
Stepwise Formal Modelling and Reasoning of Insulin
Infusion Pump Requirements

Neeraj Kumar Singh1(B), Hao Wang2, Mark Lawford1, Thomas S.E. Maibaum1,
and Alan Wassyng1

1 McMaster Centre for Software Certification, McMaster University, Hamilton, Canada
{singhn10,lawford,wassyng}@mcmaster.ca, tom@maibaum.org

2 Faculty of Engineering and Natural Sciences, Aalesund University College, Alesund, Norway
hawa@hials.no

Abstract. An insulin infusion pump (IIP) is a critical software-intensive med-
ical device that infuses insulin satisfying patient needs under safety and timing
constraints that are appropriate for the treatment of diabetes. This device is used
by millions of people around the world. The USA Food and Drug Administra-
tion (FDA) has reported several recalls in which IIP failures were responsible for
a large number of serious illnesses and deaths. The failures responsible for this
harm to people who are dependent on external insulin were caused by the intro-
duction of hardware or software design errors during the system development
process. This paper presents an incremental proof-based development of an IIP.
We use the Event-B modelling language to formalize the given system require-
ments. Further, the Rodin proof tools are used to verify the correctness of func-
tional behaviour, internal consistency checking with respect to safety properties,
invariants and events.

Keywords: Insulin Infusion Pump (IIP) · Event-B · Refinement · Formal meth-
ods · Verification · Validation

1 Introduction

Patient safety is a major concern and an always challenging goal in the design and
manufacture of medical devices. It requires knowledge and skill in both the medical
and engineering domains, especially in human factors and systems engineering (HFE).
The main reasons for recalls related to medical systems are the lack of attention to HFE
in the design and implementation of technologies, processes, and usability. The primary
use of HFE is to enhance system performance, including patient safety and technology
acceptance [1].

An insulin pump is a small, complex, safety-critical software-intensive medical
device that allows controllable continuous subcutaneous infusion of insulin to patients
for diabetes treatment. This device is used by millions of people around the world. The

Partially supported by: The Ontario Research Fund, and the National Science and Engineering
Research Council of Canada.

c� Springer International Publishing Switzerland 2015
V.G. Duffy (Ed.): DHM 2015, Part II, LNCS 9185, pp. 387–398, 2015.
DOI: 10.1007/978-3-319-21070-4 39



388 N.K. Singh et al.

safety of IIPs has been a major concern in health care for a number of years. The USA
Food and Drug Administration (FDA) has reported several recalls in which IIP failures
are responsible for a large number of serious illnesses and deaths. According to the
FDA, 17000 adverse-events were reported during 2006–2009, where 41 deaths were
found to be due to malfunctioning IIPs. The FDA found that these deaths and adverse-
events were caused by product design and engineering flaws including firmware prob-
lems [2,3].

Formal methods can, and should play a significant role in verifying the system
requirements, and in guaranteeing the correctness, reliability and safety of developed
system software. Since software plays an important role in the medical domain, regu-
latory agencies, like the FDA, need effective means to evaluate the software embedded
in the devices in order to certify the developed systems, and to assure the safe behav-
iour of each system [2,4–6]. Regulatory agencies are striving for rigorous techniques
and methods to provide safety assurance. Many people believe that formal methods
have the potential to develop dependable, safe and secure systems that are also more
amenable to certification with required features that can be used to certify dependable
medical systems [6–9]. We also note that many formal techniques need to be much bet-
ter targeted at practical software development and certification than they seem to be at
present [10].

This paper contributes to the formalization and verification of an IIP using incre-
mental refinement in Event-B [11]. We previously formalized pacemakers using
Event-B [8], and this work now helps us to formulate more general strategies for devel-
oping medical devices using formal techniques. It should be noted that in the pace-
maker case study, we investigated only a refinement strategy that was used to formalize
required behaviours and operating modes incrementally by adding various safety prop-
erties. In the IIP case study, we are verifying functional behaviours including various
system operations, which are required to maintain insulin delivery, user profile manage-
ment, and the calculation of required insulin. The complete formal development builds
incrementally-refined models of IIP formalizing the required functional behaviour by
preserving its required safety properties. The primary use of the models is to assist in the
construction, clarification, and validation of the IIP requirements. We use the Rodin [12]
tool to develop the formal models. This tool provides an Event-B integrated develop-
ment environment, automated proof strategies, model checking and code generation.

The remainder of this paper is organized as follows. Section 2 presents related work.
Section 3 gives preliminary information about an IIP including informal system require-
ments. The modelling framework is presented in Sect. 4. Section 5 explores an incre-
mental proof-based formal development of an IIP. Section 6 concludes the paper along
with an indication of our intended future work.

2 Related Work

Masci et al. [13] presented the model-based development of user interface behaviour
of an infusion pump in the Prototype Verification System (PVS). The developed model
was verified against relevant safety requirements provided by the FDA. Finally, the PVS
code generator was used to produce executable code from the verified specifications.



Stepwise Formal Modelling and Reasoning of Insulin Infusion Pump Requirements 389

In [14], a prototype of the Generic Patient-Controlled Analgesic (GPCA) infusion pump
controller was formalized using the UPPAAL model checker, and then this model was
used to generate platform-independent C code. In [15], Structured Object-Oriented For-
mal Language (SOFL), a formal software engineering method was applied to develop
a prototype of an insulin pump, in which the prime motivation was to use SOFL’s data-
driven, comprehensible, graphical notations for describing the specifications. A generic
model for an IIP was developed in the Event-B modelling language to verify the safety
requirements related to timing issues [16]. An insulin pump has been used as a case
study in [17] for formalizing system behaviours using the Z modelling language.

3 The Insulin Infusion Pump

An insulin pump is a small, complex, software-intensive medical device that allows
controllable, continuous subcutaneous infusion of insulin to patients. It delivers physi-
ological amounts of insulin between meals and at meal times. An insulin pump consists
of the physical pump mechanism, a disposable reservoir, and a disposable infusion
set. The pump system includes a controller, and a battery. The disposable infusion
set includes a cannula for subcutaneous insertion, and a tubing system to interface the
insulin reservoir to the cannula. At present, open-loop and closed-loop insulin pumps
exist. A closed-loop insulin pump is also known as an artificial pancreas, which auto-
matically monitors and controls the blood glucose level of a patient. For an open-loop
insulin pump, patients need to monitor the blood glucose level manually. An insulin
pump can be programmed to release small doses of insulin continuously (basal), or one
shot dose (bolus) before a meal, to control the rise in blood glucose.

3.1 Informal IIP Requirements

In this section, we describe briefly the high-level informal functional system require-
ments of an IIP, that forms the basis of our formal model described in Sect. 5. As far
as we know, there are no published system requirements for an IIP, but several research
publications provide informal requirements [13,14,16]. We used such informal descrip-
tions as a basis for this work to identifying the system requirements by applying use
case and hazard analysis. These system requirements focus on the functional behav-
iour of an IIP without addressing design requirements, and human computer interaction
(HCI) requirements. Our prime objective is to use formal methods to check consistency
and required safety properties of the IIP requirements. The informal IIP requirements
are described as follows:

REQ1: The device must suspend all active basal delivery or bolus deliver during pump
refilling and in the case of system failure.
REQ2: The device must undergo a power-on-self-test (POST) whenever device power
is turned on.
REQ3: The device shall allow the user to manage system functionalities related to:
stopping insulin delivery; validating basal profiles parameters; reminder management;
and validating bolus preset parameters.
REQ4: The device shall allow the user to define a basal profile that consists of an
ordered set of basal rates, ordered over a 24 hour day, as well as a temporary basal,



390 N.K. Singh et al.

that consists of a basal rate for a specified duration of time within a 24 hour day.
REQ5: The device can contain several basal profiles, but only one basal profile can be
active at any single point in time.
REQ6: The device must allow the user to override an active basal profile with a tem-
porary basal, without changing the existing basal profile.
REQ7: The device shall resume the active basal profile after the temporary basal ter-
minates.
REQ8: The device shall enforce a maximum dosage for the normal bolus or extended
bolus.
REQ9: The user shall be able to stop the active normal or extended bolus.
REQ10: The device must maintain an electronic log of every operation associated with
an user alert, such as an audio alarm.
REQ11: The device shall maintain a history of basal and bolus dosages over the past
n days. The n always differs among brands, though most store up to 90 days of data.
REQ12: The device shall enable the user to create a food database that can be used to
store food or meal descriptions and the carbs associated with them.
REQ13: The device shall allow to the user to change parameter setting basal profile,
bolus preset, and temporary basal.
REQ14: The device shall provide feedback to the user regarding system and delivery
status.

4 The Modelling Framework

In this section, we summarize the Event-B modelling language [11]. The Event-B lan-
guage has two main components: context and machine. A context describes the sta-
tic structure of a system, namely carrier sets and constants together with axioms and
theorems stating their properties. A machine defines the dynamic structure of a sys-
tem, namely variables, invariants, theorems, variants and events. Terms like refines,
extends, and sees are used to describe the relation between components of Event-B
models. Events are used in a machine to modify state variables by providing appropri-
ate guards.

4.1 Modelling Actions over States

The event-driven approach of Event-B is borrowed from the B language. An Event-B
model is characterized by a list of state variables possibly modified by a list of
events. An invariant I(x) expresses required safety properties that must be satisfied
by the variable x during the activation of events. An event is a state transition in a
dynamic system that contains guard(s) and action(s). A guard, predicate built on the
state variables, is a necessary condition for enabling an event. An action is a gener-
alized substitution that describes the ways one or several state variables are modified
by the occurrence of an event. There are three ways to define an event e. The first
is BEGIN x : |(P (x, x�) END, where the action is not guarded and the action is
always enabled. The second is WHEN G(x) THEN x : |(Q(x, x�)) END, where
the action is guarded by G, and the guard must be satisfied to enable the action. The



Stepwise Formal Modelling and Reasoning of Insulin Infusion Pump Requirements 391

last is ANY t WHERE G(t, x) THEN x : |(R(x, x�, t)) END, where the action
is guarded by G that now depends on the local state variable t for describing non-
deterministic events.

The proof obligations (POs) are generated by the Rodin platform [12]. Event-B
supports several kinds of POs like invariant preservation, non-deterministic action fea-
sibility, guard strengthening in refinements, simulation, variant, well-definedness etc.
Invariant preservation (INV1 and INV2) ensures that each invariant is preserved by
each event; non-deterministic action feasibility (FIS) shows the feasibility of the event
e with respect to the invariant I; guard strengthening in a refinement ensures that the
concrete guards in the refining event are stronger than the abstract ones; simulation
ensures that each action in a concrete event simulates the corresponding abstract action;
variant ensures that each convergent event decreases the proposed numeric variant; and
well-definedness ensures that each axiom, theorem, invariant, guard, action, or variant
is well-defined.

INV 1 : Init(x) ⇒ I(x)
INV 2 : I(x) ∧ BA(e)(x, x�) ⇒ I(x�)
FIS : I(x) ∧ Grd(e)(x) ⇒ ∃y.BA(e)(x, y)

4.2 Model Refinement

A model can be refined to introduce new features or more concrete behaviour of a
system. The Event-B modelling language supports a stepwise refinement technique to
model a complex system. The refinement enables us to model a system gradually and
provides a way to strengthen invariants thereby introducing more detailed behaviour of
the system. This refinement approach transforms an abstract model to a more concrete
version by modifying the state description. The refinement process extends a list of
state variables (possibly suppressing some of them) by refining each abstract event to a
corresponding concrete version, or by adding new events. These refinements preserve
the relation between an abstract model and its corresponding concrete model, while
introducing new events and variables to specify more concrete behaviour of the system.
The abstract and concrete state variables are linked by gluing invariants. The generated
POs ensure that each abstract event is correctly refined by its concrete version. For
instance, an abstract model AM with state variable x and invariant I(x) is refined by
a concrete model CM with variable y and gluing invariant J(x, y). e and f are events
of the abstract model AM and concrete model CM respectively. Event f refines event
e. BA(e)(x, x�) and BA(f)(y, y�) are predicates of events e and f respectively. This
refinement relation generates the following PO:

I(x) ∧ J(x, y) ∧ BA(f)(y, y�) ⇒ ∃x� · (BA(e)(x, x�) ∧ J(x�, y�))

The new events introduced in a refinement step are viewed as hidden events, that are
not visible to the environment of the system being modelled. These introduced events
are outside the control of the environment. Newly introduced events refine skip and are
not observable in the abstract model. Any number of executions of an internal action
may occur in between each execution of a visible action. This refinement relation gen-
erates the following PO:



392 N.K. Singh et al.

I(x) ∧ J(x, y) ∧ BA(f)(y, y�) ⇒ J(x, y�)

The refined model reduces the degree of non-determinism by strengthening the
guards and/or predicates. The refinement of an event e by an event f means that the
event f simulates the event e, which guarantees that the set of traces of the refined
model contains (up to stuttering) the traces of the resulting model. The Rodin plat-
form provides rich tool support for model development using the Event-B language.
The tool support includes project management, model development, proof assistance,
model checking, animation and automatic code generation.

5 Formalizing the Insulin Infusion Pump

To cope with the inherent complexity of an IIP, we will use the stepwise refinement app-
roach mentioned in Sect. 4. In our work, we will use this stepwise incremental approach
to specify the IIP requirements by introducing new safety properties at each refinement
level. The complete development of the IIP using this approach, required eight phases
(the initial abstract model followed by seven refinement steps): power status (initial
abstract model); basal profile management; temporary basal profile management; bolus
preset management; bolus delivery; reminder management; and insulin output calcu-
lator. It should be noted that there is no specific order required in which to apply the
refinements. Any order can be chosen after developing the initial abstract model. The
abstract model can be further refined by introducing new components, enriching the
existing behaviours or strengthening the guards.

Since the length of this paper is limited to 12 pages, we only include a brief descrip-
tion of the model development and refinements. We invite readers to use a detailed
version of this work [18] to understand the formal development and related refinements
of the case study including formally proved Event-B models.

5.1 Abstract Model: Power Status

An abstract model of an IIP specifies only power status and related functionality that
controls the power status, i.e. turning on/off the system (REQ2). In order to start the for-
malization process, we need to define static properties of the system. An Event-B con-
text declares three enumerated sets e pwrStatus, e basicResp, and e postResult defined
using axioms (axm1 - axm3) for power status.

axm1 : partition(e pwrStatus, {Standby pwrStatus}, {POST pwrStatus},
{Ready pwrStatus}, {OffReq pwrStatus})

axm2 : partition(e basicResp, {Accept basicResp}, {Cancel basicResp})
axm3 : partition(e postResult, {Pass postResult}, {Fail postResult})

An abstract model declares a list of variables defined by invariants (inv1 - inv5).
A variable POST Res is used to state the result of power-on-self-test (POST), where the
result ‘pass’ (Pass postResult) means system is safe to turn on, and the result ‘fail’
(Fail postResult) means system is unsafe to start. The next variable post completed
is used to show successful completion of POST of an IIP.



Stepwise Formal Modelling and Reasoning of Insulin Infusion Pump Requirements 393

inv1 : POST Res ∈ e postResult
inv2 : post completed ∈ BOOL
inv3 : c pwrStatus ∈ e pwrStatus
inv4 : M pwrReq A ∈ BOOL
inv5 : M pwrResp ∈ e basicResp

The variable c pwrStatus shows the cur-
rent power status of the system. The vari-
able M pwrReq is used to model a request for
power on/off from the user, and the last variable
M pwrResp is used for modelling user responses
to system prompts.

We introduce 10 events for specifying the desired functional behaviour for con-
trolling the power status of an IIP. These events include guard(s) for enabling the
given action(s), and the actions that define the changes to the states of the power
status (c pwrStatus) and power-on-self-test (POST Res). Here, we provide only two
events related to the power status and power-on-self-test in order to demonstrate the
basic formalization process. An event POST Completed is used to assign pass result
(Pass postResult) to POST Res, when post completed is TRUE. Similarly, another event
PowerStatus1 is used to set POST pwr − Staus to c pwrStatus, when power status
is standby, and there exists a power request from the user. The remaining events are
formalized in a similar way.

EVENT POST Completed
WHEN

grd1 : post completed = TRUE
THEN

act1 : POST Res := Pass postResult
END

EVENT PowerStatus1
WHEN

grd1 : c pwrStatus = Standby pwrStatus
grd2 : ∃x·x ∈ BOOL ∧ x = M pwrReq

THEN
act1 : c pwrStatus := POST pwrStatus

END

We now present summary information about each refinement step in the IIP devel-
opment, since we do not have space for the detailed formalization and proofs.

5.2 A Chain of Refinements

First Refinement: User Operations. This refinement introduces a set of operations
that is performed by the user to operate/program the system for delivering insulin. These
user operations create, remove, activate and manage the basal profile, bolus profile, and
reminders (REQ3, REQ12, REQ13). These system operations are allowed when an IIP
is on and we want to deliver an insulin amount in a controlled manner according to the
physiological needs of a patient. This refinement formalizes the possible interactions
for each system operation to make sure that the given requirements are consistent. For
example, if no basal profile exists in the system, then the user will not be allowed to
perform any operation other than to create a basal profile, and a notification will appear
on the screen to direct the user. This step implements all user interactions with the
system, including user initiated commands and system responses. This also includes all
safeguards generated by safety constraints resulting from the hazard analysis.

In this refinement, we define an enumerated set and a list of variables to formalize
user operations. This refinement step introduces 35 events to specify all the possible
user operations related to the given requirements. All these new events refine skip. For
example, an event CurrActiUserOper Idle1 refines skip that allows a user to create a
new basal profile. The guards of this event state that power status is ready, system is
in idle state (means no user operation is currently being performed) and there exists an
operation requested by a user to create a new basel profile. We omit the formalization
of the rest of the events, which are formalized in a similar way.



394 N.K. Singh et al.

EVENT CurrActiUserOper Idle1
WHEN

grd1 : c pwrStatus = Ready pwrStatus
grd2 : c operation = Idle operations
grd3 : ∃x·x ∈ BOOL ∧ x = M basCreateReq

THEN
act1 : c operation := CreateBasProf operations

END

Second Refinement: Basal Profile Management. This refinement introduces basal
profile management (REQ4, REQ5) to maintain a record and to store basal profiles
defined by the user. The operations of interest are: create a basal profile; remove a
basal profile; check the validity of a selected basal profile; activate a basal profile; and
deactivate a basal profile. The basal activation process must allow activation only of
a valid non-empty basal profile that is stored in the IIP’s memory. When a new basal
profile is activated then the old basal profile is automatically deactivated, since only one
basal profile is allowed to be active at any time. The new profile activation is always
confirmed by the user before it can take effect. These operations are introduced in this
refinement along the lines seen in the First Refinement, above.

Third Refinement: Temporary Basal Profile Management. This refinement intro-
duces temporary basal profile management (REQ6, REQ7) that allows for activating,
deactivating and checking the validity of a selected temporary basal profile. The tem-
porary basal profile management is similar to the basal profile management. As soon as
the elapsed period is finished, the paused basal profile resumes after notifying the user.
In this refinement, we formalize the possible operations related to the temporary basal
management by introducing several new events just as in the previous refinement steps.

Fourth Refinement: Bolus Preset Management. This refinement introduces bolus
preset management (REQ3, REQ9) that allows for creating a new bolus preset, remov-
ing an existing bolus preset, checking the validity of a created bolus preset, and activat-
ing the selected bolus preset. Using new events in a similar way to previous refinement
steps, we can formalize the required behaviour. For example, scheduling a bolus has
different states like ‘no’ bolus, ‘normal’ bolus, and ‘extended’ bolus. We define transi-
tions between these states to inform the user by notification to confirm a proper bolus
status.

Fifth Refinement: Bolus Delivery. This refinement introduces bolus delivery that
includes events to start bolus delivery, to calculate the required dose for insulin delivery,
and to check the validity of the calculated bolus and manually entered bolus. The bolus
delivery formalization step describes how the system will calculate and behave when
the user requests a bolus (REQ9, REQ11). When an IIP is on, the requested bolus is
compared against an average bolus size. The bolus standard deviation must always sat-
isfy the given range. The bolus notification process informs the user whether the bolus
is within the regular bolus size, or whether it is larger/smaller than normal. At the time
of bolus delivery, an IIP needs confirmation from the user. If the user does not confirm
the bolus delivery confirmation, the bolus delivery is unchanged. This refinement for-
malizes the calculation of bolus delivery and other controlling operations to make sure
that an IIP always delivers a correct amount of bolus at the scheduled time.



Stepwise Formal Modelling and Reasoning of Insulin Infusion Pump Requirements 395

Sixth Refinement: Reminder Management. This refinement introduces reminder
management (REQ10, REQ14) that allows for creating a new reminder, checking the
validity of a newly entered reminder, and for removing an existing reminder. The
reminder management is a complex task to control several user operations. It includes
events to store and maintain reminders defined by the user. Invalid reminders will not
be accepted. This refinement step introduces all the events necessary to model all the
elements and operations for describing the reminder management, and to verify the
requirements of reminder management.

Seventh Refinement: Insulin Output Calculator. This is the last refinement that mod-
els the insulin output calculator (REQ8, REQ11). It calculates the insulin required over
the course of the day, the appropriate time segment, and the time steps for delivering
the insulin. It also keeps track of the insulin delivered within the time segment. The
infusion flow rate can be 0, if the system is off, and there is no active profile or the
maximum amount of insulin has already been delivered.

In this refinement, we introduce 26 events to model the insulin calculator and 14
events to refine other previously abstractly defined events. Again, as an example to
demonstrate the refinement process, a new event InsulinOutputCalculator1 is defined
to calculate the amount of insulin to output. It depends on both basal and bolus that are
formalized in actions (act1-act2). The guards of this event are: power status is ready
(grd1); temporary basal is active (grd2); there exists an active temporary basal in which
the rate of temporary basal is less than or equal to the maximum allowable rate (grd3);
bolus delivery is in progress (grd4); and there exists an active bolus in which the bolus
amount to be delivered is greater than the remaining allowable maximum amount for
the next time step (grd5). The generated proof obligations also guarantee that an IIP
does not deliver excess insulin to a patient.

EVENT InsulinOutputCalculator1
WHEN

grd1 : c pwrStatus = Ready pwrStatus
grd2 : TemporaryBasalIsActive = TRUE
grd3 : ∃x, y, z ·x �→ y �→ z = f activeTmpBasal∧

y ≤ k maxOutputRate ∧ val = y ∧ val ∈ N
grd4 : BolusDeliveryinProgress = TRUE
grd5 : ∃s, t·s �→ t = f activeBolus∧

t > (k maxOutputRate − val)/k msPerHr ∗ Delta T
THEN

act1 : f basalOut := (val/k msPerHr) ∗ Delta T
act2 : f bolusOut := ((k maxOutputRate − val)/k msPerHr) ∗ Delta T

END

5.3 Safety Properties

Informally, a safety property stipulates that “bad things” do not happen during sys-
tem execution. A formalized specification that satisfies a safety property involves an
invariance argument. This section presents a list of safety properties using invariants
(spr1 - spr9). These safety properties are introduced to make sure that the formalized
IIP system is consistent and safe. The first safety property (spr1) ensures that when
EnteredBasProfValid is TRUE, the entered basal delivery rate is within the safe range.
Similarly, when EnteredBasProfValid is TRUE, spr2 ensures that the total amount



396 N.K. Singh et al.

of insulin delivered over a day is within the state limit. spr3 and spr4 perform the
same checks for the selected basal rate and amount when SelectedBasalProfileIsValid
is TRUE. spr5 and spr6 perform the same checks for the temporary basal profile when
EnteredTemporaryBasalIsValid is TRUE. spr7 states that when SelectedPresetIsValid
is TRUE, the bolus rate of a selected bolus profile must be within the range of minimum
bolus bound and maximum bolus bound. spr8 ensures that when EnteredBolusIsValid
is TRUE, the bolus rate of the entered bolus profile must be within the range of min-
imum bolus bound and maximum bolus bound. The last safety property (spr9) states
that the total amount of insulin to output over the next time unit is less than or equal to
the maximum daily limit of insulin that can be delivered.

spr1 : EnteredBasProfV alid = TRUE ⇒ (∃x, y·x �→ y = M basProf∧
(∀i·i ∈ index range ∧ i ∈ dom(y) ⇒ y(i) ≥ k minBasalBound
∧y(i) ≤ k maxBasalBound))

spr2 : EnteredBasProfV alid = TRUE ⇒ (∃x, y, insulin amount·x �→ y = M basProf∧
insulin amount ∈ y insulinV alue ∧ (∀i·i ∈ index range ∧ i ∈ dom(y)⇒
insulin amount = insulin amount + y(i) ∗ k segDayDur)∧
insulin amount ≤ k maxDailyInsulin)

spr3 : SelectedBasalProfileIsV alid = TRUE ⇒ (∃x, y·x �→ y = M basActSelected∧
(∀i·i ∈ index range ∧ i ∈ dom(y) ⇒ y(i) ≥ k minBasalBound
∧y(i) ≤ k maxBasalBound))

spr4 : SelectedBasalProfileIsV alid = TRUE⇒
(∃x, y, insulin amount·x �→ y = M basProf∧
insulin amount ∈ y insulinV alue∧
(∀i·i ∈ index range ∧ i ∈ dom(y)⇒
insulin amount = insulin amount + y(i) ∗ k segDayDur)∧
insulin amount ≤ k maxDailyInsulin)

spr5 : EnteredTemporaryBasalIsV alid = TRUE⇒
(∃x, y, z ·x �→ y �→ z = M tmpBas∧
y ≥ k minBasalBound ∧ y ≤ k maxBasalBound)

spr6 : EnteredTemporaryBasalIsV alid = TRUE⇒
(∃x, y, z ·x �→ y �→ z = M tmpBas ∧ y ∗ z ≤ k maxDailyInsulin)

spr7 : SelectedPresetIsV alid = TRUE ⇒ (∃x, y·x �→ y = M bolSelected∧
y ≥ k minBolusBound ∧ y ≤ k maxBolusBound)

spr8 : EnteredBolusIsV alid = TRUE ⇒ (∃x, y ·x �→ y = M bolus∧
y ≥ k minBolusBound ∧ y ≤ k maxBolusBound)

spr9 : c insulinOut ≤ k maxDailyInsulin

5.4 Model Analysis

Table 1. Proof Statistics
Model Total number Automatic Interactive

of POs Proof Proof
Abstract Model 3 3(100%) 0(0%)
First Refinement 22 22(100%) 0(0%)
Second Refinement 98 82(83%) 16(17%)
Third Refinement 26 25(100%) 1(0%)
Fourth Refinement 52 45(87%) 7(13%)
Fifth Refinement 54 54(100%) 0(0%)
Sixth Refinement 66 60(91%) 6(9%)
Seventh Refinement 123 51(42%) 72(58%)
Total 444 342(77%) 102(23%)

In this section, we present the proof sta-
tistics by presenting detailed informa-
tion about generated proof obligations.
Event-B supports consistency checking
which shows that a list of events pre-
serves the given invariants, and refinement
checking which makes sure that a con-
crete machine is a valid refinement of an
abstract machine.

This complete formal specification of an IIP contains 263 events, 16 complex data
types, 15 enumerated types, and 25 constants for specifying the system requirements.
The formal development of an IIP is presented through one abstract model and a series
of seven refinement models. In fact, the refinement models are decomposed into several
sub refinements. Therefore, we have a total of 43 refinement levels for describing the
system behaviour. In this paper, we have omitted the detailed description of the 43



Stepwise Formal Modelling and Reasoning of Insulin Infusion Pump Requirements 397

refinements by grouping them into the main components we used to present the formal
specification of an IIP.

Table 1 shows the proof statistics of the development in the Rodin tool. To guar-
antee the correctness of the system behaviour, we established various invariants in the
incremental refinements. This development resulted in 444 (100 %) proof obligations,
of which 342 (77 %) were proved automatically, and the remaining 102 (23 %) were
proved interactively using the Rodin prover (see Table 1). These interactive proof oblig-
ations are mainly related to the complex mathematical expressions, which are simplified
through interaction, providing additional information for assisting the Rodin prover.
Other proofs are quite simple and were achieved by simplifying the predicates.

6 Conclusion and Future Challenges

An insulin pump is a critical software-intensive medical device for delivering con-
trollable continuous subcutaneous infusion of insulin to patients. An insulin delivery
process can be programmed by monitoring the patient’s condition. Every year recalls
are reported by FDA related to insulin pump malfunctions, and many of these recalls are
a result of software issues. These software issues include unexpected controller behav-
iour for delivering insulin, incorrect measurement of insulin dose, overdose of insulin
delivery, incorrect inputs for configuration management, etc. To address these software
issues, we have proposed a refinement based formal development of an insulin pump to
capture the essential requirements and to verify the required safety properties.

To formalize the requirements of an IIP, we used the Event-B modelling lan-
guage [11] that supports an incremental refinement approach to design a complete sys-
tem using several layers from an abstract to a concrete specification. Each refined model
was proven to guarantee the preservation of required (safety) properties in that model.
The initial model captured the basic behaviour of IIP in an abstract way. Subsequent
refinements were used to formalize the concrete behaviour for the resulting IIP that
covers user operations, basal profile management, temporary basal management, bolus
preset management, reminder management, and insulin calculation. In order to guaran-
tee the ‘correctness’ of the system behaviour, we established various invariants in the
incremental refinements. Our complete formal development of this IIP is available in
the appendix of report [18], which is more than 1500 pages long. In summary, our main
contributions are:

1. Formalizing the requirements of an IIP.
2. Verifying and validating the required behaviour of an IIP.
3. Defining a list of safety properties.
4. Demonstrating how we can help to meet FDA requirements for certifying IIPs using

formal methods.
5. Showing how to use Event-B’s refinement process to retain intellectual control of

the modelling process, formalization, and analysis.

The prime objective of this IIP model is to verify the requirements of an IIP, to check
that all the system operational and functional behaviours are consistent that may help
to certify the IIPs. In the future, we will use this model to produce source code using



398 N.K. Singh et al.

EB2ALL [8]. Moreover, we have plans to develop a closed-loop system using our glu-
cose homeostasis model [3] to verify the correctness of system behaviour, to analyze
system operations, and to provide the required safety assurances to meet certification
standards.

References

1. Carayon, P., Wood, K.E.: Patient safety. Inf. Knowl. Syst. Manag. 8(1–4), 23–46 (2009)
2. Chen, Y., Lawford, M., Wang, H., Wassyng, A.: Insulin pump software certification. In:

Gibbons, J., MacCaull, W. (eds.) FHIES 2013. LNCS, vol. 8315, pp. 87–106. Springer,
Heidelberg (2014)

3. Singh, N.K., Wang, H., Lawford, M., Maibaum, T., Wassyng, A.: Formalizing the glucose
homeostasis mechanism. In: Duffy, V.G. (ed.) DHM 2014. LNCS, vol. 8529, pp. 460–471.
Springer, Heidelberg (2014)

4. Keatley, K.L.: A review of the FDA draft guidance document for software validation: guid-
ance for industry. Qual. Assur. 7(1), 49–55 (1999)

5. A reseach and development needs report by NITRD: high-confidence medical
devices: cyber-physical systems for 21st century health care. http://www.nitrd.gov/About/
MedDevice-FINAL1-web.pdf

6. Lee, I., Pappas, G.J., Cleaveland, R., Hatcliff, J., Krogh, B.H., Lee, P., Rubin, H., Sha, L.:
High-confidence medical device software and systems. Computer 39(4), 33–38 (2006)

7. Bowen, J., Stavridou, V.: Safety-critical systems, formal methods and standards. Softw. Eng.
J. 8(4), 189–209 (1993)

8. Singh, N.K.: Using Event-B for Critical Device Software Systems. Springer GmbH, London
(2013)

9. Méry, D., Singh, N.K.: Real-time animation for formal specification. In: Aiguier, M.,
Bretaudeau, F., Krob, D. (eds.) Complex Systems Design and Management, pp. 49–60.
Springer, Berlin Heidelberg (2010)

10. Wassyng, A.: Though this be madness, yet there is method in it? In: Proceedings of For-
maliSE, pp. 1–7. IEEE (2013)

11. Abrial, J.: Modeling in Event-B - System and Software Engineering. Cambridge University
Press, Cambridge (2010)

12. Project RODIN: rigorous open development environment for complex systems (2004). http://
rodin-b-sharp.sourceforge.net/

13. Masci, P., Ayoub, A., Curzon, P., Lee, I., Sokolsky, O., Thimbleby, H.: Model-based devel-
opment of the generic PCA infusion pump user interface prototype in PVS. In: Bitsch, F.,
Guiochet, J., Kaâniche, M. (eds.) SAFECOMP. LNCS, vol. 8153, pp. 228–240. Springer,
Heidelberg (2013)

14. Kim, B.G., Ayoub, A., Sokolsky, O., Lee, I., Jones, P., Zhang, Y., Jetley, R.: Safety-assured
development of the GPCA infusion pump software. In: 2011 Proceedings of the International
Conference on Embedded Software (EMSOFT), pp. 155–164, October 2011

15. Wang, J., Liu, S., Qi, Y., Hou, D.: Developing an insulin pump system using the SOFL
method. In: 4th Asia-Pacific Software Engineering Conference (APSEC), pp. 334–341
(2007)

16. Xu, H., Maibaum, T.: An Event-B approach to timing issues applied to the generic insulin
infusion pump. In: Liu, Z., Wassyng, A. (eds.) FHIES 2011. LNCS, vol. 7151, pp. 160–176.
Springer, Heidelberg (2012)

17. Sommerville, I.: Software Engineering, 7th edn. Pearson Addison Wesley, New Jersey (2004)
18. Singh, N.K., Wang, H., Lawford, M., Maibaum, T.S.E., Wassyng, A.: Report 18: formalizing

insulin pump using Event-B. Technical report 18, McSCert, McMaster University, October
2014. https://www.mcscert.ca/index.php/documents/mcscert-reports

View publication statsView publication stats


