Formal Software Engineering
(génie logiciel avec I'approche formelle)

J. Christian Attiogbé

Master Alma, Septembre 2013
Two parts course, shared with Pr. Claude Jard

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ 60

About me: Teaching at IUT & UFR Sciences - Research at LINA

Dpt Info IUT
@ Modélisation de données
@ Programmation Objet, Sécurité des réseaux

@ Modélisation et programmation de systemes répartis

Dpt Info UFR Sciences
@ Formal Software Engineering (Construction formelle de logiciels)

LINA - UMR 6241 / Université de Nantes - CNRS - Mines de Nantes
@ Topic ALD: AelLoS, Ascola, GDD, GRIMM
@ Topic SAD: COD, COMBI, Contraintes/ TASC, OPTI, TALN

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ / 60

AelLoS Team - LINA

Research Topics
@ Construction of Correct Architecture and Software

@ Modelling, Verification, Refinement, Semantics

@ Distributed Systems (services, components, architectures, properties)

v

Contact the team members for various internship projects, PhD projects, ...

AelLoS Team Members

P. André, G. Ardourel, C. Attiogbé, B. Delahaye, C. Jard, A. Lanoix, J-M.
Mottu, M. Oussalah, D. Tamzalit + PhD Students

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ 60

Presentation of this Course (48h)

Formal modelling and verification of software
(the only way amenable to prove software correctness)

@ Part 1 - by Claude Jard (7 24 hours)
Concurrency and Semantic Models ;
Petri Nets/Romeo (model checking).

@ Part 2 - by Christian Attioghé (™ 24 hours)
Correct Construction with B Method, Event-B
Atelier B/Rodin (theorem proving).

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ / 60

Presentation of this Course (48h)

Forecast Agenda

Dates | Part1 Part 2
C. Jard | C. Attiogbé

11/9 Introduction FSE

18/9 XX

25/9 XX

2/10 XX

9/10 XX

16/10 | xx

23/10 | xx

30/10 congés

6/11 XX

13/11 XX

20/11 XX

27/11 XX

4/12 XX

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ 60

About you - Motivations for this course

MASTER level = Managing industrial projects (computer systems)
in various domains,

with variable size (small or big)

Complex CS projects = Methods, Techniques, Tools

@ Analysis Methods,
@ Design & Verification Methods,

@ Development/Implementation Methods.

You probably already know some programming languages, semi-formal
methods, [FM?7]

Are you confortable with large CS projects, difficult problems, (what about
the future)... 7

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ / 60

Categories/Natures of Software Systems

Nature Features? | Methods?

sequential

autonomous (transformational)
centralised

reactive

real-time

parallel
parallel and concurrent
distributed

embedded
communication protocols

= various types of software systems, various methods

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ 60

Introduction: Industry [already] adopts FM!

Difficulties for industries: Market Pressure, High costs, ---
BUT, there are numerous success stories

@ Proof of a compiler (Coq, Xavier Leroy, 2011)

® Design of a Real-Time Operating System (TLA+)
E. Verhulst, R.T. Boute, J.M. Sampaio Faria, B.H.C Sputh, V. Mezhuyev,
Formal Development of a Network-Centric RTOS, 2011

Proof of IEEE 1395 Firewire Protocols (Spin, PVS, B, +++ ; 2004+)
Proof of control systems (B, Siemens)

Proof of circuit (STMicroelectronics)

BOS barrier protecting the harbor of Rotterdam (Z, 2001)

Proof of microcode and software (Intel)

Proof of Communication Protocols (10 Automata, 1993+)

The complexity of current computer systems discourages empirical
methods.

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ / 60

Introduction: Prove the correction of a software

Build correctly a software or
Proof the correction of a software S via its model.
@ The model of the software : M
@ The properties : P
o M P
proof depending on the structure of the model

ex: prove that P is true in all the (reachable) states of M
(if M is a state model)

Anyway, you need a formal model; and rigorous software construction
methods. Do you know some?

[l Learn how to build M, P and how to prove
(using dedicated tools or not).

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ / 60

Examples of models (you already know)

@ Logic models
@ Axiomatic/algebraic models (equation systems)
@ State-based models (automata, Its, graphs)

@ + various aspects: time, data, signals

Various classes of models
@ Synchronous models

@ Asynchronous models

[1 We will learn some aspects in this course.

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ / 60

Some references

Jan Van Leeuwen, Handbooks of Formal Models and Semantics, 1990
J. Wing, A Case Study in Model Checking Software Systems, SCP, 1997
Mana & Pnueli; de Roever et Al.;

E. Clarke, J. Wing, Formal Methods: State of the Art and Future Directions,
CMU, 2006

L. Lamport, numerous documents!
André Arnod, sémantique des processus communicants
J-F. Monin, Introduction aux méthodes formelles. Hermes, 2000

Success Stories
www.fm4industry.org/index.php/DEPLOY_Success_Stories,
www.fmd4industry.org/index.php/Deploying Event-B_in_an_Industrial_Mic:

and Dijkstra, Hoare,...

Wing, Hehner, Monin, Holloway, ---

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\

Master Alma, Septembre 2013 Two parts course, shared
60

Building Computer Systems Introduction

Introduction

You

Computer Systems (Systémes informatiques)?
Construction?

What issues?

What concepts, theories, methods, techniques, tools?
State of the art?

The needs?

can try: direct programming + tests, semi-formal methods, formal

methods, 777

Are there some hints, well-established systematic approaches ?

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\

Master Alma, Septembre 2013 Two par/ts course, shared
60

www.fm4industry.org/index.php/DEPLOY_Success_Stories
www.fm4industry.org/index.php/Deploying_Event-B_in_an_Industrial_Microprocessor_Development

Building Computer Systems Introduction

Variety of computer systems

Nowadays, computers and softwares are everywhere
@ Domestic devices, home automation, leisures
® Medical domains
@ Transportation (airplanes, trains, cars, ...)
@ Administration (integrated databases + decision systems)
@ Various services (booking, health control, home control,)
® Bank and Financial systems
@ Politics, electronic votes, analysis

@ etc

What about the quality of software with respect to its critical place?
Do we know how to build it well?

Do we know how to maintain it well?

With What methods, techniques, tools?

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ 60

Building Computer Systems Introduction

Example: Web services interoperability (WS-AT)

Interoperability of services in distributed aplications.

In distributed applications several services cooperate to achieve common goals.
Pbm: How to build such interoperable, distributed applications with coordinated
joint works? in an asynchronous context.

Web services tie together a large number of participants (they are services)
forming large distributed computational units called activities. These activities are
complex due to many parameters: interaction between participants, they can take
long time...

To face the complexity, a framework to coordinate the activities is needed (it is
the objective of WSCOOR, oasis). It enables participants to reach a consistent
agreement on the outcome of distributed activities.

Several protocols have been proposed as basis for the interaction between Web
services.

For example WS-Atomic Transaction (WS AT) contains protocols which are
mechanisms to create activities, join into them, and reach common agreement on
the outcome of joint operations.

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ / 60

Building Computer Systems Introduction

Example: Web services interoperability (WS-AT)

Def: An activity is a set of actions spaning multiple services but with a common
goal (classical ex: resa).

The activities that require the ACID (atomic, consistent, isolated, and durable)
properties of transactions are users of WS-Atomic Transaction.

An initiator creates/initiates an activity, and communicates its context to other
applications. The other applications can register to participate in the activity. A
coordinator manages all the participants of an activity. The coordinator at some
point can decide to abort or to try to commit the transaction. Therefore it
initiates (preparation phase) a vote to which all the participants participate.
When there is a common positive agreement, it can commit the outcome
(commit phase) of the trasaction (all or nothing).

Required Safety Property: to guarantee that the initiator and the participants
agree on whether the transaction is committed or aborted.

http://docs.oasis-open.org/ws-tx/wstx-wsat-1.1-spec-os/wstx-wsat-1.1-spec-os.html

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ / 60

Building Computer Systems Introduction

Example of formal models or specifications

MACHINE /* Sorting: a set of naturals -> seq. of natural */
Tri
CONSTANTS
tride /* defining a function */
PROPERTIES
tride : FIN(NAT) --> seq(NAT) &
(ran(tride(ss)) = ss &
jj : dom(tride(ss)) &
ii < jj =>
(tride(ss)) (ii) < (tride(ss))(jj))))
END

Emphasize abstraction = what (not how)

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ / 60

Building Computer Systems Introduction

Example of formal specifications

system ProdCons /* Model */
sets

DATA ;

STATE = {empty, full}
variables

buffer, bufferstate, bufferc
Invariant

bufferstate € STATE
A buffer € DATA A bufferc € DATA
initialization

bufferstate := empty
|| buffer :€ DATA
|| bufferc :e DATA
end

Emphasize abstraction

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ 60

Building Computer Systems Introduction

Example of formal specifications

ProdCons (continued)...

events
produce = /* when buffer empty */
any dd where
dd € DATA A bufferstate = empty

then
buffer := dd ||
bufferstate := full
end ;

consume = /* when buffer is full */
select bufferstate = full
then
bufferc := buffer ||
bufferstate := empty
end

end

Emphasize abstraction = what (not how)

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ / 60

Building Computer Systems Introduction

Example of properties

Always an unique process in CS
Y anep card(activeProc) = 1

A process cannot be simultane-

ously active and blocked activeProc N clockedProc = ()

[J The use of invariant properties

@ Safety properties: nothing bad should happen

@ Liveness properties: something good eventually happens
More generally, one uses Modal Logics.

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ 60

Building Computer Systems Introduction

Semi-Formal Methods

Examples of semi-formal methods

@ Functional Analysis (SA..., SADT),
@ Structured Analysis (SA, SSADM), SA-RT,
@ Entity-Relationship (Entités/Associations): Merise, Axiale,
e JSD/JSP,
@ Object-Oriented Analysis, OMT, UML,
@ Software Architecture (System Level ; Top-Down approach),
°

etc

Pros and Cons

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ / 60

Building Computer Systems Introduction

Need of Formal Methods

Need of rigorous methods for some specific domains:
@ Security, Certification, Cost, Maintenance

@ ITSEC (Information Technology Security Evaluation Criteria) requires
the use of formal methods

@ Failure of (one flight) of ARIANE!, failure of a Pentium series, etc

@ Environments which are dangerous for humans (nuclear, chemistry,
marine, etc)

@ Embedded Systems (vehicles, home equipments, etc)
@ Automata (medical domain, etc)

@ etc

Pros and cons

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ 60

Building Computer Systems Formal Methods: Introduction

Examples

Examples of formal methods
@ Logics (First Order, Higher Order, Modal)
@ Finite State Machines (Mealy, Moore, ...)

@ Transition systems (Automata, Petri nets, Communicating
processes,...)

@ Algebraic Methods

Timed Systems (extension of Tansition systems)

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ / 60

Building Computer Systems Formal Methods: Introduction

Features of Formal Methods

Formal methods = use rigorous approach to

@ guaranty of software correction with respect to specifications,
@ decrease/remove errors, and disfunctionning,

@ make it easy the maintenance and the evolution.

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ 60

Building Computer Systems Formal Methods: Introduction

Introduction to Formal Methods

Construction methods of computer systems

A few analogies:

Building Engineering (Génie civil)

— Architecture, schemes/blueprints (design), computings, construction
(implementation)

Physics

— Observations, modelling/study of models, implementation
Computer Science (Informatique)

=

Requirement Analysis (observations?)
Modelling - study of models,

Design and Implementation of systems.

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ / 60

Building Computer Systems Formal Methods: Introduction

Preliminaries

Various approaches of formal methods:

@ 2 postériori : First, one implements (programming paradigm) and
then one verifies that the produced program is correct
— proof systems, testing, model-checking

@ a priori : One builds correctly the system
— Development methods (refinement, synthesis),
proof systems

Several formal methods (languages, proof systems, methods)

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ 60

Building Computer Systems Formal Methods: Introduction

Preliminaries

@ Top-down approach: by decomposition

o Global analysis (system study, system engineering)
@ Software Architecture

l

o Implementation of components

@ Direct Programming or
@ Formal Development

@ Bottom-up approach: composition of elementary components.

@ Study of available components,
@ Composition, reuse.

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ / 60

Building Computer Systems Formal Methods: Introduction

Need of formal methods

In all cases (approaches), make use of formal methods for
@ Study of systems
@ Study and construction of components

@ Formal framework for reasoning, analysis, development.

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ 60

Building Computer Systems Inside Formal Methods and Applications

What are inside formal methods?

Logics

Algebra

Discrete Mathematics
Set Theory

Automata Theory
Type Theory

Refinement Theory

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ / 60

Building Computer Systems Inside Formal Methods and Applications

Examples of a few industrial applications

with Z, VDM, CSP

e IBM, INMOS, ...
@ CICS: IBM interactive transactional system (1983, Z)
@ Integrated Circuit Design, Transputer (Z, CSP)

@ etc

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ 60

Building Computer Systems Inside Formal Methods and Applications

Examples of a few industrial applications

with the B Method (J-R. Abrial)
GEC ALSTHOM, SNCF and MATRA Transport (now Siemens)

Railway Speed Control System (KVS for SNCF)

Line A of the Paris RER - SACEM (signaling, speed control)
Calcutta Metro (CTDC)

Montreal Metro(CTDC), Marseille, Bel horizonte

Météor (line 14, of Paris Metro, without human driver)
Landing doors (portes pallieres) in Metro stations

Old people insurance, in French Sécurité Sociale

CICS of IBM (major restructuring of a transactional, about 800000
lines of code)

@ B and VDM are used in financial domain softwares, BULL UK
Many other systems with Petri Nets, Lotos, etc

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ / 60

Building Computer Systems Inside Formal Methods and Applications

Example of the Railway Speed Control System (Metro)

@ Data acquisition (sensors, converters, etc),
@ Computation/decision,

@ Orders sent to physical devices (speed slowing system, braking
system),

@ Embedding of the software in the global system of the train.

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ 60

Building Computer Systems Inside Formal Methods and Applications

Other used approaches

Some of them are equipped with tools and adopted by industries

RAISE (Result of an european project - ESPRIT)
algebric approach 4+ communicating processes

LOTOS, SDL (Standard européen)
algebric approach + communicating processes

PVS (USA)
MEC, AltaRica (Université de Bordeaux + industries)

Classical Logics: First order Logic, Hoare Logic, etc
(Why, Frama-C, Krakatoa (Java), Key,...)

Non-classical Logics, modal logics

Coq, High-Order Logics, type theory

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ / 60

Building Computer Systems Formal Software Development Methods (a summary)

Foundation of formal approaches (proof)

Interpretation of the Curry-Howard’s Isomorphism:

_ | Specifications
equiv. to Development|

Proof | Axioms

| Theorems Programs

Master Alma, Septembre 2013 Two parts course, sharec
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ 60

Building Computer Systems Construction of Computer Systems

Approach of Formal Construction

pécification informelle Utilisateur, développeur, spécifieur
(cahier de charges)

| Communication, contrat
I Analyse
Validation /utilisateur
Spécification
[formelle]
Développeur

Développement
(diverses méthodes)

v

Systéme Validation/spécification

(logiciel+matériel)

Figure: Issue of system development de system

Master Alma, Septembre 2013 Two parts course, sharec
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ / 60

Building Computer Systems Construction of Computer Systems

Overview of Software Construction

Rétroaction _ . — < Rétroaction -
.-
.-

"Vérifieur"
. Spécifieur
> e charges pécification (Code)
T / Modélisation \ /
Cllentk

N Programmeur
. ~ :
g Implantation
~. ~ . /
- — - .-
t— Rétroaction .- - Usager

- - - -
et ,— e — e ——_— . —_— - —

Figure: A life cycle of formal software construction

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ 60

Building Computer Systems Construction of Computer Systems

Use of Formal Methods

— Not always approriate:

@ A hammer to kill a fly

@ depending on the needs
@ Professional environment

o Available experiments?
@ Industrial context

@ Delay, costs, productivity
@ Certification

@ Requirements of clients.

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ / 60

Building Computer Systems

Which approach to use?

— Several parameters:

Available experiments,

Construction of Computer Systems

Designer/implementor of big systems,
Designer/implementor of small (home) systems,

Features of systems to be implemented,

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\

Master Alma, Septembre 2013 Two parts course, shared
60

Building Computer Systems Construction of Computer Systems

Categories/Natures of Software Systems

Nature

Features? | Methods?

sequential

autonomous (transformational)

centralised

reactive

real-time

parallel

parallel and concurrent

distributed

embedded

communication protocols

= various types of software systems, various methods

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\

Master Alma, Septembre 2013 Two par/ts course, shared
60

Building Computer Systems Construction of Computer Systems

A few difficult points

@ To describe precisely the intended system specification
@ To build correctly the sofware development

@ To be sure that the constructed software is correct with respect to the
needs

@ Maintenance/Evolution of the system.

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ 60

Building Computer Systems Methods related to Nature of Systems

Example of the B Method

The built system is correct by construction : stepwise refinement from
abstract model

@ Initially (< 1996), sequential execution semantics,
for sequential systems; no behavioural indeterminism

@ Then, extended (Event-B, 1998)
for autonomous and reactive systems, concurrent and distributed
systems.

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ / 60

Building Computer Systems Methods related to Nature of Systems

Example of LOTOS

Analysis and verification of systems (already developped or not)

@ Sequential and concurrent execution models
Concurrent and sequential systems

@ Possibility of behavioural indeterminism

@ Autonomous and reactive systems

@ Centralised and distributed system:s.

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ 60

Building Computer Systems System Development

Steps of the software life cycle

From requirement document — computer system
requirement document = informal specification
Several steps:

Analysis
Specification, Modelling

o
o

@ Design
@ Implementation
o

Maintenance

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ / 60

Practice

Practice

Each project is unique

@ Nature of complex systems — multifacets, modular
@ Several methods, including:
o Semi-formal methods

o Formal Methods (integrated) — to deal with complex systems.

= mastering several methods

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ 60

Practice A few definitions

A few definitions

Modelling:

Hoare: A scientific theory is formalised as a mathematical model of reality,
from which can be deduced or calculated the observable properties and of
a well-defined class of processes in the physical world.

There are two main notions of models in computer science.

©® Model = an approximation of the reality by a mathematical structure.
An object O is a model of a reality R, if O allows one to answer all
the questions about R.

In Mathematics, Physics, ... models are built with equation systems using
quantities (masses, energy, ...) or hypothetic laws.

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ / 60

Practice A few definitions

A few definitions (continued)

© Logics, theory of models
A model of a theory T is a structure in which the axioms of T' are

valid.

A structure S is a model of a theory T, or S satisfies T if all formula
of T is satisfied in S.

The reality is a model of a theory!

First Order Theory = any set of logic formula in a given language (precisely
defined).

Model as an interpretation of a specification - an algebra as a model
of an algebraic specification (or an axiomatisation).

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ 60

Practice A few definitions

A few definitions (continued)

These two notions of model are encountered in the model-oriented (or
state-oriented) and property-oriented approaches of Soft. Eng.
In current use,

@ model = (archetype), what serves or is used for imitation to
reproduce orther instances.

@ model = (paradigm), declination model, conjugation model, etc

@ model = (reference), ...

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ / 60

Practice A few definitions

Examples of theory

Set theory: it is based on a set of axioms (Bourbaki, Cantor, Zermelo, ...).
The objects of this theory are called sets.

The classe of the sets is called the universe.

The axioms of the set theory (of Zermelo+Fraenkel) are the following:

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ 60

Practice A few definitions

Examples of theory (continued)

@ Axiom of the empty set: there exists a set which does not contain any
element: it is the empty set.

@ Extensionality Axiom: two sets are equal if and only if they contain
exactly the same elements.

@ Union Axiom: the union of sets is a set.

@ Axiom of the set of parts: given a set E, there exists a set P suchat
that a set F is member of P if F is a part of E.

@ Axiom of replacing/substitution schema(Fraenkel, 1922) : When one
defines a function with the formula of the set theory, the elements for
which this function verifies a given property are also a set.

Moreover, to these axioms is added, the axiom of infinite: there exists an
infinte ordinal.
/FC = ZF + axiom of choice

@ Axiom of choice: Given a family of disjoint sets, if we consider one
element of each set of the family, then one builds another set.

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ / 60

Practice A few definitions

A few definitions (continued)

Semiformal Method =

@ Graphical Language [+ formal]
(precise syntax and unprecise semantics) and

@ Various analysis tools.

— Combination of languages/methods/techniques that do not all have a
precise semantics.

Examples : JSD, OMT, 00X, UML

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ 60

Practice A few definitions

Interest and Limitations of Semi-formal Methods

SADT, SA-RT, SSADM, ...
JSD-JSP,

Merise, Axial, ...

OOA, OMT, UML

The problem analysis is performed.

It is a positive contribution, although insufficient.

The problem is sided.

— impossible to reason formally on the intended system.
— there can be ambiguities and errors.

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ / 60

Practice A few definitions

A few definitions (continued)

Formal Method =
@ Formal Language (precise syntax and precise semantics) and

@ Proof or formal reasoning system.

Examples: FSM, RdP, Z, CCS, CSP, HOL, Coq, PVS, B, ISabelle
Formal Development =

@ systematic transformation of specifications into programs using
predefined laws/rules. Examples: Synthesis, Refinement

Examples: B Method, Perfect, Escher C, Coq

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ 60

Practice A few definitions

A few definitions (continued)

Verification: to show that a system (5) is correct with respect to some
properties (P)
SEP

Validation: to show that a system (5) is correct with respect to some
informal properties (the needs)
S~ Sinformal

Formal reasoning : Consists in applying a formal system to a
specification.

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ / 60

Practice A few definitions

Examples of formal reasoning

Refinement of specification,
Verification of the properties of a system,

9

9

@ Validation via verification,

@ Proof of theorems (theorem proving),
9

Analysis of a system (represented by a state machine) wrt some
properties (model checking).

—> Logic is the foundation of the formal approaches

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ 60

Practice Software Life Cycles

Software Life Cycles

@ Life cycles have been for longtime, the methodological support of
software development.

@ the most representative life cycles are:

o the V software life cycle,

o the Cascade life cycle or 'lterative Waterfall’ life cycle,
o Balzer's cycle, 1980+

@ Spiral life cycle by Barry Boehm, 1986

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ / 60

Practice Software Life Cycles

Software Life Cycle

Cahier de charges

1

Spécification

Programmes

\

Maintenance
Fionire: Cacrade life cvlee (h\/ Rneh rMahQr?Mr}na, Septembre 2013 Two par/ts course, shared
60

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\

Practice Formal Specification Approaches

Formal Specification

= Description in a formal language of the 'WWhat IS’ a system to be
developped.

@ Result of the analysis step.

@ Several possible forms depending on the nature of the system.

One considers languages or formalisms of formal specification:
Logics, Z, Algebraic Specification Languages, process algebra, etc

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ / 60

Practice Formal Specification Approaches

Specification Approaches

Data or operations aspects first?

@ The data of a system permit to describe the state of the system

@ The operations of a system enable to describe its behaviour
with axioms.

There are the data paradigm and the operation paradigm.

One should distinguish the operations expressing the behaviour of a system
from the operations that characterise the data of the system.

The former work on the data of the system whereas the later are used to
build or or manipulate the system data.

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ 60

Practice Formal Specification Approaches

Specification Approaches

There are a third transversal paradigm.

It is the process paradigm (with the process algebra).

With this paradigm, the processes of a system are described with rules or
equations that express the system behaviour or its states.

The main process algebra used to build others are:

@ CSP (Hoare)
e CCS (Milner)
@ ACP (Bergstra)

They are all based on the Transition System Approach.

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ / 60

Practice Formal Specification Approaches

Specification Approaches

You have to choose the one which is appropriate to a
given problem!

Learn the main ones! and be able to move to others.
The remaining of the course has this objective.

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ / 60

Practice Formal Specification Approaches

Examples - Case studies

Preliminary examples and case studies
@ Requirement analysis
@ Abstraction
@ Modelling

Master Alma, Septembre 2013 Two parts course, shared
J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\ / 60

References

A few references

J. Christian Attiogbé (Université de Nantes) Formal Software Engineering (génie logiciel a\

Jan Van Leeuwen, Handbooks of Formal Models and Semantics, 1990

J. Wing, A Case Study in Model Checking Software Systems, SCP,
1997

Mana & Pnueli; de Roever et Al ;

E. Clarke, J. Wing, Formal Methods: State of the Art and Future
Directions, CMU, 2006

L. Lamport, numerous documents!
André Arnod, sémantique des processus communicants
J-F. Monin, Introduction aux méthodes formelles. Hermes, 2000

Success Stories
www.fm4industry.org/index.php/DEPLOY_Success_Stories,
www.fm4industry.org/index.php/Deploying_Event-B_in_an_Industri:

and Dijkstra, Hoare,...

Master Alma, Septembre 2013 Two parts course, shared
60

www.fm4industry.org/index.php/DEPLOY_Success_Stories
www.fm4industry.org/index.php/Deploying_Event-B_in_an_Industrial_Microprocessor_Development

	Building Computer Systems
	Introduction
	Formal Methods: Introduction
	Inside Formal Methods and Applications
	Formal Software Development Methods (a summary)
	Construction of Computer Systems
	Methods related to Nature of Systems
	System Development
	A few definitions
	Software Life Cycles
	Formal Specification Approaches

	References

