
Modelling and Proof of a Tree-structured File

System in Event-B and Rodin⋆

Kriangsak Damchoom1, Michael Butler1 and Jean-Raymond Abrial2

1 University of Southampton
United Kingdom

{kd06r,mjb}@ecs.soton.ac.uk
2 ETH Zurich
Switzerland

jabrial@inf.ethz.ch

Abstract. Event-B is a formalism used for specifying and reasoning
about complex discrete systems. The Rodin platform is a new tool for
specification, refinement and proof in Event-B. In this paper, we present
a verified model of a tree-structured file system which was carried out
using Event-B and the Rodin platform. The model is focused on basic
functionalities affecting the tree structure including create, copy, delete
and move. This work is aimed at constructing a clear and accurate model
with all proof obligations discharged. While constructing the model of
a file system, we begin with an abstract model of a file system and
subsequently refine it by adding more details through refinement steps.
We have found that careful formulation of invariants and useful theorems
that can be reused for discharging similar proof obligations make models
simpler and easier to prove.

Key words: File system, Tree structure, Refinement, Proof, Event-B,
Rodin tool

1 Introduction

Nowadays, there are many formal methods used in the area of software devel-
opment together with a number of advanced theories and tools. However, more
experiments in this area are still needed to be carried out in order to provide
significant evidence for convincing and encouraging other users to benefit from
those theories and tools, and make formal methods more accessible to software
industries. We see our work as a contribution to the filestore mini-challenge pro-
posed by Joshi and Holzmann [13]. As highlighted in [13], a filestore is a complex
system that presents interesting challenges for specification and verification. For
example, how do we ensure reliability in the presence of concurrent accesses or
how do we deal with accidental failures that may occur during the execution.

⋆ This work was part of the EU research project ICT 214158 DEPLOY (Industrial
deployment of system engineering methods providing high dependability and pro-
ductivity) www.deploy-project.eu.

2 Kriangsak Damchoom, Michael Butler and Jean-Raymond Abrial

The file system is chosen as a case study for our experiment which is carried out
by using Event-B [3] and the Rodin platform [8, 2] for specification, refinement
and proof.

We make strong use of refinement to introduce gradually features to the
formal model. We see the contribution as twofold. Firstly our work provides
evidence of the applicability of the Event-B language, the refinement approach
and of the Rodin tool. Secondly our experiment provides guidance on effective
modelling and proof styles that may be of benefit to others working on formal
development of similar systems.

Our specification of this system is focused on a tree structure and basic
functionalities affecting the tree structure: create, delete, copy and move objects
that can be files or directories. In this specification, we start with an abstract
level accompanied with careful formulation of invariants, and then follow this by
refinements in which more details are added.

In the abstraction, we introduce the two main properties of a tree structure:
(i) there are no loops in a tree structure and (ii) every node in a tree is reach-
able from the root. For the no-loop property, instead of using transitive closure
which is generally used for specification of absence of loops, we employ a no-loop
property proposed in [3] to formulate a simpler invariant satisfying this prop-
erty. Employing this property, which is less complicated than transitive closure,
makes the model easier to prove. For the second property, reachability, instead
of introducing another invariant, we introduce a machine theorem – which is
derived from existing invariants – that can be proved to show that the property
is satisfied.

In the first refinement, files and directories are introduced (in the previous
abstraction, both files and directories are treated in a similar way as objects).
Therefore, in this level, some additional invariants are added to the model. For
instance, files and directories are distinct and each object’s parent must be a
directory.

In addition, other required properties, i.e., a content of file and access per-
missions, are introduced accompanied with related events concerning these prop-
erties in the second and the third refinement, respectively. Some constraints are
covered in these two refinements, such as, each file has a content, each object
has an owner and its permissions, accessing to each object is dependent on the
permissions allowed, etc.

In total 162 proof obligations were automatically generated by the Rodin
platform. 78% of them are proved automatically while others are discharged by
using the interactive prover. Based on interactive proof, we introduced some
proved theorems that can be reused for discharging several similar proof obliga-
tions. This makes interactive proof easier. Consequently, the time required was
also reduced. An archive of our development in the Rodin tool may be down-
loaded 1. This can be imported by anyone with an installation of the tool which
is freely available 2.

1 http://deploy-eprints.ecs.soton.ac.uk/22/
2 www.event-b.org

Modelling and Proof of a Tree-structured File System in Event-B and Rodin 3

This paper will begin with providing a short description of Event-B and the
Rodin platform. Secondly, an informal description of a tree-structured file system
and its constraints are given in Section 3. Thirdly, an Event-B specification of
the file system which is divided into four levels (an abstraction and three levels
of refinements) will be outlined in Section 4, 5, 6, 7 and 8. Fourthly, in Section
9, proof statistics will be figured. Finally, comparison with related work and
conclusion will be given in Section 10 and 11 respectively.

2 Event-B and the Rodin platform

Event-B [3] is an extension of the B-method [1] for specifying and reasoning
about complex systems including concurrent and reactive systems. An Event-B
model is described in terms of contexts and machines, see Fig. 1.

MMAACCHHIINNEE

Variables

Invariants

Events

Theorems

CCOONNTTEEXXTT

Carrier Sets

Constants

Axioms

Theorems

sees

Other Contexts

Other Machines

refines extends

sees

sees

Fig. 1. Relationship between machines and contexts

Contexts [4, 5] contain the static parts of a model. Each context may consist
of carrier sets and constants as well as axioms which are used to describe the
properties of those sets and constants. Contexts may contain theorems for which
it must be proved that they follow from the preceding axioms and theorems.
Moreover, contexts can be extended by other contexts and seen by more than one
machine. Additionally, a context may be indirectly seen by machines. Namely,
a context C can be seen by a machine M indirectly if the machine M explicitly
sees another context which is an extension of the context C.

Machines [4, 5] contain the dynamic parts of an Event-B model. This part
is used to provide behavioural properties of the model. A machine is made of
a state, which is defined by means of variables, invariants, events and theorems
shown in Fig. 1. The theorems of a machine must be shown to follow from the
context and the invariants of that machine. In addition, machines can be refined
by other machines, but each machine can refine at most one machine.

4 Kriangsak Damchoom, Michael Butler and Jean-Raymond Abrial

Variables, like constants, correspond to mathematical objects: sets, binary
relations, functions, numbers, etc. They are constrained by invariants I(v) where
v are the variables of the machine. Invariants are supposed to hold whenever
variable values change. But this must be proved through the discharge of proof
obligations [4].

A machine contains a number of atomic events which show the way that the
machine may evolve. Each event is composed of three elements: an event name,
guard(s) and action(s). The guard is the necessary condition for the event. The
actions determine the way in which the state variables are going to evolve when
performing the event [4].

An event is guarded and atomic and may be performed only when its guard
holds. This means that when the guards of several events hold at the same
time, then only one of them may be performed at that time. The event is non-
deterministically chosen to be performed. Generally, an event, named Evt, is
presented in one of three possible forms shown in Fig. 2. Where S(v) are gener-
alized substitutions of variable v, G(v) represents a guard of event Evt, and t is
a local variable [4].

Evt =̂ begin S(v) end
Evt =̂ when G(v) then S(v) end
Evt =̂ any t where G(t,v) then S(t,v) end

Fig. 2. Three posible forms of an event

The Rodin platform [8, 2] is an open and extensible tool for Event-B
specification and verification. It contains a database of modelling elements used
for constructing system models such as variables, invariants and events. It is
accompanied by various useful plug-ins such as a proof-obligation generator,
provers, model-checkers, UML transformers, etc [6].

3 An Informal Description of a Tree-structured File

System and Constraints

A tree-structured file system can be described in terms of a collection of objects
representing files and directories and a set of operations that may be performed
on these objects. The objects are structured as a tree. The tree has only one
root directory that cannot be deleted, copied or moved. Each object except the
root has only one parent which is a directory. Four operations affecting the tree
structure are discussed below.

Create: Create an object in an existing directory. The object can be either
a file or a directory.

Modelling and Proof of a Tree-structured File System in Event-B and Rodin 5

Copy: Copy an existing object from one place to another place. The desti-
nation must exist and must not be a descendant of the object being copied or
the object itself. If the object being copied is a directory, all objects belong to
that directory must also be copied to the new location and the copy must have
the same structure as the original.

Move: Move an existing object in the tree structure from one place to an-
other place. The destination must exist and must not be a descendant of the
object being moved or the object itself.

Delete: Delete an existing object in the file system. In case of deleting a
directory, all its descendants must also be removed.

4 Abstract Model

In this abstraction, we begin with an abstract model of a tree-structured file
system focusing on tree properties and operations affecting the tree structure.
However, files and directories are not distinguished in this level. Instead they are
postponed to next refinement given in Section 6. Thus, in this level, both of them
are treated in the same way as objects which are nodes of the tree structure.
Below is a list of requirements in this level.

Req1.1: The tree has a root node.

Req1.2: All objects except the root node must have a parent.

Req1.3: There are no loops in the tree.

Req1.4: Every node in the tree is reachable from the root node.

Machine variables, invariants formulated to satisfy those required properties
mentioned above, and initialised values of each variable are given in Fig. 3. These
variables, invariants and initialisation are discussed below.

Variables objects, parent
Invariants

inv1.1 : objects ⊆ OBJECT
inv1.2 : root ∈ objects
inv1.3 : parent ∈ objects \ {root}→ objects
inv1.4 : ∀s·(s ⊆ parent−1[s] ⇒ s = ∅)

Initialisation

objects := {root}
parent := ∅

Fig. 3. Machine variables, invariants and initialisation of an abstract model

6 Kriangsak Damchoom, Michael Butler and Jean-Raymond Abrial

In a context seen by this abstract machine, OBJECT is defined as a carrier
set and root is an OBJECT constant (see Fig. 5). Considering Fig. 3, there
are two state variables introduced in the machine: (i) objects, a set of existing
objects in the file system (inv1.1); and (ii) parent, a total function mapped from
all objects except root to their parent which is an object. In this abstraction,
objects and parent are initialised to a set consisting of root and the empty set
respectively. Invariant inv1.3 states that all objects except root must have a
parent. This invariant satisfies Req1.2. Invariant inv1.4 is introduced to ensure
that there are no loops in the tree structure (satisfying Req1.3). This invariant is
formulated by using the no-loop property proposed by Abrial in [3]. The reason
we choose this formulation, instead of transitive closure which is generally used
to specify tree properties – such as a specification of visual file system in [12] –
is to make the model simpler and easier to prove.

Considering inv1.4, parent−1[s] gives the direct descendants of all elements
of set s. For s ⊆ objects, s ⊆ parent−1[s] means that s contains a loop in the
parent relationship. Hence, this invariant states that the only such set that can
exist is the empty set and thus the parent structure cannot have loops. If we
were to use transitive closure, we would need to add the property inv1.4b given
in Fig. 4 to the machine invariants.

inv1.4b : tcl(parent) ∩ id(OBJECT) = ∅

Fig. 4. No-loop property

Here tcl which is mentioned in Invariant inv1.4b is a transitive closure.
In a context shown in Fig. 5, tcl is defined as a total function mapped from
OBJECT ↔ OBJECT to OBJECT ↔ OBJECT . Giving r ∈ OBJECT ↔
OBJECT , the transitive closure of r is equal to r ∪ r; tcl(r) (thm1 of Fig. 5).

The parent variable is updated by several of the events. If we were to use
inv1.4b instead of inv1.4, the Copy event, for example, would give rise to a proof
obligation with inv1.4b as a hypothesis and the following goal:

tcl(parent ∪ replica ∪ {nobj 7→ to}) ∩ id(OBJECT) = ∅

Proof of this PO would not be easy since distribution of tcl through union and
other set operations is not straightforward. We avoid such difficulty proofs by
using formulation inv1.4 instead. Significantly, we can prove that the formulation
in inv1.4b follows from the formulation in inv1.4. This is given by Theorem thm3
shown in Fig. 5. This theorem has been proved using the interactive prover
of Rodin. The strategy we follow in proving this theorem is to use proof by
contradiction.

In order to satisfy requirement Req1.4, instead of introducing another in-
variant, we present other machine theorems (given in Fig. 6) which are derived

Modelling and Proof of a Tree-structured File System in Event-B and Rodin 7

Sets

OBJECT
Constants

root, tcl, objrel, objfn
Axioms

axm1 : root ∈ OBJECT
axm2 : objrel = OBJECT ↔ OBJECT
axm3 : objfn = OBJECT \ {root} 7→ OBJECT
axm4 : tcl ∈ objrel → objrel
axm5 : ∀r·(r ∈ objrel ⇒ r ⊆ tcl(r))
axm6 : ∀r·(r ∈ objrel ⇒ r; tcl(r) ⊆ tcl(r))
axm7 : ∀r, t·(r ∈ objrel ∧ r ⊆ t ∧ r; t ⊆ t ⇒ tcl(r) ⊆ t)

Theorems

thm1 : ∀r·(r ∈ objrel ⇒ tcl(r) = r ∪ (r; tcl(r)))
thm2 : tcl(∅) = ∅

thm3 : ∀t·(t ∈ objfn ∧ (∀s·s ⊆ (t−1)[s] ⇒ s = ∅)
⇒ tcl(t) ∩ id(OBJECT) = ∅)

Fig. 5. Definition of transitive closure (tcl) and no-loop theorem (thm3)

from existing invariants and guarantee that the property is satisfied. Consider-
ing Theorem mth3, since (tcl(parent))−1[{root}] returns all objects reachable
from root, this theorem shows that all objects except root are reachable from
root. Other machine theorems, mth1 and mth2, are used in the proof of mth3.
Theorem mth4 is introduced to satisfy the no-loop property.

Theorems

mth1 : ∀T ·(root ∈ T ∧ parent−1[T] ⊆ T ⇒ objects ⊆ T)
mth2 : objects ⊆ {root} ∪ (tcl(parent))−1[{root}]
mth3 : objects \ {root} ⊆ (tcl(parent))−1[{root}]
mth4 : tcl(parent) ∩ id(OBJECT) = ∅

Fig. 6. Machine theorems satisfying reachability and no-loop properties

5 Events

In this section, we outline four abstract events including Create, Move, Copy
and Delete.

8 Kriangsak Damchoom, Michael Butler and Jean-Raymond Abrial

Create event: Create an object in an existing location (see Fig. 7). In the
figure, obj is an object being created and in is its parent. Here obj must be an
OBJECT that is not already in the set objects (see grd1); and in must exist
(see grd2). The object obj will be added to the set objects by act1; and in will
be assigned to be the obj’s parent by act2.

Event Create =̂
Any

obj, in
Where

grd1 : obj ∈ OBJECT \ objects
grd2 : in ∈ objects

Then

act1 : objects := objects ∪ {obj}
act2 : parent(obj) := in

End

Fig. 7. A specification of Event Create

Move event: This event is aimed at moving an existing object except root
from one place to another place. Considering Fig. 8, a is an object being moved
from node r to node c. Node c will become a new parent of a. In Fig. 9, an
existing object named obj is moved to a new location named to. Parameter des
is the set of all descendants of obj which is equal to (tcl(parent))−1[{obj}]. In
this case, the destination, to, must exist and not be obj or a descendant of obj
(these constraints are specified as grd2 and grd5). These guards are necessary
to guarantee that the move does not introduce a loop or unreachable objects.
The parent function is updated so that obj has to as its parent.

Copy event: In order to understand more about the copy event, we will
describe this event by using Fig. 10. From the figure, the left-hand side is a tree
before copying and the right-hand side is the result. Here r is a root node, a is
an object being copied (d and e, its descendants, will be copied as well) from
node r to node c. The arrows represent the function parent and the dashed
lines represent a correspondence function which is a bijection from the set of all
objects being copied to the set of new objects (a′, d′, and e′) which is a copy
of that set. The correspondence bijection is used to maintain the structure of
directory a in the copy.

Considering Event Copy given in Fig. 11, obj (the object being copied) and
to (the destination) behave like external parameters provided by users or ap-
plication programs, while the rest are local parameters used for computation.
However, there is no distinction between external parameters and local param-
eters in Event-B. In this event, des is the set of all descendants of the object

Modelling and Proof of a Tree-structured File System in Event-B and Rodin 9

r

a

b c

d e

f

r

a b c

d e f

obj to

Fig. 8. Diagram of moving a subtree rooted at a from r to c

Event Move =̂
Any

obj, to, des
Where

grd1 : obj ∈ objects \ {root}
grd2 : to ∈ objects
grd3 : des ⊆ objects
grd4 : des = (tcl(parent))−1[{obj}]
grd5 : to /∈ des ∪ {obj}

Then

act1 : parent(obj) := to
End

Fig. 9. A specification of Event Move

r

a b c

d e f a

d e

r

a b c

d e f

obj to

subparent

replica

Fig. 10. A diagram of copying a subtree (subparent) rooted at a from r to c

10 Kriangsak Damchoom, Michael Butler and Jean-Raymond Abrial

obj which is equal to (tcl(parent))−1[{obj}]; objs is the set of all objects being
copied; nobjs is the set of new objects corresponding to the set objs; corres is
the correspondence bijection. With reference to Fig. 10, subparent represents
the subtree rooted at a which is being copied. In this event, subparent is equal
to des ⊳ parent which is a restriction of the parent function to des (e.g., d 7→ a
and e 7→ a in Fig. 10). Finally, replica is a copy of subparent which is equal to
corres−1; subparent; corres (e.g., d′ 7→ a′ and e′ 7→ a′ in Fig. 10).

Event Copy =̂
Any

obj, to, des, objs, corres, nobjs, nobj, subparent, replica
Where

grd1 : obj ∈ objects \ {root}
grd2 : des ⊆ objects
grd3 : des = (tcl(parent))−1[{obj}]
grd4 : to ∈ objects
grd5 : to /∈ des ∪ {obj}
grd6 : objs = des ∪ {obj}
grd7 : nobjs ⊆ OBJECT \ objects
grd8 : corres ∈ objs ։ nobjs
grd9 : nobj = corres(obj)
grd10 : subparent = des ⊳ parent
grd11 : replica = corres−1; subparent; corres

Then

act1 : parent := parent ∪ replica ∪ {nobj 7→ to}
act2 : objects := objects ∪ nobjs

End

Fig. 11. A specification of Event Copy

At this point, the reason we introduce a number of additional local parame-
ters is to make models easier to read and prove. For example, without introducing
des, subparent and replica, act1 can be replaced by

parent := parent ∪ corres−1; (tcl(parent))−1[{obj}] ⊳ parent; corres
∪ {nobj 7→ to}

but we can see that the action becomes more difficult to read.

Additionally, there are two main constraints in this event. Firstly, the object
being copied, obj, must exist and must not be the root. This is satisfied by
grd1. Secondly, the destination, to, must exist and must not be the object being

Modelling and Proof of a Tree-structured File System in Event-B and Rodin 11

copied or its descendant (satisfied by grd5). Guard grd5 plays an important role
to ensure that loops are not produced by this event.

Delete event: This event is given in Fig. 12. In the figure, obj is an object
being deleted; des is a set of all obj’s descendants. Here grd1 states that obj
must be an existing object except root. The object being deleted and all its
descendants, objs, will be removed from objects by act1 and all related parent-
entries also be removed by act2.

Event Delete =̂
Any

obj, des, objs
Where

grd1 : obj ∈ objects \ {root}
grd2 : des ⊆ objects
grd3 : des = (tcl(parent))−1[{obj}]
grd4 : objs = des ∪ {obj}

Then

act1 : objects := objects \ objs
act2 : parent := objs ⊳− parent

End

Fig. 12. A specification of Event Delete

6 First Refinement: Files and Directories

In this refinement, objects are classified as files or directories. There are two
machine variables introduced in this level, namely, files (a set of existing files)
which is initialised to the empty set and directories (a set of existing directo-
ries) which is initialised to a set of root. The variables files and directories are
used to partition the variable objects. Additionally, the Create event of the ab-
straction is refined into events crtfile (create file) and mkdir (make directory).
Additional requirements for this level are given below.

Req2.1: Set of objects is partitioned into files and directories.
Req2.2: Root node is a directory.

Req2.3: The parent of each object must be a directory.

Fig. 13 shows a list of machine variables, invariants formulated to satisfy
above requirements and initialised values of each variable. Considering the gluing
invariant inv2.4, the abstract variable objects is entirely defined in terms of files

12 Kriangsak Damchoom, Michael Butler and Jean-Raymond Abrial

and directories. As a result, it can be substituted by files ∪ directories and is
no longer used in this level.

Variables

files, directories, parent
Invariants

inv2.1 : files ⊆ objects
inv2.2 : directories ⊆ objects
inv2.3 : files ∩ directories = ∅

inv2.4 : objects = files ∪ directories
inv2.5 : root ∈ directories
inv2.6 : ran(parent) ⊆ directories

Initialisation

files := ∅

directories := {root}
parent := ∅

Fig. 13. Machine variables, invariants and initialisation of the first refinement

In this refinement, we choose two events (Create-file and Copy) to illustrate
a concrete model of this level.

Create-file event: This event (named crtfile), given in Fig. 14, refines
Create of the previous abstraction. Additional details introduced in this refine-
ment: (i) grd2, in must be a directory; and (ii) act1, the object must be added
to the set files directly, instead of the set objects in the previous abstraction.

Event crtfile refines Create =̂
Any

obj, in
Where

grd1 : obj ∈ OBJECT \ (files ∪ directories)
grd2 : in ∈ directories

Then

act1 : files := files ∪ {obj}
act2 : parent(obj) := in

End

Fig. 14. A specification of Create-file event

Modelling and Proof of a Tree-structured File System in Event-B and Rodin 13

A refinement of Event Copy: In this refinement, see Fig. 15, additional
details introduced in this event are: (i) grd4, the destination, to, must be a
directory; (ii) act2, all correspondents of objs which are files must be added to
the set files; and (iii) act3, all correspondents of objs which are directories must
be added to the set directories as well. These two actions refine Action act2 of
the previous abstraction.

Event Copy refines Copy =̂
Any

obj, to, des, objs, corres, nobjs, nobj, subparent, replica
Where

grd1 : obj ∈ (files ∪ directories) \ {root}
grd2 : des ⊆ (files ∪ directories)
grd3 : des = (tcl(parent))−1[{obj}]
grd4 : to ∈ directories
grd5 : to /∈ des ∪ {obj}
grd6 : objs = des ∪ {obj}
grd7 : nobjs ⊆ OBJECT \ (files ∪ directories)
grd8 : corres ∈ objs ։ nobjs
grd9 : nobj = corres(obj)
grd10 : subparent = des ⊳ parent
grd11 : replica = corres−1; subparent; corres

Then

act1 : parent := parent ∪ replica ∪ {nobj 7→ to}
act2 : files := files ∪ corres[objs ∩ files]
act3 : directories := directories ∪ corres[objs ∩ directories]

End

Fig. 15. A refinement of Event Copy

7 Second Refinement: File content

In this refinement, file contents and other requirements related to the contents
are introduced accompanied with four events: open (open an existing file), read
(read the whole content of a file from the storage into memory buffer), write
(write the content of a file on the buffer back to the storage) and close (close
an opened file). Some constraints are covered in this level – such as each file has
some content; each file must be opened before reading or writing; and a buffer
of each opened file will be assigned once the file is opened and released when
the file is closed. Machine variables introduced in this refinement are listed and
discussed below.

14 Kriangsak Damchoom, Michael Butler and Jean-Raymond Abrial

fcontent ∈ files→ CONTENT

opened files ⊆ files

fbuffer ∈ opened files→ CONTENT

In this refinement, the content of files, fcontent, is defined as a total function
mapped from each file to a content. Variable opened files is set of files which are
opened. The buffer of each opened file, fbuffer, is specified as a total function
mapped from each opened file to a content. The content is an array of data items
(BYTEs). In a context seen by this refined machine, the content is defined as a
constant named CONTENT ; and BY TE is defined as a carrier set.

CONTENT = N 7→ BY TE

Fig. 16 given below is an example of event read. This event is aimed at
reading the whole content of a file named f from a storage into its buffer. Guard
grd1 states that the file f must be an opened file.

Event read =̂
Any

f
Where

grd1 : f ∈ opened files
Then

act1 : fbuffer(f) := fcontent(f)
End

Fig. 16. A specification of Event read

8 Third Refinement: Permissions

In this level, requirements related to access permissions are introduced. For ex-
ample, each object has an owner, a group-owner and a list of permissions. Access
to each object depends on its permissions. Additionally, users and groups are
specified in this level as well. For instance, each user can be a member of one or
more groups but at most one primary group is assigned, etc.

Considering Fig. 17, a number of machine variables are introduced in this
refinement: users, a set of existing users; groups, a set of existing groups;
user pgrp, a primary group of each user; user grps, user’s groups; obj owner,
an owner of each object; and obj perms, permissions of each object. Invariant
inv4.5 states that a primary group of each user must be a group in which the

Modelling and Proof of a Tree-structured File System in Event-B and Rodin 15

Variables

...
users, groups, user pgrp, user grps, obj owner, obj grp, obj perms

Invariants

inv4.1 : users ⊆ USER
inv4.2 : groups ⊆ GROUP
inv4.3 : user pgrp ∈ users → groups
inv4.4 : user grps ∈ users ↔ groups
inv4.5 : ∀u·u ∈ users ⇒ user pgrp(u) ∈ user grps[{u}]
inv4.6 : obj owner ∈ (files ∪ directories) → users
inv4.7 : obj grp ∈ (files ∪ directories) → groups
inv4.8 : obj perms ∈ (files ∪ directories) ↔ PERMISSION

Fig. 17. Additional machine variables and invariants of the third refinement

user be a member. In a context seen by this machine, GROUP, USER and PER-
MISSION (a set of permission types) are defined as carrier sets.

Fig. 18 is an example of Event read, which refines the read event of the
previous abstraction. In this event, guards grd2 and grd3 state that user usr
who issues this read request must exist and has a read permission on f .

Event read refines read =̂
Any

f, usr
Where

grd1 : f ∈ opened files
grd2 : usr ∈ users
grd3 : f 7→ usr ∈

RPerm(obj perms 7→ obj owner 7→ obj grp 7→ user grps)
Then

act1 : fbuffer(f) := fcontent(f)
End

Fig. 18. A refinement of Event read

RPerm, which is mentioned in the event read, encodes the rules that deter-
mine whether a user has read permission for a file. It is defined in a context seen
by this machine. Part of this context which is related to RPerm is shown in
Fig. 19. In the figure, p represents a permission relation; s is an owner function;
g is an object-group function; m is a user-group relation; su, a super user (who
has the right to manage every thing), is defined as a USER constant; and rbo

16 Kriangsak Damchoom, Michael Butler and Jean-Raymond Abrial

(owner-read), rbg (group-read) and rbw (world-read) are permission types. This
function states that a user u has a permission to read an object o only if at least
one of these criteria is satisfied: (i) the user is the owner and has the owner-read
permission; (ii) the user is a member of the group to which the object belongs
and has the group-read permission; (iii) the world-read permission is assigned
to the object; and (iv) the user is the super user. Other permission definitions
(i.e., write and execute permission functions) which are not mentioned here are
also specified in the same way.

o 7→ u ∈ RPerm(p 7→ s 7→ g 7→ m)
⇔ ((o 7→ u ∈ s ∧ o 7→ rbo ∈ p)

∨
(g(o) ∈ m[{u}] ∧ o 7→ rbg ∈ p)
∨
(o 7→ rbw ∈ p)
∨
(u = su))

Fig. 19. A definition of read permission function

9 Proofs

The proof statistics, given in Fig. 20, show that 162 proof obligations were gen-
erated by the Rodin platform. 127 proof obligations (or 78%) were proved auto-
matically while others were discharged by interactive proof. In the figure, MCH0
represents an abstract model; MCH1, MCH2 and MCH3 represent the first, sec-
ond and third refinements of the abstract model. CTX0 up to CTX3 represent
corresponding contexts which are seen by those machines.

In order to make proof easier and reduce the time required, we introduced
proved theorems that could be reused for discharging some similar proof obliga-
tions. The example given in Fig. 21 is a theorem introduced in a context seen by
the abstract machine. This theorem was used to prove that the no-loop property
held for Event Copy. To prove this event preserves the no-loop property (inv1.4),
we provided: f = parent, g = replica, r = root, u = nobj, x = to, M = objects
and N = nobjs. However, the theorem could be reused for Event Create and
Move events as well. For example, in the case of Event Create, g was assigned
to be the empty set, u = obj and N = {obj}.

Proof of Theorem thm4 was one of the most complex of the interactive proofs.
We outline the steps involved. Proving thm4, we have the goal G1:

C = ∅ (G1)

Modelling and Proof of a Tree-structured File System in Event-B and Rodin 17

Machines/Contexts Total POs Automatic Interactive
CTX0 10 8 2
CTX1 7 3 4
CTX2 0 0 0
CTX3 3 3 0
MCH0 35 22 13
MCH1 50 42 8
MCH2 17 15 2
MCH3 40 34 6
Overall 162 127 (78%) 35 (22%)

Fig. 20. Proof statistics

thm4 : ∀f, g, r, u, x, M, N ·
M ⊆ OBJECT ∧ N ⊆ OBJECT ∧ M ∩ N = ∅

∧ r ∈ M ∧ f ∈ M \ {r} → M
∧ u ∈ N ∧ g ∈ N \ {u}→ N
∧ x ∈ M
∧ (∀A·A ⊆ f−1[A] ⇒ A = ∅)
∧ (∀B ·B ⊆ g−1[B] ⇒ B = ∅)
∧ f ∪ g ∪ {u 7→ x} ∈ (M ∪ N) \ {r}→ M ∪ N

⇒
(∀C ·C ⊆ (f ∪ g ∪ {u 7→ x})−1[C] ⇒ C = ∅)

Fig. 21. A theorem used for discharging no-loop proof obligation

with the hypothesis H1:

C ⊆ (f ∪ g ∪ {u 7→ x})−1[C] (H1)

H1 is rewritten to H2:

C ⊆ f−1[C] ∪ g−1[C] ∪ {x 7→ u}[C] (H2)

Now we cannot prove that C ⊆ f−1[C], but we can use H2 and other antecedents
of thm4 to prove

C ∩ M ⊆ f−1[C ∩ M] (H3)

From H3 and the antecedent of thm4 we can prove

C ∩ M = ∅ (H4)

Similarly, we can prove that

C ∩ N = ∅ (H5)

18 Kriangsak Damchoom, Michael Butler and Jean-Raymond Abrial

We observe that C can be partitioned by M and N. Thus, using H2 we can prove

C = (C ∩ M) ∪ (C ∩ N) (H6)

Finally, G1 is proved using H4, H5, and H6.

10 Comparison with related work

A number of formalisations of file systems have been developed by other re-
searchers. Most of them are focused on file contents, and read and write op-
erations. There is some work that deals with the structure of file systems. A
specification of a visual file system in Z by Hughes [12] is focussed on a tree
structure and operations affecting the tree structure, but file content and a ma-
nipulation of file content were not specified. In this specification, transitive clo-
sure was chosen to specify main property of a tree structure, e.g. reachability.
However, the no-loop property was not mentioned in this specification. In ad-
dition, this specification had no refinement and no proof. Another related work
by Morgan and Sufrin presented in [11] is a specification of a Unix filing system
in Z. In this specification, instead of using a tree structure, the location of each
object is formulated as a sequence of directory names, which is the path of each
file. This work is concentrated on file contents and naming operations used for
manipulating these rather than structure manipulation operations such as direc-
tory copy and move. Based on the specification of Morgan and Sufrin, Freitas,
Fu and Woodcook [10] have developed a verified model of the POSIX filestore
accompanied with a representation and proof using the Z/Eves proof system.

Since the filestore challenge was proposed by Joshi and Holzmann [13] in
2005, other researchers have addressed this challenge. For example, Butterfield
and Woodcook [7] have developed an abstract specification in Z of the ONFi
specification [16]. In addition, Ferreira et al. [9] have developed and verified
a specification of the Intel Flash File System Core [17] in VDM. Alloy and
HOL were used as tools for model checking and theorem proving. Another work
contributed by Kung and Jackson [14] is a formal specification and analysis of
a flash-based file system in Alloy. This work was focussed on basic operations of
a filesystem and features covering wear-levelling and fault tolerance.

11 Lessons and Conclusion

In this paper, we have presented a verified model of a tree-structured file sys-
tem focusing on the tree structure and the basic operations affecting the tree
structure. Our aims are constructing a model with clear and accurate formula-
tion of the system properties and discharge of all proof obligations. To satisfy
these, careful selection of invariants and machine theorems was important and
eased the proof effort. For example, for the high-level requirements on the data
structure, we introduced two tree properties: (i) no-loop and (ii) reachability.
Both these properties are naturally expressed using transitive closure. However,

Modelling and Proof of a Tree-structured File System in Event-B and Rodin 19

we identified simpler but sufficient formulations (inv1.3, inv1.4) and exposed
these as invariants. Proving that all events preserved these invariants was not
too difficult since they did not involve transitive closure. The transitive closure
formulations were expressed as machine theorems and we proved that these fol-
lowed from the machine invariants. We did not need to prove that the theorems
are preserved by all machine events which simplified the proof effort considerably.

Our experience of using the Rodin tool was very positive3. The supported
language was sufficiently expressive and all proof obligations could be discharged.
We achieved a good degree of automatic proof. All interactive proofs involved a
small number of steps and were straightforward to achieve.

Based on this experience, we have found that general theorems should be
specified in a context such as Theorem thm4 in Fig. 21. They can be seen and
used by more than one machine, and can be extended by other contexts. Spe-
cific theorems which are derived from machine variables and invariants should be
specified in machines (such as machine theorems given in Fig. 6). These machine
theorems can be used to help discharge proof obligations as well. Introducing
additional theorems that can be reused for discharging similar proof obligations
makes automatic and interactive proof easier and can reduce the time required
for proofs. In addition, instead of introducing new machine invariants to satisfy
system properties, providing machine theorems and proving that those properties
are satisfied is another mechanism used to specify system models. This mecha-
nism can reduce the number of proof obligations and makes models simpler and
easier to prove.

Additionally, it can be seen in an example given in Section 5, providing
additional parameters in each event is useful sometimes. Although more guards
are needed, it could make models more readable and easier to manage in both
specifying and proof.

Refinement can be used to introduce other requirements that may be post-
poned or missed from the previous steps and later be covered in the refinement
steps. Refinement allows us to factor out some of the modelling and proof com-
plexities. In this development we chose to focus on the tree structure manip-
ulation in the abstract model and postpone other details to later refinements
- for example, we do not distinguish files and directories at the abstract level.
This made the proof obligations and invariants for the tree structure easier to
formulate than if we had tried to model everything in one level. Note that we
regards the full chain of refinements as constituting the specification, not just
the most abstract level.

Finally, it can be stated that this example allowed us to define a kind of
modelling methodology – finding the right mathematical concepts, finding useful
general theorems – which could be exported in many different complex modelling
projects which require a manipulation of the tree structure.

3 Caveat: Abrial and Butler are developers of the Rodin tool so are not objective
evaluators.

20 Kriangsak Damchoom, Michael Butler and Jean-Raymond Abrial

References

1. Abrial, J.-R.: The B Book. Cambridge University Press (1996).
2. Abrial, J.-R.: A system development process with Event-B and the Rodin plat-

form. In: Butler, M., Hinchey, M. G. and Larrondo-Petrie, M. M. (eds.) ICFEM
2007. LNCS, vol. 4789, pp. 1–3. Springer (2007).

3. Abrial, J.-R.: Modelling in Event-B: System and Software Engineering. To be
published by Cambridge University Press (2008).

4. Abrial, J.-R., Butler, M., Hallerstede, S. and Voisin, L.: An open extensible tool
environment for Event-B. In: Liu, Z. and He, J. (eds.) ICFEM 2006. LNCS,
vol. 4260. Springer (2006).

5. Abrial, J.-R. and Hallerstede, S.: Refinement, decomposition and instantiation
of discrete models: Application to Event-B. Fundamentae Infomatica. 1001–
1026 (2006).

6. Butler, M.: Rodin deliverable D31: Plublic versions of plug-in tools. Technical
report, University of Southampton, UK (2007).

7. Butterfield, A. and Woodcock, J.: Formalising flash memory: First steps. In:
12th ICECCS 2007, pp. 251–260, IEEE Computer Society, USA (2007).

8. Coleman, J., Jones, C., Oliver, I., Romanovsky, A. and Troubitsyna, E.:
RODIN (Rigorous open Development Environment for Complex Systems). In:
5th European Dependable Computing Conference: EDCC-5 supplementary,
pp. 23–26, Budapest (2005).

9. Ferreira, M. A., Silva, S. S. and Oliveira, J. N.: Verifying Intel flash file system
core specification. Technical report, University of Minho (2008).

10. Freitas, L., Fu, Z. and Woodcock, J.: POSIX file store in Z/Eves: an experiment
in the verified software repository. In: 12th ICECCS, pp. 3-14 (2007).

11. Hayes, I.: Specification Case Studies. Prentice Hall International, UK (1992).
12. Hughes, J.: Specifying a visual file system in Z. Technical report, Department

of Computing Science, University of Glasgow (1989).
13. Joshi, R. and Holzmann, G. J.: A mini challenge: Build a verifiable filesystem.

In: Verified Software: Theories, Tools, Experiments (2005).
14. Kang, E. and Jackson, D.: Formal modeling and analysis of a flash filesystem in

Alloy. 1st Conference on ASM, B, and Z (ABZ 2008). London, UK. September
2008. To appear.

15. Métayer, C., Abrial, J.-R. and Voisin, L.: Rodin deliverable 3.2. Event-B lan-
guage. Technical report, University of Newcastle upon Tyne, UK (2005).

16. Hynix Cemicondutor et al.: Open NAND Flash Interface Specification. Tech-
nical report Revision 1.0, ONFI, http://www.onfi.org (Dec. 2006).

17. Intel Flash File System Core Reference Guide, version 1. Technical report
304436001, Intel Coorporation (Oct. 2004).

