iff it has not infinite elasticity.
Theorem 1 [Wright 1989] A class that is not learnable has infinite elasticity.
Corollary 2 A class that has finite elasticity is learnable.

Finite elasticity is a very nice property because it can be extended from a class
to another one that is obtained by a finite-valued relation®. We use here a version of
the theorem that has been proved in Kanazawa (1998) and is useful for various kind
of languages (strings, structures, nets) that can be described by lists of elements of
some alphabets.

Theorem 3 [Kanasawa 1998] Let M be a class of languages over T" that has
finite elasticity, and let R C >* x I"* be a finite-valued relation. Then the class of
languages {R™'[M] = {s € ¥* | 3u € M A (s,u) € R} | M € M} has finite
elasticity.

1.4 Finite Elasticity of Rigid Untyped Link Net Gram-
mars

This section is concerned by grammars of untyped link nets rather than grammars
of strings. The following theorem is essential because, as a corollary, the corre-
sponding class of rigid link grammars has finite elasticity and thus is learnable
from strings. This result can also be extended to the class of k-valued link gram-
mars for every k.

Theorem 4 Rigid link grammars define a class of languages of untyped link nets
that has finite elasticity.

Proof: We use a result of Shinohara Shinohara (1990, 1991) that proves that
formal systems that has finite thickness has finite elasticity. In Shinohara (1991)
this is applied to length-bounded elementary formal system with at most & rules and
also to context sensitive languages that are definable by at most & rules. Formal
systems in Shinohara (1991) do not describe languages of strings only but also
languages of terms. It can be applied to typed or untyped link nets which can be
seen as well-bracketed strings (each link is associated to an opening and a closing
(typed) bracket). For the class of rigid untyped link net grammars, the sketch of
proof is as follows:

8A relation R C ©* x I'* is finite-valued iff for every s € X, there are at most finitely many
u € I'" such that (s, u) € R.

k-Valued Link Grammars are Learnable from Strings: Denis Béchet 6

1. Definition. A link grammar G1 = (X1, 1) is included in a link grammar
Go = (X2,12) (notation G; C Go) iff ¥1 C 3 and Vz € 3y, I1(z) C
IQ(.%')

2. Definition and lemma. The mapping L) from link grammars to un-
typed link net languages is monotonic: if Gi C Go then Ly(s)(G1) C
L) (Ga2).

3. Definition. A grammar G is reduced with respect to a set X C N (X)
iff X C L(x)(G) and for each grammar G’ C G, X & Lr(x)(G'). Intu-
itively, a grammar that is reduced with respect to X, does not have redundant
expression to cover all the structures of X.

4. Lemma. For each finite set X C Lr(x)(G), there is a finite set of rigid
untyped link net languages that correspond to the grammars that are reduced
from X. This is the main part of the proof. In fact, if G = (X, 1), a rigid
untyped link net grammar, is reduced with respect to X then each word that
does not appear in one of the untyped link net of X must be associated
through I to the empty set. The other words must be associated to exactly
one type of Tp (the grammar is rigid). The left and the right arities are
given by the occurrences of the word in the untyped link nets and they must
be the same for all the occurrences because the language we try to learn
corresponds to a rigid untyped link net grammar. If the sum of the left and
right arities of each word in X is bound by m, and if n is the number of
words that appear in X, the number of equivalent grammars’ is bound by
the number of partitions of a set of n x m elements.

5. Definition. Monotonicity and the previous property define a system that has
bounded finite thickness.

6. Theorem. Shinohara proves in Shinohara (1991) that a formal system that
has bounded finite thickness has finite elasticity.

7. Corollary. Rigid untyped link net languages have finite elasticity.

A learning algorithm for rigid untyped link net grammars

In fact, the notion of reduced grammars suggests a simple learning algorithm for
the class of rigid untyped link net grammars. The algorithm ¢, takes a sequence
of untyped link nets Ny, ..., N; and produces a link grammar that corresponds to
the smallest rigid untyped link net language that is compatible to the input. Of
course, this algorithm returns a failure if the sequence does not correspond to a

rigid untyped link net language®.

"Equivalent grammars are grammars that are associated to the same language. A sufficient con-

dition is the existence of a bijective relation between the primitive types of both grammars.

8i.e. if this sequence is not included in at least one of the rigid untyped link net languages.

7\ Formal Grammar 2003

1. We collect the occurrences of each word together with its left and right arities
from the input sequence. The algorithm fails if a word is used with different
left or right arities.

2. For each word w, we associates n + m variables corresponding to the n left
ports and the m right ports: X*, ..., X%, X", ..., XY

—n»

3. Then, we extract equality constraints on the variables based on the links that
appear in the input untyped link nets: a link corresponds to two variables on
both ends that must be equal.

4. The equality system is resolved and a primitive type is associated to each
equivalence class of variables noted X .

5. For each word w that appears in the sequence and is associated to the n +m
variables X ..., X", X7, ..., X%, the output link grammar associates

the link node X¥, ,..., X%, , X—{“f . ,X—;;;Jr to w.
Theorem 5 ¢ learns rigid untyped link net grammars.

Proof: ¢; is monotonic: if S; C Sy then ¢4 (S2) returns a failure or ¢4(S7) and
¢1(S2) succeed and Lr(s)(¢1(S1)) € La(x)(¢1(52)). This is a consequence of
the fact that the equality system corresponding to S is a subset of the equality
system corresponding to Ss.

Let G = (X,I) be a rigid link grammar and (NV;);en an infinite sequence
of untyped link nets that enumerates Ly (x)(G). Fori € N, ¢1(No, ..., N;)
does not return a failure because G is rigid so each word in the untyped link
nets of Ly, (G) is used with the same left and right arities. Because ¢ is
monotonic, (G; = ¢1(No, ..., N;))ien defines an infinite sequence of growing
languages Ly (s)(Go) € L) (G1) € ---. Because the class has finite elas-
ticity, this sequence must converge to a language L., that must be (equal or)
a superset of Ly (x(G) since the sequence enumerates Lr(s)(G). In fact, for
i € N, G verifies the equality system used by ¢; with Ny, ..., N; as input, so
Lars)(@1(Nos - -, Ni)) € Ly(s)(G). Thus, we also have Lo, € Ly(s)(G). =

1.5 k-valued Link grammarsare learnable from strings

Because the class of rigid untyped link net languages has finite elasticity, we can
find a finite-valued relation between rigid untyped link net languages and &-valued
link languages. In fact, we define two relations and use twice Theorem 3. The first
one from rigid untyped link net languages to rigid link languages and the second
from rigid link languages to k-valued link languages.

Lemma 6 Rigid link languages have finite elasticity.

k-Valued Link Grammars are Learnable from Strings: Denis Béchet 8

Proof: An untyped link net ((v1,...,v,),w, E) over X is characterized by the
left and right arities of each vertex. Thus, it can be completely described by the
following string from the alphabet ¥ U {[,]} where [and] are not in X:

o L e dutn) o L vt L bt

a”(v1) al(v2) a”(v2) al(vp—1) a”(vn—1) al(vn)

In fact, the relation between Xt and (X U {[,]})* that adds square brackets
such that the result corresponds to an untyped link net is finite-valued. Then, be-
cause the class of languages of (X U{[,]})™ corresponding to rigid untyped link net
grammars has finite elasticity, their inverse images by the previous relation, which
define exactly the class of rigid link languages, have finite elasticity. [

Lemma 7 k-valued link languages have finite elasticity.

Proof: This is very standard. The finite-valued relation associates k-valued link

grammars over ¥ and rigid link grammars over 3 x {1,..., k}. Arigid link gram-
mar over X x {1,. .., k} corresponds to the k-valued link grammar where the types
associated to (a, 1),. .., (a, k) are merged into the same entry for a.]

1.6 Conclusion and per spectives

We have proved in the paper that the class of rigid untyped link net languages has
finite elasticity. We have given a learning algorithm for this class of languages of
untyped link nets. Finally, we have proved that k-valued link grammars have also
finite elasticity and thus is learnable from strings.

This positive result may be compared to other learnability results in the same
domain in particular in the field of k-valued categorial grammars. Kanazawa’s
positive result on classical categorial grammar is very similar to our result but other
more complex but very close systems like Lambek calculus or pregroups have been
proved to be not learnable from strings Foret and Le Nir (2002a,b). Due to the
similarity between link grammars and Lambek calculus or pregroups presented as
(proof) nets and their differences from the learnability point of view, we can try to
deduce general rules for learnable classes.

For us, the reason why k-valued Lambek calculus grammars are not learnable
comes from the fact that using a sequence of sentences, we can not bound the pos-
sible “interactions” (in term of proof nets, it means different set of axiom links)
between two words which is not the case for k-valued link grammars because for
one type there is only one possible interaction between two words. This remark
may be interesting for defining useful learnable classes of logical categorial gram-
mars that lay between classical categorial grammars and Lambek calculus.

9\ Formal Grammar 2003

Bibliography

Angluin, D. (1980). Inductive inference of formal languages from positive data.
Information and Control, 45:117-135.

Fong, E. and D. Wu (1995). Learning restricted probabilistic link grammars. In
IJCAII Workshop on New Approaches to Learning for Natural Language Pro-
cessing, pp. 49-56. Montreal, Canada.

Foret, A. and Y. Le Nir (2002a). Lambek rigid grammars are not learnable from
strings. In COLING’2002, 19th International Conference on Computational
Linguistics. Taipei, Taiwan.

Foret, A. and Y. Le Nir (2002b). On limit points for some variants of rigid lambek
grammars. In 1ICGI1°2002, the 6th International Colloquium on Grammatical
Inference, number 2484 in Lecture Notes in Artificial Intelligence. Springer-
Verlag.

Gold, E. (1967). Language identification in the limit. Information and control,
10:447-474.

Kanazawa, M. (1998). Learnable classes of categorial grammars. Studies in Logic,
Language and Information. FoLLI & CSLI. Distributed by Cambridge Univer-
sity Press.

Kibler, S. (1998). Learning a lexicalized grammar for german. In D. Powers,
ed., NeMPaP3/CoNLL98: New Methods in Language Processing and Computa-
tional Natural Language Learning, pp. 11-18. ACL.

Mel’cuk, I. (1988). Dependency Syntax: Theory and Practive. State University of
New York Press.

Motoki, T., T. Shinohara, and K. Wright (1991). The correct definition of finite
elasticity: Corrigendum to identification of unions. In The fourth Annual Work-
shop on Computational Learning Theory, p. 375. Morgan Kaufmann, San Ma-
teo, Calif.

Pedersen, T. and W. Chen (1995). Lexical acquisition via constraint solving. In
Working Notes of the AAAI Spring Symposium on Representation and Acquisi-
tion of Lexical Knowledge, pp. 118-122.

Pietra, S. D., V. D. Pietra, J. Gillett, J. Lafferty, H. Printz, and L. Ures (1994). In-
ference and estimation of a long-range trigram model. In Grammatical Inference
and Applications: Proceedings of the Second International Colloquim ICGI-94,
pp. 78-92. Alicante, Spain.

Shinohara, T. (1990). Inductive inference from positive data is powerful. In The
1990 Workshop on Computational Learning Theory, pp. 97-110. Morgan Kauf-
mann, San Mateo, California.

k-Valued Link Grammars are Learnable from Strings: Denis Béchet 10

Shinohara, T. (1991). Inductive inference of monotonic formal systems from pos-
itive data. New Generation Computing, 8 (4):371-384. Special Issue on Algo-
rithmic Learning Theory for ALT’90.

Sleator, D. and D. Temperley (1991). Parsing English with a link grammar. Tech-
nical Report Tech Rep. CMU-CS-91-196, Carnegie Mellon University, School
of Computer Science, Pittsburgh, PA.

Sleator, D. and D. Temperley (1993). Parsing English with a link grammar. In
Third International Workshop on Parsing Technologies.

Wright, K. (1989). Identifications of unions of languages drawn from an iden-
tifiable class. In The 1989 Workshop on Computational Learning Theory, pp.
328-333. Morgan Kaufmann, San Mateo, Calif.

