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Examples of development

Examples
GCD (PGCD), euclidian division,
Sorting

Basic concepts of the method : abstract machine
Modeling the static part (data)
Modeling the dynamic part(operations)
Proof of consistency
Refinement of machine
Proofs of refinement

Case studies (with AtelierB, Rodin)
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Introduction to B

B Method

(..1996) A Method to specify, design and build sequential software.

(1998..) Event B ... distributed, concurrent systems.

(...) still evolving, with more sophisticated tools (aka Rodin) ;-(
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Introduction to B

Examples of application in railways systems

Figure : Synchronisation of platform screen doors - Paris Metro
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Introduction to B

Industrial Applications

Applications in Transportation Systems (Alsthom>Siemens)
braking systems, platform screen doors(line 13, Paris metro),

KVS, Calcutta Metro (India), Cairo

INSEE (french population recensement)

Meteor RATP : automatic pilote, generalization of platform screen
doors

SmartCards (Cartes à puce) : securisation, ...

Peugeot

etc

☞ Highly needed competencies in Industries.
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Introduction to B

A Context that imposes Formal Method

The standard EN51128 "Systèmes de signalisation, de
télécommunication et de traitement" :
Cette norme traite en particulier des méthodes qu’il est necessaire d’utiliser
pour fournir des logiciels répondant aux exigences d’intégrité de la sécurité
appliquées au domaine du ferroviaire. L’intégrité d’un logiciel est répartie sur
cinq niveaux SIL, allant de SIL 0 à SIL 4. Ces niveaux SIL sont définis par
association, dans la gestion du risque, de la fréquence et de la conséquence
d’un événement dangereux. Afin de définir précisément le niveau de SIL d’un
logiciel, des techniques et des mesures sont définies dans cette norme.
(cf. ClearSy)

SIL : Safety Integrity Level
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Introduction to B

The Standard EN 50128 : Software Aspect of the
Control

Standard NF EN 50128
Titre : Railway Applications, system of signaling, telecommunication
and processing equipped with software for the control and the security
of railway systems.
Domain: Exclusively applicable to software and to the interaction
between software and physical devices;
5 levels of criticity:
Not critical: SIL0,
No dead danger for humans: SIL1, SIL2,
Critical : SIL3, SIL4
Applicable to: the software application; the operating systems ; the
CASE1 tools;

Depending on the projects and the contexts, we will need formal
methods to build the dependable software or systems.
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Introduction to B

Method in Software Engineering

Formal Method=

Formal Specification or Modeling Langaguage

Formal reasoning System

B Method=
Specification Language

Logic, Set Theory: data language
Generalized Substitution Language: Operations’s language

Formal reasoning System
Theorem Prover
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Introduction to B

Formal Development

Formal Software Development=

Systematic transformation of a mathematical model into an
executable code.

= Transformation from the abstract to the concrete model

= Passing from mathematical structures to programming
structures

= Refinement into code in a programming language.

B: Formal Method
+ refinement theory (of abstract machines)

⇒ formal development method
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Introduction to B

Correct Development (no overflow, for a trajectory)

MACHINE
CtrlThreshold /* to control two naturals X and Y */

/* 0 <= x <= threshold
∧ ∀ y . O < y < threshY */

CONSTANTS threshX, threshY
PROPERTIES threshX : INT & threshX = 10 ...
VARIABLES

xx, yy
INVARIANT

xx : INT & 0 <= xx & xx <= threshX
yy : INT & 0 < yy & yy < threshY

INITIALISATION xx := 0 ‖ yy := 1
OPERATIONS

computeY =
yy := ... /* an expression */

END
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Introduction to B

Correct Development....

OPERATIONS (continued)
setXX(nx) = /* specification of an operation with PRE */
PRE

nx : INT & nx >= 0 & nx <= threshX
THEN

xx := nx
END ;

rx <�- getXX = /* specification of an operation */
BEGIN

rx := xx
END
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Introduction to B

The GCD Example

From the abstract machine to its refinement into executable code.

mathematical model –> programming model
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Introduction to B

Constructing the GCD: abstract machine

MACHINE
pgcd1 /* the GCD of two naturals */

/* gcd(x,y) is d | x mod d = 0 ∧ y mod d = 0
∧ ∀ other divisors dx d > dx
∧ ∀ other divisors dy d > dy */

OPERATIONS
rr <�- pgcd(xx,yy) = /* OUTPUT : rr ; INPUT xx, yy */

...
END
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Introduction to B

Constructing the GCD: abstract machine

OPERATIONS
rr <�- pgcd(xx,yy) = /* spécification du pgcd */
PRE

xx : INT & xx >= 1 & xx < MAXINT
& yy : INT & yy >= 1 & yy < MAXINT
THEN

ANY dd WHERE
dd : INT
& (xx - (xx/dd)*dd) = 0 /* d is a divisor of x */
& (yy - (yy/dd)*dd) = 0 /* d is a divisor of y */

/* and the other common divisors are < d */
& !dx.((dx : INT & dx < MAXINT

& (xx- (xx/dx)*dx) = 0 & (yy-(yy/dx)*dx)=0) => dx < dd)
THEN rr := dd
END

END
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Introduction to B

Constructing the GCD: refinement

REFINEMENT /* raffinement de ...*/
pgcd1 R1

REFINES pgcd1 /* the former machine */
OPERATIONS
rr <�- pgcd (xx, yy) = /* the interface is not changed */

BEGIN
... Body of the refined operation

END
END
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Introduction to B

Constructing the GCD: refinement

rr <�- pgcd (xx, yy) = /* the refined operation */
BEGIN

VAR cd, rx, ry, cr IN
cd := 1
; WHILE ( cd < xx & cd < yy) DO

; rx := xx - (xx/cd)*cd ; ry := yy - (yy/cd)*cd
IF (rx = 0 & ry = 0)
THEN /* cd divises x and y, possible GCD */

cr := cd /* possible rr */
END
; cd := cd + 1 ; /* searching a greater one */

INVARIANT
xx : INT & yy : INT & rx : INT & rx < MAXINT
& ry : INT & ry < MAXINT & cd < MAXINT
& xx = cr*(xx/cr) + rx & yy = cr*(y/cr) + ry

VARIANT
xx - cd

END
END
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Introduction to B

B Method: Global Approach

Machine

Raffinement

Raffinement

Spécification informelle
(cahier de charges)

raffinement prouvé

raffinement prouvé

Développement B

implantation

Code exéc.

Analyse Système

Modélisation 

formelle

Structuration

Figure : Analysis and B development
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Introduction to B

The B Method

Concepts and basic principles :

abstract machine (state space + abstract operations),

proved refinement (from abstract to concrete model)
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Introduction to B

State and State Space

Observe a variable in a logical model;

It can take different values through the time, or several states
through the time;

For example a natural variable I: one can (logically) observe I = 2,
I = 6, I = 0 , · · · provided that I is modified;

Following a modification, the state of I is changed;

The change of states of a variable can be modeled by an action
that substitutes a new value to the current one.

More generally, for a natural I, there are possibly all the range or
the naturals as the possible states for I: hence the state space.

One generalises to several variables 〈I, J〉, 〈V1, V2, V4, ...〉
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Introduction to B

Development Approach

The approaches of Z, TLA, B, ... are said: model (or state) oriented

Describe a state space

Describe operations that explore the space

Transition system between the states

Figure : Evolution of a software system
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Introduction to B

Specification Approach

A tuple of variables describes a state

〈mode = day, light = off , temp = 20〉
A predicate (with the variables) describes a state space

light = off ∧ mode = day ∧ temp > 12

An operation that affects the variables changes the state

mode := day

Specification in B = model a transition system
(with a logical approach)
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Introduction to B

Abstract Machine

variables

predicates

operation

MACHINE ...
SETS ...
VARIABLES
...
INVARIANT
... predicates
INITIALISATION
...
OPERATIONS
...
END
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Introduction to B

Abstract Machine

MACHINE ReguLight
SETS
DMODE = {day, night}
; LIGHTSTATE = {off, on}

An abstract machine has a
name

The SETS clause enables
ones to introduce abstract or
enumerated sets;
These sets are used to type
the variables

The predefined sets are : NAT,
INTEGER, BOOL, etc
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Abstract Machine

VARIABLES
mode
, light
, temp
INVARIANT
mode : DMODE
& light : LIGHTSTATE
& temp : NAT

The VARIABLES clause gathers
the variables to be used in the
specification

The INVARIANT clause is used
to give the predicate that
describe the invariant properties
of the abstract machine; its
should be always true

Both clauses go together.
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Introduction to B

Abstract Machine

INITIALISATION
mode := day
|| temp := 20
|| light := off

An abstract machine should
contain, an initial state of the
specified system.
This initial state should ensures
the invariant properties.
The INITIALISATION clause
enebales one to initialise ALL the
variables used in the machine
The initialisation using
substitutions, is done
simultaneaously for all the
variables.
They can be modified later by the
operations.
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Introduction to B

Abstract Machine

OPERATIONS
changeMode =
CHOICE mode := day
OR mode := night
END
;
putOn =
light := on
;
putOff =
light := off
;
decreaseTemp = temp := temp - 1
;
increaseTemp = temp := temp +1
END

Within the clause OPERATIONS
one provides the operations of
the abstract machine.
The operations model the change
of state variables with logical
substitutions (noted :=).
The logical substitutions are
generalised for more expressivity.
The operations has a
PREcondition (the POST is
implicitely the invariant).
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Introduction to B

Abstract Machine : example of Light Regulation

MACHINE ReguLight
SETS
DMODE = {day, night}
; LIGHTSTATE = {off, on}

VARIABLES
mode
, light
, temp
INVARIANT
mode : DMODE
& light : LIGHTSTATE
& temp : NAT

INITIALISATION
mode := day || temp := 20
|| light := off

OPERATIONS
changeMode =
CHOICE mode := day
OR mode := night
END
;
putOn =
light := on
;
putOff =
light := off
;
decreaseTemp = temp := temp - 1
;
increaseTemp = temp := temp +1
END
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Abstract Machine: provides operations

An abstract machine provides operations which are callable from other
external operations/programmes.

Figure : The operations are callable from outside

☛ An operation of a machine cannot call another operation of the
same machine
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Introduction to B

Interface of operations

(operations with or without input/output parameters)

No parameter:
nameOfOperation = ...

Input parameters only:
nameOfOperation(p1, p2, · · · ) = ...

Output parameters only:
r1, r2, · · · <— nameOfOperation = ...

Input and Output parameters:
r1, r2, · · · <— nameOfOperation(p1, p2, · · · ) = ...
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Introduction to B

Light Regulation System

Study
Requirements:

The light should not be on during daylight.

The temperature should not exceed 29 degrees during daylight.

...

⇒ Find and formalise the properties of the invariant.
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Introduction to B

Abstract Machine: example of the gauge

MACHINE MyGauge
VARIABLES
gauge
INVARIANT
gauge : NAT
& gauge >= 2
& gauge <= 45
INITIALISATION
gauge := 1 // !! what?

OPERATIONS
decrease1 =
PRE gauge > 2
THEN gauge := gauge - 1
END
; decrease(st) =
PRE st : NAT
& gauge - st >= 2
THEN
gauge := gauge - st
END
...
increase ...
...
END
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Abstract Machine: example of ressources

MACHINE
Resrc
SETS
RESC
CONSTANTS
maxRes // a parameter
PROPERTIES
maxRes : NAT & maxRes > 1
VARIABLES
rsc
INVARIANT
rsc <: RESC // a subset
& card(rsc) <= maxRes //bound
INITIALISATION
rsc := {}

OPERATIONS
addRsc(rr) = // adding
PRE
rr : RESC & rr /: rsc &
card(rsc) < maxRes
THEN
rsc := rsc \/ {rr}
END
;
rmvRsc(rr) = // removing
PRE
rr : RESC & rr : rsc
THEN
rsc := rsc - {rr}
END
END
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Basics of correct program construction

Consider operations on a bank account:

a withdrawal of givenAmount

begin
account := account - givenAmount

end

a deposit on the account of newAmount

begin
account := account + newAmount

end

☞ these operations are not satisfactory, they don’t take care of the
constraints (the threshold to not overpass).
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Introduction to B

Basics of correct program construction

a withdrawal givenAmount

withdrawal(account, givenAmount)=
pre
account - givenAmount >= 0 //unauthorised overdraft

begin
account := account - givenAmount

end

☛ Before calling the operation, we should ensure that it does not
overpass the autorised amount.

IF withdrawalPossible(account, givenAmount)
THEN withdrawal(account, givenAmount)

END
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Introduction to B

Basics of correct program construction (before B)

Consider two naturals natN and natD.
What happens with the following statement?

res := natN / natD

What was expected:

IF (natD /= 0)
THEN res := natN / natD

END

Indeed, the division operation has a precondition : (denom /= 0)
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B: principle of the method

The control with an invariant of a system (or of a software)

one models the space of correct states with a property (a
conjunction of properties).

While the system is in these states, it runs safely; it should be
maintain within these states!

We should avoid the system going out from the state space

Hence, be sure to reach a correct state before performing an
operation.

Examples: trajectory of a robot (avoid collision points before moving).

☛ The operations that change the states has a precondition.
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Introduction to B

B: logical approach

Originality of B: every thing in logics (data and operations)

state space: Invariant: Predicate : P(x, y, z)
A state: a valuation of variables
x := vx y := vy z := vz in P(x, y, z)
⇒ Logical substitution

An operation: transforms a correct (state) into another one.

Transform a state = predicate transformer (invariant)
Operation = predicate transformer = substitution
other effects than affectation⇒ generalized substitutions
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Introduction to B

B: the practice

A few specification rules in B

An operation of a machine cannot call another operation of the
same machine (violation of PRE);

One cannot call in parallel from outside a machine two of its
operation (for example : incr ‖ decr) ;

A machine should contain auxilliary operations to check the
preconditions of the principal provided operations;

The caller of an operation should check its precondition before the
call ("One should not divide by 0") ;

During refinement, PREconditions should be weaken until they
desappear(Be careful, this is not the case with Event-B) ;

· · ·
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Introduction to B

B: the foundations

First Order Logic

Set Theory (+ types)

Theory of generalized substitutions

Theory of refinement

and a good taste of: abstraction and composition!
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B: CASE Tools

Modularity:
Abstract Machine, Refinement, Implementation

Architecture of complex applications:
with the clauses SEES, USES, INCLUDES, IMPORTS, ...

CASE:
Editors, analysers, provers, ...

J. Christian Attiogbé (November 2014) Formal Software Engineering 41 / 135

Introduction to B

Machine

Raffinement

Raffinement

Spécification informelle
(cahier de charges)

raffinement prouvé

raffinement prouvé

Développement B

implantation

Code exéc.

Analyse Système

Modélisation 

formelle

Structuration

Figure : Analysis and B development
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Introduction to B

Figure : Structure of a B Development
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Introduction to B

Position - other methods

☞ B: Correct-by-construction Approach→ proofs
☞ B: Unique framework for (software lifecycle):

Analysis

Specification/Modeling

Design

Development

☞ B: Stepwise Refinements from abstract model to concrete one.
☛ (Other) Approaches: development, test à postériori→ tests
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Examples of specifications in B

Constructing the GCD: abstract machine

MACHINE
pgcd1 /* the GCD of two naturals */

/* gcd(x,y) is d | x mod d = 0 ∧ y mod d = 0
∧ ∀ other divisors dx d > dx
∧ ∀ other divisors dy d > dy */

OPERATIONS
rr <�- pgcd(xx,yy) = /* OUTPUT : rr ; INPUT xx, yy */

...
END
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Constructing the GCD: abstract machine

OPERATIONS
rr <�- pgcd(xx,yy) = /* spécification du pgcd */
PRE

xx : INT & xx >= 1 & xx < MAXINT
& yy : INT & yy >= 1 & yy < MAXINT
THEN

ANY dd WHERE
dd : INT
& (xx - (xx/dd)*dd) = 0 /* d is a divisor of x */
& (yy - (yy/dd)*dd) = 0 /* d is a divisor of y */

/* and the other common divisors are < d */
& !dx.((dx : INT & dx < MAXINT

& (xx- (xx/dx)*dx) = 0 & (yy-(yy/dx)*dx)=0) => dx < dd)
THEN rr := dd
END

END
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Constructing the GCD: refinement

REFINEMENT /* raffinement de ...*/
pgcd1 R1

REFINES pgcd1 /* the former machine */
OPERATIONS
rr <�- pgcd (xx, yy) = /* the interface is not changed */

BEGIN
... Body of the refined operation

END
END
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Constructing the GCD: refinement

rr <�- pgcd (xx, yy) = /* the refined operation */
BEGIN

VAR cd, rx, ry, cr IN
cd := 1
; WHILE ( cd < xx & cd < yy) DO

; rx := xx - (xx/cd)*cd ; ry := yy - (yy/cd)*cd
IF (rx = 0 & ry = 0)
THEN /* cd divises x and y, possible GCD */

cr := cd /* possible rr */
END
; cd := cd + 1 ; /* searching a greater one */

INVARIANT
xx : INT & yy : INT & rx : INT & rx < MAXINT
& ry : INT & ry < MAXINT & cd < MAXINT
& xx = cr*(xx/cr) + rx & yy = cr*(y/cr) + ry

VARIANT
xx - cd

END
END
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Examples of specifications in B

After the examples

... Let′s dig a bit ...
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A simplified general shape of an abstract machine

MACHINE
M (prm) /* Name and parameters */

CONSTRAINTS
C /* Predicate on X and x */

/* clauses uses, sees, includes, extends, */
SETS

ENS /* list of basic sets identifiers */
CONSTANTS

K /* list of constants identfiers */
PROPERTIES

B /* preedicate(s) on K */
VARIABLES

V /* list of variables identifiers */
DEFINITIONS

D /* list of definitions (macros) */
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A simplified shape of an abstract machine (cont’d)

...
INVARIANT

I /* a predicate */
INITIALISATION U /* the initialisation */
OPERATIONS

u← O(pp) = /* an operation O */
pre
P
then
Subst /* body of the operation*/
end;
. . .

end
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Semantics: consistency of a machine

∃ prm.C

It is possible to have values f parameters that meet the constraints

C ⇒ ∃ (ENS,K).B

There are sets and constants that meet the properties of the machine

B ∧ C ⇒ ∃ V.I

There are a state that meets the invariant

B ∧ C ⇒ [U]I

The initialisation establishes the invariant

For each operation of the machine

B ∧ C ∧ I ∧ P ⇒ [Subst]I

Each operation called under its precondition preserves the invariant
J. Christian Attiogbé (November 2014) Formal Software Engineering 52 / 135



Examples of specifications in B

Proof Obligations (PO)

There are the predicates to be proven to ensure the consistency (and
the correction) of the mathematical model defined by the abstract
machine.
The designer of the machine has two types of proof obligations:

prove that the INITIALISATION establishes the invariant;

prove that each OPERATION, when called under its precondition,
preserves the invariant.

I ∧ P ⇒ [Subst]I

In practice, one has tools assistance to discharge the proof obligations.
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Semantics of a machine - Consistency

To formally establish the condition for the correct functionning of a
machine, one uses proof obligations.
To guaranty the correction of a machine, we have two main proof
obligations:

The initialisation establishes the invariant

Each operation of the machine, when called under its
precondition, preserves the invariant.

These are logical expressions, predicates, which are proved.
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New Example

...SORTING...
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Examples of specifications in B

Example of Specifying Sorting with B

Figure : Modeling the Sorting of (a set of) Naturals
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Examples of specifications in B

Example of Specifying Sorting with B

Figure : Modeling the Sorting: ordering the set of Naturals
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Examples of specifications in B

Example of Specifying Sorting with B

Figure : Modeling the Sorting: be careful!
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Examples of specifications in B

Example of Specifying Sorting with B

Figure : Modeling the Sorting
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Examples of specifications in B

Example of Specifying Sorting with B

MACHINE /* Specify the sorting of a set of naturals */
Sort

CONSTANTS
sortOf /* defining a function */

PROPERTIES
sortOf : FIN(NAT) +�> seq(NAT) &
%ss.(ss : FIN(NAT) =>
(ran(sortOf(ss)) = ss &
%(ii,jj).(ii : dom(sortOf(ss)) & jj : dom(sortOf(ss)) &
ii < jj => (sortOf(ss))(ii) < (sortOf(ss))(jj) )

) )
END
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Examples of specifications in B

Example of Specifying Sorting with B

MACHINE
SpecSort
/* specify an appli that gets naturals and then sort them */

SEES
Sort /* To use the previous machine */

SETS
SortMode = {insertion, extraction}

VARIABLES
unsorted, sorted, mode

INVARIANT
unsorted : FIN(NAT)

& sorted : seq(NAT)
& mode : SortMode
& ((mode = extraction) => (sorted= sortOf(unsorted)))
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Examples of specifications in B

Example of Specifying Sorting with B

/* MACHINE SpecSort
(continued ...) */

INITIALISATION
unsorted := {} || sorted:= [] || mode := extraction

OPERATIONS
moveToInsertion =
PRE

mode = extraction
THEN

mode := insertion ||
unsorted := {} ||
sorted :: seq(NAT)

END
;
...
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Examples of specifications in B

Example of Specifying Sorting with B

/* MACHINE SpecTri
(continued ...) */

input(xx) =
PRE

xx : NAT & mode = insertion
THEN

unsorted := unsorted \/ {xx} ||
sorted :: seq(NAT)

END
;

moveToExtraction() =
PRE

mode = insertion
THEN

mode := extraction ||
sorted := sortof(unsorted)

END
;
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Examples of specifications in B

Example of Specifying Sorting with B

/* MACHINE SpecTri
(continued ...) */

yy <� extract(ii) =
PRE

ii : dom(sorted) & mode = extraction
THEN

yy := sorted(ii)
END

END
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Data Modeling Language

B - Data Language - sets and typing

Predefined Sets (work as types)
BOOL, CHAR,
INTEGER (Z), NAT (N), NAT1 (N*) ,
STRING

Cartesian Product E × F

The set of subsets (powerset) of E P(E)
written POW(E)
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Data Modeling Language

B - Data Language

With the data language

we model the state space of a system with its data

we describe the invariant properties of a system

Modeling the state:

Abstraction, modeling (abstract sets, relations, functions, ...)

Logical Properties, or algebraic properties.
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Data Modeling Language

B - Data Language

When we model a system (with the set of its states) and make
explicit its (right) properties, we ensure thereafter that the system
only goes through the set of states that respect the defined
properties: it is the consistency of the system.

To show that it is possible to have states satisfying the given
properties, one builds at least one state (it is the initial state).

The specified system is correct if after each operation, the
reached state is a state satisfying the given invariant properties.
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Data Modeling Language

B - Data Language

First Order Logic

Description Notation Ascii

and p ∧ q p & q
or p ∨ q p or q
not ¬ p not p

implication p ⇒ q (p) ==> (q)
univ. quantif. ∀x.p(x) !x.(p(x))
exist. quantif. ∃x.p(x) #x.(p(x))

Variables should be typed:
#x.(x : T ==> p(x)) and !x.(x : T ==> p(x))
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Data Modeling Language

B - Data Language

The standard set operators
E, F and T are sets, x an member of F

Description Notation Ascii

union E ∪ F E \/ F
intersection E ∩ F E /\ F
membership x ∈ F x : F

difference E \ F E - F
inclusion E ⊆ F E <: F
selection choice(E) choice(E)

+ generalised Union and intersection
+ quantified Union et intersection
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Data Modeling Language

B - Data Language

In ascii notation, the negation is written with /.

Description Notation Ascii

not member x < F x /: F
non inclusion E * F E /<: F
non equality E , F E /= F
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Data Modeling Language

Generalised Union

an operator to achieve the generalised union of well-formed set
expressions.
S ∈ P(P(T))
⇒

union(S) = {x | x ∈ T ∧ ∃ u.(u ∈ S ∧ x ∈ u)}
Example

union({{aa, ee, ff }, {bb, cc, gg}, {dd, ee, uu, cc}})
= {aa, ee, ff , bb, cc, gg, dd,uu}
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Data Modeling Language

Quantified Union

an operator to achieve the quantified union of well-formed set
expressions.
∀ x.(x ∈ S ⇒ E ⊆ T)
⇒
⋃

x.(x ∈ S | E) = {y | y ∈ T ∧ ∃ x.(x ∈ S ∧ y ∈ E)}

Exemple

UNION(x).(x ∈ {1, 2, 3} | {y | y ∈ NAT ∧ y = x ∗ x})
= {1} ∪ {4} ∪ {9} = {1, 4, 9}
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Data Modeling Language

Generalised Intersection

an operator to achieve the generalised intersection of of
well-formed set expressions.
S ∈ P(P(T))
⇒

inter(S) = {x | x ∈ T ∧ ∀ u.(u ∈ S ⇒ x ∈ u)}
Example
inter({{aa, ee, ff , cc}, {bb, cc, gg}, {dd, ee, uu, cc}} = {cc}
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Data Modeling Language

Quantified Intersection

an operator to achieve the quantified intersection of of well-formed
set expressions.
∀ x.(x ∈ S ⇒ E ⊆ T)
⇒⋂
x.(x ∈ S | E)
= {y | y ∈ T ∧ ∀ x.(x ∈ S ⇒ y ∈ E)}

Example
INTER(x).(x ∈ {1, 2, 3, 4} | {y | y ∈ {1, 2, 3, 4, 5} ∧ y > x})

= inter({{1, 2, 3, 4, 5}, {2, 3, 4, 5}, {3, 4, 5}, {4, 5}})
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Data Modeling Language

Relations

Description Notation Ascii

relation r : S ↔ T r : S <–> T
domain dom(r) ⊆ S dom(r) <: S
range ran(r) ⊆ T ran(r) <: T
composition r;s r;s
composition r(s) r ◦ s r(s)
identity id(S) id(S)
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Data Modeling Language

Relations (continued)

Description Notation Ascii

domain restrictition S ⊳ r S <| r
range restriction r ⊲ T r |> T
domain antirestriction S -⊳ r S <<| r
range antirestriction r -⊲ T r |>> T
inverse r∼ r ∼
relationnelle image r[S] r[S]
overiding r1 ⊕ r2 r1 <+ r2
direct product of rel. r1 ⊗ r2 r1 >< r2
closure closure(r) closure(r)
reflexive trans. closure closure1(r) closure1(r)
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Data Modeling Language

Functions

Description Notation Ascii

partial function S 7→ T S +-> T
total function S→ T S --> T
partial injection S 7֌ T S >+-> T
total injection S ≻→ T S >–> T
partial surjection S 7→→ T S +->> T
total surjection S→→ T S -->> T
total bijection S ≻→→ T S >->> T
lambda abstraction %x.(P | E)
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Data Modeling Language

Sequences

Description Notation

sequence of elements of T seq(T)
= union(n).(n ∈ IN

| 1..n→ T)
empty sequence []
injective sequence of element of T T iseq(T)
bijective sequence of element of T T perm(T)
size of a sequence s size(s) = card(dom(s))
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Data Modeling Language

Sequences (continued)

Description Notation

first element of a seq. s first(s) = s(1)
last element of a seq. s last(s) = s(size(s))
restrict. of s t its s n first elem.
elments s↑n
elimination of the first n
elements of s s↓n
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Basic Concepts of the Dynamic Part

Modeling Operations

Basic Concepts of the Dynamic Part
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Basic Concepts of the Dynamic Part

Weakest preconditions

Context: Hoare/Floyd/Dijkstra Logic Hoare triple
(State, state space, statements, execution, Hoare triple)

{P} S {R}
S a statement and R a predicate that denotes the result of S.
wp(S,R), is the predicate that descrives:
the set of all states | the execution of S begining with one of them
terminates in a finite time din a state satisfaying R,
wp(S,R) is the weakest precondition of S with respect to R.
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Basic Concepts of the Dynamic Part

Some examples

Let S be an assignment and
R the predicate i ≤ 1

wp(i := i + 1, i ≤ 1) = (i ≤ 0)

Let S be the conditional:
if x ≥ y then z := x else z := y
and R the predicate z = max(x, y)

wp(S,R) = Vrai
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Basic Concepts of the Dynamic Part

Weakest preconditions - meaning

The meaning of wp(S,R) can be make precise with two properties:

wp(S,R) is a precondition guarantying R after the execution of S,
that is:

{wp(S,R)} S {R}
wp(S,R) is the weakest of such preconditions, that is:
if {P} S {R} then P ⇒ wp(S,R)
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Basic Concepts of the Dynamic Part

Weakest preconditions - meaning

In practice a program S establishes a postcondition R.
Hence the interest for the precondition that permits to establish R.
wp is a function with two parameters:

a statement (or a program) S and

a predicate R.

For a fixed S, we can view wp(S, R) as a function with only one
parameter wpS(R).
The function wpS is called predicate transformer - Dijkstra
It is the function which associates to every predicate R the weakest
precondition such that {P} S {R}.
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Basic Concepts of the Dynamic Part

B: Generalized Substitutions - Axioms

Generalisation of the classical substitution of the Logic
(to model the behaviours of operations).
Consider a predicate R to be established, the semantics of generalized
substitution is defined by the predicate transformer.

Simple Substitution S
Semantics [S]R is read : S establishes R

Multiple Substitution x, y := E,F
Semantics [x, y := E, F]R
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Basic Concepts of the Dynamic Part

B: generalized substitutions - Basic set of GS

The abstract syntax language to specify the operations:

Le R be the invariant, S, T substitutions

Name Abs. Synt. definition equivalent in logic

neutral (id.) skip [skip]R R
Pre-condition P | S [P | S]R P ∧ [S]R
Bounded choice S [] T [S [] T]R [S]R ∧ [T]R
Guard P =⇒ T [P =⇒ T]R P ⇒ [T]R
Unbounded @x.S [@x.S]R ∀ x.[S]R

x bounded (not free) in R
enough as B specification language but ...
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Basic Concepts of the Dynamic Part

Non determinism - Substitutions

Abstraction ⇒ (possible)non determinism. OK for specifying.

Concretisation ⇒ refinement into code
Extending the basic GSL set to other substitutions closed to
programming

CASE OF
SELECT
IF THEN ELSE
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Basic Concepts of the Dynamic Part

B - Generalized substitutions language

Syntactic extension of substitutions: basic substititution set

Basis Substitution

noted S

Syntactic Extension

BEGIN
S

END

Simultaneous Substitutions
Consider S and T two substitutions.

S being x := E and
T being y := F

note S || T
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Basic Concepts of the Dynamic Part

B - generalized substitution Language

Neutral Substitution

skip

Syntactic extension

skip

Subst. with precondition

P | S

Syntactic extension

PRE
P
THEN
S
END
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Basic Concepts of the Dynamic Part

B - generalized substitution Language

Bounded choice

S [] T

Syntactic extension

CHOICE
S
OR
T
END

Guarded Substitution

(P =⇒ T) [] (¬ P =⇒ S)

Syntactic extension

IF P
THEN T
ELSE S
END
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Basic Concepts of the Dynamic Part

B - generalized substitution Language

Unbounded Choice Substitution

@x.Sx

Syntactic extension

VAR x IN
Sx
END
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Basic Concepts of the Dynamic Part

Extending the basic substution set: non-deterministic

Nondeterministic @
@x.(Px =⇒ Sx)

Syntactic extension

ANY x
WHERE Px
THEN Sx
END
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Basic Concepts of the Dynamic Part

Extending the basic substution set : non-deterministic

Nondeterministic x :∈ U
(becomes member)
x:: U
@y.(y ∈ U =⇒ x := y)

Syntactic extension

ANY y
WHERE y : U
THEN x := y
END
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Basic Concepts of the Dynamic Part

B - generalized substitution Language

Extensions... non-deterministic

Nondeterministic x : P(x)
(x such that P)
x: P(x)
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Basic Concepts of the Dynamic Part

Proof Obligations

...Proof Obligation (PO)...
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Proof Obligations

Consistency Proof Obligations

MACHINE ThreshCtrl
CONSTANTS thresX, threshY
PROPERTIES thresX : INT & thresX = 10 ...
VARIABLES xx
INVARIANT xx : INT & 0 <= xx & xx <= thresX
INITIALISATION xx := 0
OPERATIONS
setXX(nx) = /* an operation with PRE */
PRE nx : INT & nx >= 0 & nx <= thresX
THEN

xx := nx
END
; incrXX(px) = /* incrementation of xx with px */
PRE px : INT & xx+px >= 0 & xx+px <= thresX
THEN

xx := xx+px
END
END
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Proof Obligations

Proof Obligations (recall)

The predicates to be proved to ensure the consistency (and the
correction) of the mathematical model defined by the abstract machine.
The machine developer has two kinds of PO:

to prouve that the INITIALISATION establishes the invarant: [Init]I

to prove that each OPERATION, when it is called under its
precondition, preserves the invariant.

I ∧ P ⇒ [Subst]I

In practice, CASE tools are used to help in discharging the proofs.
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Proof Obligations

Proof of the operation setXX(nx)

We must prove that I ∧ P⇒ [Subst]I

INVARIANT xx : INT & 0 <= xx & xx <= thresX
setXX(nx) =
PRE

nx : INT & nx >= 0 & nx <= thresX
THEN

xx := nx /* Subst */
END
INVARIANT xx : INT & 0 <= xx & xx <= thresX

(use white/blackboard)
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Proof Obligations

Precondition computation / preservation of the
invariant

xx : INT & 0 <= xx & xx <= thresX
setXX(nx) =
PRE
· · · ?

THEN
xx := nx /* Subst */

END
nx : INT & 0 <= nx & nx <= thresX

We express [Subst]I and obtain a predicate which should be true!
nx : INT & 0 <= nx & nx <= thresX ?

It is the precondition!
J. Christian Attiogbé (November 2014) Formal Software Engineering 99 / 135

Proof Obligations

Precondition computation / preservation of the
invariant

xx : INT & 0 <= xx & xx <= thresX
incrXX(px) =
PRE
· · · ?

THEN
xx := xx+px /* Subst */

END
xx : INT & 0 <= xx & xx <= thresX

We express [Subst]I and obtain a predicate which should be true!
xx+px : INT & 0 <= xx+px & xx+px <= thresX ?

hence the precondition: px : INT & 0 <= xx+px & xx+px <= thresX
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Proof Obligations

Example of ressources allocation (recall)

MACHINE
Resrc
SETS
RESC
CONSTANTS
maxRes // a parameter
PROPERTIES
maxRes : NAT & maxRes > 1
VARIABLES
rsc
INVARIANT
rsc <: RESC // subset
& card(rsc) <= maxRes //
bounded
INITIALISATION
rsc := {}

OPERATIONS
addRsc(rr) = // adding
ressources
PRE
rr : RESC & rr /: rsc &
card(rsc) < maxRes
THEN
rsc := rsc \/ {rr}
END
;
rmvRsc(rr) = //
allocation
PRE
rr : RESC & rr : rsc
THEN
rsc := rsc - {rr}
END
END
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Proof Obligations

Consistency of a machine: proof obligation

The Initialisation establishes the invariant: [U]I ;
[rsc := {}] (rsc <: RESC & card(rsc) <= maxRes) ?

Replace variables with their values:
{} <: RESC & card({}) <= maxRes ?

Reduce
{} <: RESC & 0 <= maxRes ?

TRUE
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Proof Obligations

Consistency of a machine: proof obligation

Preservation of the invariant by: addRsc(rr)

rsc <: RESC & card(rsc) <= maxRes
PRE

rr : RESC & rr /: rsc & card(rsc) < maxRes
THEN

rsc := rsc \/ {rr}
END
rsc <: RESC & card(rsc) <= maxRes

Replace variables with their values in I:
rsc \/ {rr} <: RESC & card(rsc \/ {rr}) <= maxRes ?
(use white/blackboard)
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Case Studies

Case Studies

...Cas Euclide...
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Case Studies

Démo division euclidienne

Euclid Pgm demo
+---------------------------------+
+ Menu de l’application +
+---------------------------------+

Nouvelle division : 1
+---------------------------------+

Quitter : 0
+---------------------------------+
choix ? 1

Division euclidienne
Donnez le dividende (entre 3 et 78)
56
Donnez le diviseur (entre 1 et 78)
78
Resultat de la division : 0
Reste de la division : 56
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Case Studies

suite démo

+---------------------------------+
+ Menu de l’application +
+---------------------------------+

Nouvelle division : 1
+---------------------------------+

Quitter : 0
+---------------------------------+

choix ? 1
Division euclidienne
Donnez le dividende (entre 3 et 78)
67
Donnez le diviseur (entre 1 et 78)
6
Resultat de la division : 11
Reste de la division : 1
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Case Studies

Spécification de Euclide

MACHINE
euclide

OPERATIONS
reste, quot ←− calculReste ( divis , divid ) =
PRE

divis ∈ NAT ∧ divid ∈ NAT ∧ divis > 0
∧ divis ≤ divid /∗ sinon B le trouve ∗/
THEN

ANY vq, vr WHERE
vq ∈ NAT

∧ vr ∈ NAT
∧ divid = vq∗divis + vr
THEN

quot := vq
‖ reste := vr
END

END
END
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Case Studies

Example of development with B

raffine

implante

importe

machine abstraite

euclide_I1_1

euclide_R1

euclide

im
porte

implanteimplante

demoEuclide

demoEuclide

InterfaceEuclide

InterfaceEuclide_I

im
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Figure : Architecture of applications with B
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Refinement

Refinement: development technique

Idea of refinement :

We start with an abstract machine defining an abstract
mathematical model,
we refine this model to obtain a concrete model :

- the abstract model is not executable.
Why? (it is defined with mathematical objects)

- to obtain an equivalent model,wrt to functionalities, but more
concrete.
(it is described with programming objects)

There is a well-defined Theory of refinement
[Morgan 1990; R-J. Back 1980; C. Ralph-Johan Back, Joakim Wright,
1998]
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Refinement

Refinement: development technique

The objective of refinement is the construction of executable code.

We should guaranty that the refinement is correct:
(refinement proof).

⇒ refinement proof obligations
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Refinement

Approach of refinement

What to refine in the model?

The variables and the invariant
Static Part - state space
Changes of variables (replacement with more concrete ones):

The operations
Dynamic Part - generalized substitutions
refinement of substitutions.
Introduce refinement substitutions
(until reaching programming substitutions).
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Refinement

Approach of refinement: How to refine?

Introducing data structures and
replacing abstract structures by concrete ones.

Use the clause refines to link the abstract machine witj its
refinement
REFINEMENT

MM R1
REFINES

MM
...
END

Refining the state space:
introduce new (concrete) variables,
choice of (less abstract) structures,
binding abstract and concrete variables
bay a binding invariant
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Refinement

Approach of refinement: How to refine?

Refinement of the operations:
The interface should not be modified.
Rewrite the abstract operations with the new variables and the
appropriate substitutions (introducing sequences, loop, local
variables).
Introduce refinement substitutions.
Remove non-determinism
Weak in the concrete refined machine, the preconditions of the
abstract operations, until they disappear.

⇒ extending the substitution language.
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Refinement

Examples of refinement

Aready seen:

Resource Allocation

Euclidian Division
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Refinement

Example refinement

Modeling and development of a resource allocation system

There are N resources to allocate/free

The allocation is done according to the availability of the resources

the allocated resources are free after a while

J. Christian Attiogbé (November 2014) Formal Software Engineering 115 / 135

Refinement

Example : resource allocation

n rsrc ∈ 0..100

n rsrc = cardinal of the set

allocate → - 1 element

free → + 1 element

Reservation
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Refinement

MACHINE
Allocation

VARIABLES
n_rsrc

INVARIANT
n_rsrc : 0..100

INITIALISATION
n_rsrc := 100

OPERATIONS
allocate =

PRE n_rsrc > 0
THEN

n_rsrc := n_rsrc - 1
END

;
free =

PRE n_rsrc < 100
THEN

n_rsrc := n_rsrc + 1
END

;
bb <-- available =

bb :: BOOL
// ou bb := bool(0 < n_rsrc)
END
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Refinement

Consistency Proof

The developer of the abstract machine has to kinds of PO:
To prove that the INITIALISATION establishes the invariant

[n rsrc := 100](n rsrc ∈ 0..100)
we should prove that 100 ∈ 0..100
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Refinement

Consistency Proof

We have to prove that each operation called under its PREcondition,
preserve the invariant.

for the operation allocate we should prove:
n rsrc ∈ 0..100 ∧ 0 < n rsrc⇒ n rsrc − 1 ∈ 0..100
for the operation available we should prove:
n rsrc ∈ 0..100 ∧ (n rsrc > 0 ∨ ¬ (n rsrc > 0))
⇒
n rsrc ∈ 0..100
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Refinement

Resource allocation (Refinement)

r_occupées

r_libres

Reservation1

allocate → find 1 free element

free → find 1 unavailable element
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Refinement

REFINEMENT
Allocation_R1

REFINES
Allocation

VARIABLES
rs_free, rs_unavailable // n_rscrc est incluse

// new less abstract variables
INVARIANT
rs_free : POW(INTEGER)

& rs_unavailable : POW(INTEGER)
& rs_free /\ rs_unavailable = {}
& n_rsrc = card(rs_free) // binding invariant
INITIALISATION
rs_free, rs_unavailable, n_rsrc := 1..100, {}, 100
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Refinement

OPERATIONS
allocate = // rewritten with the new variables
ANY ss WHERE
ss : rs_free // non-dterministic way

THEN
rs_free := rs_free - {ss}

|| rs_unavailable := rs_unavailable \/ {ss}
|| n_rsrc := n_rsrc - 1
END

;

J. Christian Attiogbé (November 2014) Formal Software Engineering 122 / 135

Refinement

free = // rewritten with the new variables
ANY ss WHERE
ss : rs_unavailable

THEN
rs_free := rs_free \/ {ss}

|| rs_unavailable :=
rs_unavailable - {ss}

|| n_rsrc := n_rsrc + 1
END
;

bb <-- available =
IF 0 < n_rsrc
THEN
bb := TRUE

ELSE
bb := FALSE

END
END
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Refinement

Resource allocation (Implementation)

Implantation

1 100

r_occupées

r_libres

TRUE

FALSE

TRUE TRUEFALSETRUE FALSE ... ...

Tableau (structure prédéfinie)
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Refinement

Structure of the implementation

IMPLEMENTATION
Allocation_I1

REFINES
Allocation_R1

IMPORTS
... // import predefined machines
VARIABLES
... // new concrete variables
INVARIANT
...
INITIALISATION
...
OPERATIONS
... // They are now rewritten with refinement subst.

and programming substitutions
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Refinement

Refinement substitutions

Sequential substitutions
Let S and T be substitutions,
the sequential substitution is noted: S ; T
Its semantic definition is expressed with:

[S;T]R ≡ [S][T]R
≡ [S]([T]R)

S establishes [T]R

J. Christian Attiogbé (November 2014) Formal Software Engineering 126 / 135

Refinement

Refinement substitutions

Loop substitution
The loop substitution has the following shape:

while P do
S

invariant
I

variant
V

end
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Refinement

Semantic of the loop substitution

Semantically, it is

I ∧
/* the variant is a natural */

∀ x.(I ⇒ V ∈ NATURAL) ∧
/* the variant decreases after each step */

∀ (x,n).(I ∧ P ⇒ [n := V][S](V < n)) ∧
/* continuation of the loop */

∀ x.(I ∧ P ⇒ [S]I) |
@x′.([x := x′](I ∧ ¬ P) ⇒ x := x′))
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Refinement

Substitution VAR ... IN

Block with local variables
The notation is :

var x in // introduction of local variables
S

end
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Modularization: Construction of Large Software

Architecture of Large Systems

Composition of machines→ large machines.

Modules - Composition - Layered Architecture

Modularity

Composition of machines

Hierarchy
with the clauses INCLUDES, EXTENDS, PROMOTES

Sharing
with the clauses SEES, USES
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APPLICATION INTERFACE_BANQUE

REQUETESAPPLICATION_I INTERFACE_BANQUE_I

REQUETES_I

BANQUE

BANQUE_I

BASIC_IO

BASIC_ARITHMETIC

sees

imports

imports

importsrefines refines

refines

refines

sees

sees sees sees

imports imports

Machines du développement

Machines de la librairie B
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Hierarchy

INCLUDES to include a machine in another one
+ promotion of some operations PROMOTES

MACHINE
MA

INCLUDES
MB /* access by Opmb to varB */

PROMOTES
Opmb1, Opmb3 /* become operations of MA */

...
END
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Modularization: Construction of Large Software

Hierarchy

EXTENDS, inclusion but no need to promote

MACHINE
MA

EXTENDS
MB

...
END

Machine

op1

op2

op3

op1

op2

op3

op4

Machine A

EXTENDS 
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Sharing

SEES for a read only sharing

MACHINE
MA

SEES
MB

...
END
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Sharing

USES for a read/write sharing

MACHINE
MA

USES
MB

...
END

MC
includes MA, MB

USES

MA

MB

MA et MB should be included in another machine.
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