
Multi-Facets Contract for Modeling and Verifying
Heterogeneous Systems

A. Abdelkader Khouass[0000−0002−2075−602X]1,2, J. Christian
Attiogbé[0000−0002−7815−1752]1, and Mohamed Messabihi2

1 University of Nantes, LS2N CNRS UMR 6004, France
christian.attiogbe@univ-nantes.fr
2 University of Tlemcen, LRIT, Algeria

abderrahmaneabdelkader.khouass@univ-tlemcen.dz
mohamedelhabib.messabihi@univ-tlemcen.dz

Abstract. Critical and cyber-physical systems (CPS) such as nuclear power plants,
railway, automotive or aeronautical industries are complex heterogeneous sys-
tems. They are perimeter-less, built by assembling various heterogeneous and
interacting components which are frequently reconfigured due to evolution of
requirements. The modeling and analysis of such systems are challenges in soft-
ware engineering. We introduce a new method for modeling and verifying hetero-
geneous systems. The method consists in: equipping individual components with
generalized contracts that integrate various facets related to different concerns,
composing these components and verifying the resulting system with respect to
the involved facets. We illustrate the use of the method by a case study. The
proposed method may be extended to cover more facets, and by strengthening
assistance tool through proactive aspects in modelling and property verification.

Keywords: Heterogeneous systems · Components assembly · Generalized con-
tracts · Modeling and verifying · Formal analysis.

1 Introduction

Critical and cyber-physical systems (CPS) that exist in large industries, such as nuclear
power plants, railway, automotive or aeronautical industries are complex heterogeneous
systems. They do not have a precise perimeter, they are open and often built by as-
sembling various components. Their complexity forces one to have a wide variety of
heterogeneous components, frequently reconfigurable due to requirements evolution.

With the advent of concurrent and distributed systems, Component Based Software
Engineering (CBSE) [10] has known a high interest. The construction of a distributed
system involves several specific components; this requires rigor, methods and tools.
The involved components may deal with various facets. A facet is a specific concern
or a property such as data, behaviour, time constraints, security, etc3. Therefore, if the
integration of components into a global system is not mastered, it may generate consid-
erable time losses and overcharges, because of inconsistency of requirements, incom-
patibility of meaning and properties, late detection of composition errors, etc. For these

3 This idea also appears as the separation of concerns in aspect-oriented programming/design

reasons, the modeling and formal analysis of such heterogeneous systems are challeng-
ing. The use of efficient methods and techniques is required to face these challenges.

We aim at studying and alleviating the difficulties of practical modelling and inte-
gration of heterogeneous components. We propose a novel approach based on contracts
for modeling and verifying complex and heterogeneous systems. Our approach (named
"ModelINg And veRifying heterogeneous sysTems with contractS" (Minarets)) consists
in modeling and verifying a system with the concept of generalized contracts. The con-
tract is generalized in the sense that it will allow one to manage the interaction with the
components through given facets: the properties of the environment, the properties of
the concerned components, the communication constraints and non-functional proper-
ties (quality of service for example). The use of contracts during the verification reduces
the complexity of the analysis of heterogeneous systems; moreover, the structuring of
contracts with facets and priority of properties makes it possible to decrease the dif-
ficulty of checking heterogeneous systems, to save time and to increase performance
during verification.

The rest of the article is structured as follows. Section 2 introduces the modeling and
verification methodology. In Section 3 we illustrate our approach with experimentation
and assessment. Section 4 provides an overview of related work, and finally, Section 5
gives conclusions and future work.

2 Modeling and Verifying Using Generalized Contracts

An issue to be solved for heterogeneous systems is that, the interface of involved com-
ponents should be composable. For the sake of simplicity of the composition, we adopt
the well-researched concept of contract which is therefore extended for the purpose of
mastering heterogeneity of interfaces. Moreover, for a given system we will assume
agreed-upon facets such as data, functionality, time, security, etc.

In this work we chose the PSL language [1] to specify contrats. PSL is a formal
language for specifying properties and behaviour of systems. It is an extension of the
Linear Temporal Logic (LTL) and the Computation Tree Logic (CTL). PSL could be
used as input for formal verification, formal analysis, simulation and hybrid verifica-
tion tools. PSL improves communication between designers, architects and verification
engineers. We use the ALDEC Active-HDL 4 tool that supports PSL.

For experimentation purpose, we use ProMeLa and SPIN [6] to model and verify
components. SPIN is an automated model checker which supports parallel system ver-
ification of processes described with its input PROtocol MEta LAnguage (ProMeLa).
We also use the model checker UPPAAL [4].

2.1 Definitions

We extend the traditional A-G contract with the purpose of mastering the modeling and
verification of complex and heterogeneous systems.

4 https://www.aldec.com/en/products/fpga_simulation/active-hdl

Definition 1 (Generalized contract). A generalized contract is a multi-faceted Assume-
Guarantee contract. It is an extension of contract, structured on the one hand with its
assume and guarantee parts, and structured on the other hand according to different
clearly identified and agreed-upon facets (data, functionality, time, security, quality,
etc.) in its assume or guarantee.

The generalized contract will be layered to facilitate properties analysis. Every layer
will have a priority. Therefore, an analysis of a facet may be done prior to another facet.

Definition 2 (Well-structured component). A well-structured or normalised compo-
nent is a component equipped with a generalized contract, acting as its interface with
other components.

Normalising a component Ci consists in transforming Ci into a component equipped
with a generalized contract. A multi-faceted A-G contract will be expressed in PSL.

2.2 Outline of the Proposed Method

The working hypothesis is that a heterogeneous system should be an assembly of well-
structured components (see Def. 2). The method that we propose (Minarets) consists in,
given a set of appropriately selected or predefined elementary components, normalizing
these input components prior to their composition, building a global heterogeneous
system, and finally analysing this global system with respect to the required properties.

For this purpose there are many issues to be solved:
i) Elementary components are from various languages and cover different facets, a prag-
matic means of composition is required. We consider PSL as a wide purpose expres-
sive language to describe generalized contracts. Each component will be manipulated
through its generalized contract (see Def. 1) written in an appropriate language.
ii) Global properties are heterogeneous; they should be clearly expressed, integrated
and analysed; they will be expressed with a wide purpose language such as PSL; we
will decompose them according to the identified agreed-upon facets and spread them
along the analysis of composed components.
iii) Composition of elementary components should preserve their local requirements
and should also be weakened or strengthened with respect to global-level properties. For
instance, some facets required by an elementary component could be unnecessary for a
given global assembly, or some facets required at a global assembly may be strength-
ened at a component level.
iv) Global properties require heterogeneous formal analysis tools; this generates com-
plexity. We choose to separate the concerns, so as to target various tools and try to
ensure the global consistency.
v) Behaviours of components should be composable.

The Minarets method integrates solutions to these issues, as we will present in the
sequel. We adopt a correct-by-construction approach for the assembly of components.
Therefore, local compositions should preserve required properties of components. In the
same way, global properties may impact the components; therefore, global properties
are decomposed and propagated through the used components when necessary.

3 Case Study

We consider a case study of an automotive industry: a car painting workshop. This
workshop is composed of three main components; a control station (CS) which manages
a paint station (PS) and an automatic robot painter (RP). These components interact
with each other to achieve the painting process correctly; that means to paint the cars
with the desired color, in time, without any damages and without wasting color. More
details can be found in [7].

Now we follow step by step the Minarets method to model and verify this system.

Step 1 (modeling M1). Express the informal global requirements and global proper-
ties. They could be expressed with any desired language, even the natural one. The only
goal here is to clearly state the requirements of the given system.
Global requirements: cars data are provided (type, color with RGB quantity, painting
time); sufficient RGB colors are in the tanks; freeing time must be defined (the freeing
time is the release time of the painting station) .
Global expected properties: the system respects the correct RGB dosage; there is no
loss of color; the painting time should be equal to the given time; the painting is done
without damages (respect of car dimensions, it is known from the car type); freeing
time must be equal to the given freeing time for each car; painti,g shloud be stopped
and notified when there is no sufficient color; painting station status must be free before
use, and busy when a car is inside; the painting starts after the end of configuration, and
it finishes when the painting time is equal to given painting time.
Step 2 (modeling M2). Formalise the required global properties with appropriate ex-
pressive formal specification languages (PSL in our case), we obtain the following for-
malized global properties.
Global requirements:

get_type = true; get_color = true; get_painting_time = true;
/* the painter never start working without car dimensions (get_type)*/
get_freeing_time = true;
R_tank_quantity >= R_GivenColor_quantity;
· · ·

Global properties:
R_color_PaintedQuantity = R_GivenColor_quantity;
painting_time = GivenPainting_time; car_type = given_type;
freeing_time = given_freeing_time;

/*each color is controlled separately*/
if (RGB_tank_quantity <= RGB_GivenColor_quantity)
Then (stop_process and warning_message);
painting_time = GivenPainting_time imply painting = finished;
· · ·

Step 3 (modeling M3). Here we have to model or select the components. We use UPPAAL and
ProMeLa to model the components RP, CS and PS. Figure 1 shows the models of the components
CS and PS within both environments.

Step 4 (modeling M4). We decompose the global properties with respect to the facets that we
considered (Data, functionality, time, security); we obtain the generalized contract decomposed

Fig. 1. CS model with ProMeLa and PS with UPPAAL

with the facets. Figure 2 shows a part of the faceted and formalized properties (the guarantee
part); this will emphasize the concern to be dealt with later on.
Step 5 (modeling M5). We express the structured and formalized properties with the PSL lan-
guage as depicted in Figure 2.

Fig. 2. A part of faceted and formalized global property with PSL and Aldec Active-HDL

Step 6 (modeling M6). Normalizing the individual components (see Def. 2). We integrate the
assumptions and guarantees of each individual component. Figure 3 shows the normalized indi-
vidual components.
Step 7 (modeling M7). According to the result of Step 4 (modeling M4), we may add a facet of
the global property to a component, or ignore some of its facets, if necessary. In the current case
study it is not necessary to add or ignore a facet (see Figure 3).
Step 8 (modeling M8). We attribute the following priorities to each facet (data=1, security=2,
time=3 functionality=4; were 1 is the highest priority). We obtain ordered layers with respect to
facets and properties as well. The order of layer is mentioned in Figure 3. The verification by
layer allows one to verify the contracts by order; from a very important layer (primary) to a less
important layer (secondary). If the behaviour of our system does not satisfy a primary layer of
contract, then, it is not necessary to continue the verification with the other layers.
Step 9 (verification V1). We have to check the appropriate functioning of each normalized indi-
vidual component if tools exist for that and if the required data are available. As we use ProMeLa
we have an adequate tool (SPIN) but, the only component CS modelled with ProMeLa cannot be
verified without composition with its environment.

Fig. 3. Normalized components with the prioritised facets

Step 10 (modeling M9). As the checking of the normalized individual component CS cannot
be carried out, due to the need of composition with its environment; we translate the ProMeLa
component CS to UPPAAL using the algorithm presented in our RR [7], we obtain a component
CS ready for composition (see Figure 4).
Step 11 (modeling M10). We compose the translated component CS with the other components
PS and RP with the UPPAAL tool. As we focus on behaviours expressed with LTS, the composi-
tion results in parallel composition.We obtain the composed system depicted in Figure 4.

Fig. 4. CS and PS models after the component translation (in UPPAAL)

Step 12 (verification V2). We translate the generalized contract (only the desired properties to be
verified) of each individual component, from PSL to the UPPAAL language. We obtain properties
ready for verification with UPPAAL. The following property is an extract of the translation from
the RP component.

A[] Robot_painter.painting imply get_type == true
and get_color == true and get_time == true5

Step 13 (verification V3). We verify the properties of the same layer together; i.e. to verify each
component by layer: data, security, time, functionality; also, the primary properties before the
secondary. At the end of this step, we obtain the verified components. Figure 5 shows the verifi-
cation status of the translated properties.

5 were "A [] Prop" denotes the "always property".

Fig. 5. Status of properties verification with UPPAAL

Assessment This experimentation was conducted in order to improve our method. We have
considerably detailed the steps of the method when thinking thoroughly about its applicability
through the case study. Despite the success of applying in preliminary trivial exercises and on
this case study, and the reproducibility of the steps, it appears that more tool assistance is needed
to guide the users. The experimentations even if not yet scalable to industrial cases, give the
opportunity to tune the method steps and design some translators to help in modeling and veri-
fication. We are aware of the impact of treated facets on interactions between various tools; but,
more lessons from various case studies will help to promote good practices through tools. Our
report [7] contains more detailed experimention examples.

4 Related Work

Several works contributed to the heterogeneity issues, by proposing different methods and tech-
niques. Interface theory [2] and theories of contracts [5] are based on the contracts of components
and the pieces of information given by their interfaces; they use intensively contracts as well as
the behaviours; they propose techniques and methods to promote concurrent development.

The Ptolemy project [8] proposes an approach of interaction between heterogeneous com-
ponents based on models of computation (MOC); here the heterogeneity is linked to different
models of computation. From our point of view, this composition method is heavy, general and
constrains the use of contracts, especially when one deals with a small net of communicating pro-
cesses [3]. In our Minarets method we aim to exploit more advantages of contracts in a simpler
and explicit way to model and verify the assembly of heterogeneous components.

Our modeling and verification method is based on previous results [3] for heterogeneous
components composition; this deals with the formal composition of heterogeneous components,
and it is based on the dynamic behaviour of the components where labelled transition systems
have been used as common semantic domain; the method which was proposed there is focused
on the use of an algebra of operators to manage the communication mechanisms between the
assembled components. This approach is supported by the aZIZA tool 6.

As a part of the B.I.P project, [9] proposes a technique with three layers: "Behavior, In-
teractions, Priorities" (B,I,P). It is a low level solution that deals with the interaction between
components; it focuses on the composition of the system with the different interaction semantics;
however, unlike Minarets, this approach didn’t deal with the heterogeneous components modeling
but it deals with the property analysis and composition of components using the B.I.P language.

5 Conclusion

We have proposed the Minarets method for complex and heterogeneous systems modeling and
analysis; it is based on an extension of the traditional contracts, resulting in generalized con-

6 https://aziza.ls2n.fr/ [3]

tracts used as standard interfaces between components. Generalized contracts are structured with
several facets, depending on the concerns or the properties that we are dealing with. Minarets
emphasizes the stepwise composition of heterogeneous components through their generalized
contracts. We have shown how one can reduce the complexity of the global modeling and the
global analysis of complex and heterogeneous systems.

We illustrated our approach with an example of a painting workshop in the automotive indus-
try domain; it involves different facets (data, functionality, security, time). We have checked the
properties concerning the various facets. Concerning verification, generalized contracts are first
expressed in PSL, then translated into input languages of UPPAAL/SPIN model checkers.

Future works address not only the scalability but also the study of various policies for the
composition of contracts; it is important to verify the components composition as we done
through the used tools but, to improve the method we are defining in a formal way the seman-
tics of parallel composition of our normalized components. This will furthermore strengthen the
foundations of the proposed method, and enable the contract management tool construction.

References

1. IEEE standard for Property Specification Language (PSL). IEEE Std 1850-2010 (Revision
of IEEE Std 1850-2005) pp. 1–182 (2010). https://doi.org/10.1109/IEEESTD.2010.5446004

2. de Alfaro, L., Henzinger, T.A.: Interface theories for component-based design. In: Henzinger,
T.A., Kirsch, C.M. (eds.) Embedded Software, First International Workshop, EMSOFT 2001,
Tahoe City, CA, USA, October, 8-10, 2001, Proceedings. LNCS, vol. 2211, pp. 148–165.
Springer (2001), https://doi.org/10.1007/3-540-45449-7_11

3. Attiogbé, J.C.: Mastering heterogeneous behavioural models. In: Ouhammou, Y., Ivanovic,
M., Abelló, A., Bellatreche, L. (eds.) Model and Data Engineering - 7th International
Conference, MEDI 2017, Proceedings. LNCS, vol. 10563, pp. 291–299. Springer (2017),
https://doi.org/10.1007/978-3-319-66854-3_22

4. Behrmann, G., David, A., Larsen, K.: A Tutorial on UPPAAL. vol. 3185, pp. 200–236 (01
2004). https://doi.org/10.1007/978-3-540-30080-9_7

5. Benveniste, A., Caillaud, B., Nickovic, D., Passerone, R., Raclet, J., Reinkemeier, P.,
Sangiovanni-Vincentelli, A.L., Damm, W., Henzinger, T.A., Larsen, K.G.: Contracts for
system design. Found. Trends Electron. Des. Autom. 12(2-3), 124–400 (2018), https:
//doi.org/10.1561/1000000053

6. Holzmann, G.J.: The SPIN Model Checker. Addison-Wesley (2004)
7. Khouass, A., Attiogbé, C., Messabihi, M.: Multi-facets contract for modeling and verifying

heterogeneous systems. CoRR abs/2012.13671 (2020), https://arxiv.org/abs/2012.
13671

8. Lee, E.A.: Disciplined heterogeneous modeling - invited paper. In: Petriu, D.C., Rouquette,
N., Haugen, Ø. (eds.) Model Driven Engineering Languages and Systems - 13th International
Conference, MODELS 2010, Proceedings, Part II. LNCS, vol. 6395, pp. 273–287. Springer
(2010), https://doi.org/10.1007/978-3-642-16129-2_20

9. Sifakis, J.: Rigorous system design pp. 292–292 (2014).
https://doi.org/10.1145/2611462.2611517

10. Tiwari, U.K., Kumar, S.: Component-Based Software Engineering: Methods and Metrics.
CRC Press (2020)

https://doi.org/10.1109/IEEESTD.2010.5446004
https://doi.org/10.1007/3-540-45449-7_11
https://doi.org/10.1007/978-3-319-66854-3_22
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1561/1000000053
https://doi.org/10.1561/1000000053
https://arxiv.org/abs/2012.13671
https://arxiv.org/abs/2012.13671
https://doi.org/10.1007/978-3-642-16129-2_20
https://doi.org/10.1145/2611462.2611517

	Multi-Facets Contract for Modeling and Verifying Heterogeneous Systems

