
The B Method - Event B
Formal Software Construction

J. Christian Attiogbé

November 2008, maj 11/2013

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 1 / 48

Outline

Plan

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 2 / 48

Introduction

Event-B : References

- Modeling in Event-B: System and Software Engineering,
J-R. Abrial, Cambridge, 2010

- Modelling and proof of a Tree-structured File System.
Damchoom, Kriangsak and Butler, Michael and Abrial, Jean-Raymond,
Conference ICFEM 2008.

- Applying Event and Machine Decomposition to a Flash-Based Filestore in
Event-B.
Damchoom, Kriangsak and Butler, Michael; Conference SBMF 2009.

- Faultless Systems: Yes We Can!,
Jean-Raymond Abrial, Computer, vol. 42, no. 9, pp. 30-36, Sept. 2009

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 3 / 48

Introduction

Event B Specification Approach

Correct-by-construction: build correctly the systems.
(abstraction, modelling, refinement, composition/decomposition, proof)

Some hints to formal methods:

Formal methods are rigorous engineering tools.

Formal methods are means to build executable code from
software requirement documents (informal, natural language).

Requirement Documents (provided by clients) should be
rewritten after analysis and understanding into Reference
Document (where every thing is made clear and properly labelled
for traceability).

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 4 / 48

Introduction

B Method and Event B

Event-B is an extension of the B-method (J-R. Abrial).
It is devoted

for system engineering (both hardware and software)
for specifying and reasoning about complex systems : concurrent
and reactive systems.

Event-B comes with a new modelling framework called Rodin.
(like Atelier B tool for the classical B)

The Rodin platform is an eclipse-based open and extensible tool
for B model specification and verification.
It integrates various plug-ins: B Model editors, proof-obligation
generator, provers, model-checkers, UML transformers, etc

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 5 / 48

Introduction

Event B Modelling

Yet used in various case studies and real cases:

Train signalling system

Mechanical press system

Access control system

Air traffic information system

Filestore system

Distributed programs

Sequential programs

etc

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 6 / 48

Introduction

Event B Modelling

Observe the behaviour of any system; what matters?

We see a set of changes of its states.

But, the observation distance does matter!
(the details may be observed or not: parachutist paradigm)

The observation focus does matter!
(the observed changes are not the same)

Different point of views = abstraction.

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 7 / 48

Introduction

Event B Specification Approach

Event B Specification⇒ Abstract systems or Abstract model
An abstract system is a mathematical model of an asynchronous
system behaviour

System behaviour : described by events

Events are guarded actions/substitutions The events occurrence

involve a State-transition model.

Abstract System (or Model) = Specification unit

Refinement (data and events)
The parachutist paradigm / microscope paradigm (JR Abrial)

Decomposition (of a system into sub-systems)

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 8 / 48

Introduction

B Abstract System

Variables

Predicate

Events

SYSTEM

SETS ...

VARIABLES

...

INVARIANT

... predicate

INITIALISATION

...

EVENTS

...

END

but structured more efficiently using Contexts and machines.

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 9 / 48

Introduction

Capturing a system behaviour - Events

The behaviour of a discrete system is a sequence of changes
(transition system).

The changes may be internal or enabled by external signals.

Each event describes the occurrence of a change in the discrete
system under modelisation.

event = when Conditions then Effects

Event B uses Guards and Actions [Dijkstra]

But, the behaviour of a system may/should be captured gradually.

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 10 / 48

Introduction

Events

An event has one of the following general forms (Fig. 1)

name =̂ /* event name */
when /* formely select*/

P(gcv)
then

GS(gcv)
end

(WHEN/SELECT Form)

name =̂ /* event name */
any bv where

P(bv, gcv)
then

GS(bv, gcv)
end

(ANY Form)

Figure: General forms of events

bv denotes the local bound variables of the event;
gcv denotes the global constants and variables of the abstract;
P(bv, gcv) a predicate.

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 11 / 48

Introduction

Events

An event without guards has the following form:

name =̂ /* event name */
begin

GS(gcv)
end

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 12 / 48

Introduction

Abstract System (or a model, or a machine)

The guard of an event with the WHEN form is: P(gcv).

The guard of an event with the ANY form is: ∃(bv).P(bv, gcv).

The WHEN form is a particular case of the other.

The action associated to an event is modeled with a generalized
substitution using the variables accessible to the event:
GS(bv, gcv).

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 13 / 48

Introduction

Abstract System : Semantics and Consistency

An abstract system describes a mathematical model that simulates the
behaviour of a system.
Its semantics arises from the invariant and is enhanced by proof
obligations.
The consistency of the model is established by such proof obligations.
Consistency of an event B model:

PO: the initialisation establishes the invariant

PO: each event of the abstract system preserves the invariant of
the model

I(gcv) the invariant and GS(bv, gcv) the generalized substitution
modelling the event action.

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 14 / 48

Introduction

Abstact System : Semantics and Consistency

the initialisation establishes the invariant;

[U]Inv

each event preserves the invariant :
In the case of an event with the ANY form, the proof obligation is:

I(gcv) ∧ P(bv, gcv) ∧ prdv(S)⇒ [GS(bv, gcv)]I(gcv)

Moreover the events (e) terminate:

Inv ∧ eGuard⇒ fis(eBody)

(note that Inv is I(Gcv))

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 15 / 48

Introduction

Abstact System : Semantics and Consistency

The predicate fis(S) expresses that S does not establish False:

fis(S)⇔ ¬ [S]False

ie
Inv ∧ eGuard⇒ ¬ [S]False

The predicate prdv(S) is the before-after predicate of the substitution S ;
it relates the values of state variables just before (v) and just after (v’)
the substitution S.
The prdv(any x where P(x, v) then v := S(x, v) end) is :
∃x.(P(x, v) ∧ v′ = S(x, v))

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 16 / 48

Introduction

Example : producer/consumer

Features: Concurrency and synchronization

Concurrent running of a process consumer which retrieves a data
from a buffer filled by another process producer.

The consumer cannot retrieve an empty buffer and the producer
cannot fill in a buffer already full.

An event-driven model of the system is as follows:

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 17 / 48

Introduction

Example : producer/consumer

system ProdCons /* Model */
sets

DATA ; STATE = {empty, full}
variables buffer, bufferstate, bufferc
invariant

bufferstate ∈ STATE ∧ buffer ∈ DATA ∧ bufferc ∈ DATA
initialization

bufferstate := empty ‖ buffer :∈ DATA ‖ bufferc :∈ DATA
events
produce =̂ /* if buffer empty */

any dd where dd ∈ DATA ∧ bufferstate = empty
then buffer := dd ‖ bufferstate := full
end ;

consume =̂ /* if buffer is full */
select bufferstate = full
then bufferc := buffer ‖ bufferstate := empty
end

end

Figure: A Producer-Consumer Abstract System
J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 18 / 48

Introduction

Refinement

Data refinement
(as usually: new variables + properties; binding invariant)

Event Refinement (extended):

Strengthening guards (unlike with Classical B)
More variables are introduced with their properties.
Each event of the concrete system refines an event of the
abstraction.
Introduction of new events which refine skip, and use new variables.

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 19 / 48

Introduction

Refinement

Let A with Invariant: I(av)

evta =̂ /* Abs. ev. */
when P(av)
then GS(av)
end

avec prdv(...) = Ba(av, av’)

Refined with: Invariant J(av,cv)

evtr =̂ /* Conc. ev. */
when Q(cv)
then GS(cv)
end

avec prdv(...) = Bc(cv,cv’)

Proof obligation:

I(av) ∧ J(av, cv) ∧ Q(cv) ∧ Bc(cv, cv′)⇒ ∃cv′.(Ba(av, av′) ∧ J(av′, cv′))

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 20 / 48

Introduction

Tools

First generation tools
Translation into classical B
B4free

New generation tools: DataBase, Eclipse Plugins, ...
Rodin (Deploy Project)

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 21 / 48

Introduction

Refinement: structuring models

Refinement= development technique.
Various refinement strategies.

Vertical refinement: From abstrat to concrete models.
Details are gradually introduced in an abstract model in order to
make it more concrete.
The specifier introduces new variables and takes some choices
(design), etc
Events may be split : event decomposition
machines may be split too: machine decomposition

Horizontal refinement (feature augmentation): From a small and
abstract to a larger abstract.
Details are gradually introduced in an abstract model in order to
make it more precise
(wrt to requirements ==> adding more features, gradually).

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 22 / 48

Introduction

Vertical Refinement: event decomposition

A coarse grain event is analysed and described in a more detailed
(fine grain) way.
Think about the transfer of a file via a network.

A given change consists of:
start by sub-change...;
follow by sub-change...;
end by sub-change...;

Hence, at least one sub-change (an event), refines the abstract
event.

refined by

absEvent

conEvent

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 23 / 48

Introduction

Machine Decomposition: structuring models

A coarse grain model is analysed and described in a more detailed
(fine grain) way.
Think about a system involving software and physical devices.

A given model is made of variables that model purely physical
devices, and events are associated only to these variables

The splitting is based on variables splitting (but not always
straightforward).

Divide and conquer: a small model is more tractable than a huge
one.
Decomposition enables one to break complexity, to structure and
develop more easily.

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 24 / 48

Introduction

Machine Decomposition: structuring models

Decomposition with Abrial’s style (shared variables): Machine
variables and events are partitioned into sub-machines.
The sub-machines may interact with each other via shared
variables.
Shared variables are duplicated, new external-events are
introduced in each machine that has a shared variable in order to
ensure consistency of changes.
Decomposition with Butler’s style: Machine variables and events
are partitioned into sub-machines.
The variables are not shared; an event which uses variables in
separate machines, is shared (then separated-duplicated).
The sub-machines may interact with each other via
synchonisation over shared parameterised events.

Event-B Model Decomposition, Carine Pascal(Systerel) and Renato
Silva(University of Southampton)

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 25 / 48

Introduction

Structuring Event-B Models

An event-B model is structured with
Contexts that contain carrier sets, axioms and theorems (seen by
various machine)
Machines which sees the contexts and defines a state space
(static part: variables + labelled invariants) and a dynamic part
made of some events.
A context may be extended; A machine may be refined.

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 26 / 48

Introduction

Event-B Model - Example: File transfer protocol

Specification of a file transfer between two sites: a sender and a
receiver.

sender receiver

transfer

sender file

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 27 / 48

Introduction

Event-B Model - Example: File transfer protocol

sender receiver

transfer

sender file

virtually

1

2

3

4

5

collection of Data

A file is made of a set of data records.
From a very abstract level, the transfer is done instantaneously.

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 28 / 48

Introduction

Event-B Model - Example: File transfer protocol

sender

sender file

1

2

3

4

5

collection of Data

Channel

+ acknowledge

But, a file is made of a set of data records which are to be transfered
through a channel.

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 29 / 48

Introduction

Event-B Model - Example: File transfer protocol

sender

sender file

1

2

3

4

5

collection of Data

Channel

+ acknowledge

1

2

From a more concrete level, the transfer is achieved step by step, one
record after the other.

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 30 / 48

Introduction

Event-B Model - Example: File transfer protocol

sender

sender file

1

2

3

4

5

collection of Data

Channel

{ }1

2

1

3

2

receiver

AckChan

{ }1, 2

sendata

recvdata

sendAckrecvAck

There are some intermediary operations, to send data on the channel
from the sender side, to receive data from the channel from the
receiver side. In the same way acknowledgements are sent/received.

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 31 / 48

Introduction

Event-B Model - Example: File transfer protocol

sender

sender file

1

2

3

4

5

collection of Data

Channel

{ }1

2

1

3

2

receiver

AckChan

{ }1, 2, 3, 4, 5

sendata

recvdata

sendAckrecvAck

4

3

5

5

4

Only after all the intermediary operations, the transfer will be
completed.

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 32 / 48

Introduction

Event-B Model - Example: File transfer protocol

sender

sender file

1

2

3

4

5

collection of Data

1

2

receiver

AckChan

{ }1, 2, 3, 4, 5

4

3

5

 transfer (now finished)

receiver file

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 33 / 48

Introduction

Event-B Model - Example: File transfer protocol

Senderfile = some data records = 1..nr→ DATA
{1 7→ data1, 2 7→ data2 , · · · }

A channel is a set such data records.

At each time, the channel contains a part (set inclusion) of the
sender’s file

The receiver acknowledges the received records numbers.

The file transfer is completed when all the records are
acknowledged.

Failure: loss of data/ack in the channels.

We have the model!

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 34 / 48

Introduction

Event-B Model Example: File transfer protocol

MACHINE Transfer

SETS DATA

CONSTANTS nr /* file size : number of records

*/

PROPERTIES nr : NAT & nr > 1

VARIABLES

sf /* sender file */

, rf /* receiver file */

INVARIANT

& sf : 1..nr �> DATA /* all records of sf */

& rf : 1..nr +-> DATA /* probably part of

records of sf */

INITIALISATION

sf := {} || rf := {}

EVENTS

transf = /* instantaneous transfer, from far

way */

BEGIN

rf := sf

END

/* but, technically, we will need to anticipate

the intermediary events */

END

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 35 / 48

Introduction

Event-B Model Example: File transfer protocol

MACHINE Transfer

SETS DATA

CONSTANTS nr /* file size */

PROPERTIES nr : NAT & nr > 1

VARIABLES

sf /* sender file */

, rf /* receiver file */

INVARIANT

& sf : 1..nr �> DATA /* all records of sf */

& rf : 1..nr +-> DATA /* probably part of

records of sf */

INITIALISATION

sf := {} || rf := {}

EVENTS

transf = /* instantaneous transfer, from far

way */

BEGIN

rf := sf

END

/* the following events are introduced by

anticipation of the forthcoming gradual

refinement*/

; sendta = skip

; recdta = skip

; sendac = skip

; recvac = skip

/* the followings are events that simulate the

non-releiabiliy of channels */

; rmvData = skip

; rmvAck = skip

END

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 36 / 48

Introduction

Event-B Model Example: File transfer protocol

REFINEMENT

Transfer R1

REFINES Transfer

VARIABLES

cs /* current record to be sent */

, cr /* current record received */

, rf

, sf /* sender file */

, erf /* effectively received file */

, dataChan /* data channel */

, ackChan /* ack channel */

INVARIANT

cs : 1..nr+1 /* current to be sent */

& cr : 0..nr /* current received */

& cr <= cs /* current received is <= current

sent */

& cs <= cr+1 /* cr <= cs <= cr+1 */

& erf = (1..cr) <| sf

& dataChan <: (1..cs) <| sf

& ackChan <: 1..cr

INITIALISATION

cs := 1

|| cr := 0

|| rf := {}

|| sf := {}

|| erf := {}

|| dataChan := {}

|| ackChan := {}

EVENTS

transf =

WHEN

cs = (nr + 1) /* that is all cs are received

(last ack received) */

THEN

rf := erf /* not necessary, effective copy of

the received file in the receiver */

END

... (continued)

END

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 37 / 48

Introduction

Event-B Model Example: File transfer protocol

/* new events introduced (ie. we "forget" the

anticipation in the abstract model) */

; sendta =

WHEN

cs <= nr

THEN

dataChan(cs) := sf(cs)

/* now wait for the ack, before updating cs */

END

; recdta =

WHEN cr+1 : dom(dataChan)

THEN

erf(cr+1) := dataChan(cr+1)

|| cr := cr + 1 /* the next data to be received

*/

END

; sendac =

WHEN cr /= 0 /* send ack for the received cr

data */

/* may be observed repeatedly until the next

data */

THEN

ackChan := ackChan {cr}

END

recvac =

WHEN cs : ackChan /* ack for the already sent

cs */

THEN

cs := cs + 1 /* now the next to be sent */

END

/* Simulating non-relaibility of channels,

data/ack may be loss */

; rmvData =

ANY ii, dd WHERE

ii |->dd : dataChan

THEN

dataChan := dataChan - { ii|->dd }

END

;

rmvAck =

ANY ii WHERE

ii : ackChan

THEN

ackChan := ackChan - {ii}

END

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 38 / 48

Introduction

Case Study : Multiprocess specification
(Readers/writers)

Description
Multiple processes: readers, writers
Shared resources between the processes
Several readers may read the resource
Only one writer at a time

Property:
Mutual exclusion between readers and writers

Improvement:
no starvation→ as a new property
(using refinements)

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 39 / 48

Introduction

Multiprocess specification

MACHINE

readWrite2

SETS

WRITER /* set of writer processes */

; READER /* set of reader processes */

VARIABLES

writers /* current writers */

, activeWriter

, waitingWriters

, readers /* current readers */

, waitingReaders

, activeReaders /* we may have svrl readers simultan. */

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 40 / 48

Introduction

Multiprocess specification

INVARIANT

writers <: WRITER

& activeWriter <: WRITER & card(activeWriter) <= 1

& waitingWriters <: WRITER

& writers /\ waitingWriters = {}

& activeWriter /\ waitingWriters = {}

& activeWriter /\ writers = {}

/* merge */

& readers <: READER

& waitingReaders <: READER

& activeReaders <: READER & card(activeReaders) >= 0

& readers /\ waitingReaders = {}

& activeReaders /\ waitingReaders = {}

& activeReaders /\ readers = {}

/*�����safety properties �����*/

& not((card(activeWriter) = 1)&(card(activeReaders) >= 1))

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 41 / 48

Introduction

Multiprocess specification

INITIALISATION

activeWriter := {}

|| waitingWriters := {}

|| activeReaders := {}

|| readers :: POW(READER)

|| writers :: POW(WRITER)

|| waitingReaders := {}

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 42 / 48

Introduction

Multiprocess specification

want2write = /* observed when a process wants to write */

ANY ww WHERE

ww : writers

& ww /: waitingWriters

& ww /: activeWriter

THEN

waitingWriters := waitingWriters \/ {ww}

|| writers := writers - {ww}

END

;

writing =

ANY ww WHERE

ww : waitingWriters

& activeReaders = {} & activeWriter = {}

THEN

activeWriter := {ww}

|| waitingWriters := waitingWriters - {ww}

END
J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 43 / 48

Introduction

Multiprocess specification

endWriting =

ANY ww WHERE

ww : activeWriter

THEN

writers := writers\/ {ww}

|| activeWriter := {}

END

;

want2read =

ANY rr WHERE

rr : readers

& rr /: waitingReaders

& rr /: activeReaders

THEN

waitingReaders := waitingReaders \/ {rr}

|| readers := readers - {rr}

END

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 44 / 48

Introduction

Multiprocess specification

reading =

ANY rr WHERE

rr : waitingReaders

& activeWriter = {}

THEN

activeReaders := activeReaders\/ {rr}

|| waitingReaders := waitingReaders - {rr}

END

;

endReading =

/* one of the active readers finishes and leaves

the competition to the shared resources */

ANY rr WHERE

rr : activeReaders

THEN

activeReaders := activeReaders - {rr}

|| readers := readers \/ {rr}

END

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 45 / 48

Introduction

Multiprocess specification

newWriter = /* a new Writer */

ANY ww

WHERE ww : WRITER

& ww /: (writers \/ waitingWriters \/ activeWriter)

THEN

writers := writers \/ {ww}

END

; leaveWriters = /* a writer leaves the group */

ANY ww

WHERE

ww : writers

THEN

writers := writers - {ww}

END

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 46 / 48

Introduction

Multiprocess specification

newReader = /* a new reader joins the readers */

ANY rr WHERE

rr : READER

& rr /: (readers\/waitingReaders \/activeReaders)

THEN

readers := readers \/ {rr}

END

; leaveReader =

ANY rr WHERE

rr : readers & card(readers) > 1

THEN

readers := readers - {rr}

END

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 47 / 48

Introduction

Example: Flash-based Filestore in Event-B

To be studied, and summarized.

J. Christian Attiogbé (November 2008, maj 11/2013) The B Method - Event B 48 / 48

