
LOTOS NT User Manual

Mihaela Sighireanu

with updates by Alban Catry, David Champelovier, Hubert Garavel,
Frédéric Lang, Guillaume Schaeffer, Wendelin Serwe, and Jan Stöcker

Release 2.6 — February 21, 2008

Foreword

The present User Manual of Lotos NT comes with the release 2.6 of the compiler Traian. It
completely describes the syntax and the informal semantics of the sub-set of Lotos NT currently
supported by Traian.

Status This is a partial implementation; it does not fully implement the behaviour and module
parts of Lotos NT. The “†” symbol is used to mark the features of Lotos NT which are not yet
supported by Traian.

Availability The complete distribution for Traian is available on the web at the
address http://www.inrialpes.fr/vasy/traian. Please report feedback and bugs to
traian@inrialpes.fr.

Acknowledgments The author thanks people who helped in writing this manual, either through
their ideas or their comments about the different versions of this manual. I owe thanks to Frédéric
Lang, and also to Fabrice Baray, Claude Chaudet, Hubert Garavel, Marc Herbert, Radu Mateescu,
and Bruno Vivien.

Release 2.6 3 February 21, 2008

4

Release 2.6 February 21, 2008

Contents

1 Introduction 9

1.1 Background . 9
1.2 Goals . 11
1.3 Main Concepts . 11
1.4 LOTOS NT versus E-LOTOS . 12
1.5 Manual Structure . 13

2 Basic mathematical concepts and notation 15

2.1 General . 15
2.2 Backus-Naur Form . 16
2.3 Description of the Syntax . 17
2.4 Data values . 17
2.5 Structured Labelled Transition System . 17

3 Lexical Structure 19

3.1 ISO Latin-1 Character Set . 19
3.2 Input Elements and Tokens . 20
3.3 Comments . 20
3.4 Includes . 20
3.5 Identifiers . 21
3.6 Special Identifiers . 21
3.7 Keywords . 22
3.8 Literals . 22

3.8.1 Integer Literals . 22
3.8.2 Floating-Point Literals . 23
3.8.3 Characters . 23
3.8.4 String Literals . 24

3.9 Operators . 25

4 Types 27

4.1 Type Definition . 27
4.2 Predefined Operations . 28
4.3 Predefined Types . 29

4.3.1 The boolean type . 30
4.3.2 The natural type . 30
4.3.3 The integral type . 30
4.3.4 The floating point type . 31
4.3.5 The character type . 31

Release 2.6 5 February 21, 2008

6 CONTENTS

4.3.6 The string type . 32
4.3.7 The “none” type . 32
4.3.8 The “time” type . 32

4.4 Derived Types . 33
4.4.1 Enumerated types . 33
4.4.2 Scalar and simple types . 34
4.4.3 Record types . 34
4.4.4 Sets . 35
4.4.5 Lists . 35

4.5 Subtypes† . 37
4.6 Arrays† . 37
4.7 External Types and Pragmas . 37

5 Expressions, Statements, and Functions 39

5.1 Constants . 39
5.2 Value expressions . 40

5.2.1 Variables . 41
5.2.2 Constructor application . 41
5.2.3 Function application . 42
5.2.4 Field selection . 42
5.2.5 Field update . 43
5.2.6 Unambiguous Expressions . 43

5.3 Patterns . 44
5.4 Statements . 45

5.4.1 Value return . 47
5.4.2 Null Statement . 47
5.4.3 Assignment . 47
5.4.4 Sequential Composition . 47
5.4.5 Variable declaration . 47
5.4.6 Case statement . 48
5.4.7 If statement . 49
5.4.8 Iteration Statements . 50
5.4.9 Exceptions and their handling . 52

5.5 Functions . 54
5.5.1 Function definition . 54
5.5.2 Function call . 56

6 Behaviour Expressions and Processes 59

6.1 Basic Behaviours . 59
6.2 Regular Behaviours . 60

6.2.1 Variable declaration . 60
6.2.2 Conditional behaviour . 60
6.2.3 Iteration behaviour . 61
6.2.4 Exception raising and handling . 62

6.3 Assignment and Procedure Call . 62
6.4 Communication and Actions . 63
6.5 Sequential Behaviours . 65
6.6 Signaling . 65
6.7 Processes Definition and Instantiation . 66

6.7.1 Process definition . 66

Release 2.6 February 21, 2008

CONTENTS 7

6.7.2 Process instantiation . 67
6.8 Non-deterministic Behaviours . 68

6.8.1 Operator “[]” . 68
6.8.2 Operator choice over values . 69

6.9 Concurrency . 70
6.9.1 Synchronization operator . 70
6.9.2 Full synchronization operator . 71
6.9.3 Interleaving operator . 71
6.9.4 Generalized parallel operator . 72
6.9.5 Parallel over values operator . 74

6.10 Hiding . 74
6.11 Renaming . 76
6.12 Unambiguous Behaviours . 77

7 Modules 79

7.1 Generalities . 80
7.2 Interfaces . 81

7.2.1 Interface declaration . 81
7.2.2 Interface expression . 81
7.2.3 Equation declaration . 83

7.3 Modules . 84
7.3.1 Module declaration . 84
7.3.2 Module expression . 85
7.3.3 External modules . 86

7.4 Generic Modules . 86
7.4.1 Generic module declaration . 86
7.4.2 Generic module instantiation . 87

7.5 Specification . 89
7.6 Importation Rules . 89

A Syntax Summary 91

A.1 Syntax of the module part . 91
A.2 Syntax of the data part . 93
A.3 Syntax of the behaviour part . 97

Bibliography 101

Index 105

Release 2.6 February 21, 2008

8 CONTENTS

Release 2.6 February 21, 2008

Chapter 1

Introduction

“Formal description techniques (FDT) are
methods of defining the behaviour of an (infor-
mation processing) system in a language with
formal syntax and semantics, instead of a nat-
ural language as English.”
ISO-8807

In the following section the origin and the evolution of FDTs is discussed, especially Lotos. The
objectives that the new generation of FDTs must satisfy are considered. The main concepts of
E-Lotos are presented. Finally the structure of the document is explained.

1.1 Background

The origins of FDTs are the activity of international organizations as Iso and Ccitt around the
open architecture Osi. Due to their complexity, the description of services and protocols of the
communication systems composing the Osi architecture needed best methods than natural language
and state machines. For this reason Iso and Ccitt developed in the 80’s three formal description
techniques: Estelle, Lotos, and Sdl.

Lotos was developed by FDT experts from Iso during the years 1981-1988. The objectives of its
design follow strictly the main general objectives defined for FDTs:

• expressive: Lotos is able to define both protocol and service descriptions of the seven layers
of Osi.

• well-defined : Lotos has a formal mathematical model suitable for the analysis of descriptions
supported by the testing of an implementation for conformance.

• well-structured : Lotos offers many means for structuring of specification.

• abstract : Lotos is independent from the methods of implementations and offers means for
abstraction of irrelevant details.

As a design choice, Lotos consists of two “orthogonal” sub-languages:

Release 2.6 9 February 21, 2008

10 Chapter 1 : Introduction

The data part of Lotos is dedicated to the description of data structures. It is based on the
well-known theory of algebraic abstract data types [Gut77], more specifically on the ActOne
specification language [dMRV92].

The control part of Lotos is based on the process algebra approach for concurrency, and appears
to combine the best features of Ccs [Mil89] and Csp [Hoa85].

Lotos has been applied to describe complex systems formally, for example: the service and proto-
cols for the Osi transport and session layers [ISO89b, ISO89a, ISO92b, ISO92c], the Ccr1 service
and protocol [ISO95b, ISO95a], Osi Tp2 [ISO92a, Annex H], Maa3 [Mun91], Ftam4 basic file pro-
tocol [LL95], etc. It has been mostly used to describe software systems, although there are recent
attempts to use it for asynchronous hardware descriptions [CGM+96].

A number of tools have been developed for Lotos, covering user needs in the areas of simulation,
compilation, test generation, and formal verification.

Nevertheless, the three FDTs, including Lotos, actually show their limitation for several reasons:

• Some design choices must be revised in order to respond to criticism of users. For example, the
abstract data types used in Lotos and Sdl do not satisfy users.

• The new communication protocols like those of high flow network (e.g., Atm) or multimedia
protocols need the specification of real-time constraints. None of the three FDTs allows to
express all needed quantitative temporal constraints.

• The development of new architectures like Odp5 or Corba6 call into question the Osi model
and its static architecture. The model chosen is more dynamic and the mobility is important.

For these reasons Iso/Iec begun a revision of the Lotos standard in 1993 in the frame of Odp
activity group. The revised language is called E-Lotos (for Extended-Lotos). The enhancements
of Lotos should remove known limitations of the language concerning expressiveness, abstraction and
structuring capabilities, user friendliness. A non-exhaustive list of such undesirable characteristics is
given below:

• Although having a strong mathematical basis, the abstract data types need a good background
from the part of users. This prevents the use of the language by a large public, restricting it to
an “expert” public.

• Lotos is able to describe only temporal ordering, for example “the sending of a message is
followed by its reception”. However, one needs to express quantitative time requirements like
“the sending of a message is followed after 5 seconds by the message reception”.

• In the control part, the value passing is done in a pure functional style. Despite its proper
semantics, this feature adds cumbersome constraints for structuring the specification. For this
reason, a lot of case studies are done using “Basic Lotos”, i.e., Lotos without values.

1Commitment, Concurrency, and Recovery
2Distributed Transaction Processing
3Message Authentication Algorithm
4File Transfer, Access, and Management
5Open Distributed Processing
6Common Object Representation Brooker Architecture

Release 2.6 February 21, 2008

§ 1.2 : Goals 11

1.2 Goals

This section lists a number of qualities which, in our opinion, the new generation of FDT languages
should have.

The first of them is that E-Lotos must be a useful and pleasant tool for behaviour description and
analysis, and not a set of more or less awkward constraints.

This language must be easy to learn , which implies that its constructions have a
well defined, non-ambiguous semantics , and that it respects (in the limits of the semantics)
most rules and habits of the users. Because programming languages are intuitive and their concepts
largely used, providing the language with algorithmic features is a mean to accomplish this goal.

The language should also provide as much as possible description safety and reliability , while remain-
ing very versatile. As many errors as possible must be detected at compile time.

The language should provide maximal expressiveness . For example, the use of Lotos in several
case studies showed that the operators and the concepts of the language are not able to express self
interruption of behaviour [QA92], deterministic control passing between processes [GH93], or nets
of processes [Bol90]. E-Lotos should fill these gaps. Expressiveness also concerns the means for
describing real-time aspects. Actually, there exists several extensions of Lotos with real-time oper-
ators: ET-Lotos [LL97], RT-Lotos [Cd95]. These extensions form a strong basis for the definition
of real-time aspects of E-Lotos. As an extension of Lotos, the language should provide mean for
upward compatibility: a translation of Lotos constructs in E-Lotos should be provided.

The language should allow the modular description of systems and description re-usability .

In the context of the Odp group at Iso/Iec, the language should provide means for an easy interface
with external description or programming languages developed by this group, e.g., Idl. Also, it
should remain independent from, but easily translatable into most implementation languages (first
targets being C, Ada, Java). The accomplishment of this goal will provide a good platform for tools
developers, and so a possible large distribution of the language.

The language should provide constructs offering opportunities for an optimal analysis by tools.

Last but not least, the language must be simple.

1.3 Main Concepts

This section presents the main concepts of E-Lotos, together with a short justification of their
introduction in the language. Those justifications are related to the goal listed in the previous
section.

First of all, the E-Lotos main feature is concurrency . It is a mean for description of concurrent
(parallel) evolution of systems and their communication. The systems are composed in parallel
using a Csp-like [Hoa78] operator. The base mechanism for communication is the rendezvous on
communication points called gates . The communication allows the exchange of values. This is
the only mean for interaction between concurrent systems because their memory spaces must be
disjoint. The language provides several mechanisms for concurrency: interleaving, binary and n-ary
synchronization, network synchronization, coroutine mechanism. This is a first step towards language
expressiveness.

E-Lotos is a description language supporting non-determinism. Both internal and external [Hoa78]
non-determinism is provided. By difference with Lotos, E-Lotos provides also deterministic choice

Release 2.6 February 21, 2008

12 Chapter 1 : Introduction

constructs by means of “if-then-else” and “case” statements. The introduction of these constructs
touches both easy to use and optimal analysis requirement.

The language provides means for real-time descriptions. All operators of the language have an
intuitive time semantics. The time domain may be defined by the user with respect to a proper
semantics. So the time domain may be dense or discrete.

In the same frame of expressiveness, E-Lotos supports exception handling in order to deal with
abnormal conditions. The exceptions are modeled by signals.

The language is strongly typed , a necessary condition for description safety. All objects in a description
must be typed. Type checking is performed on any E-Lotos description in order to detect, at compile
time, most inconsistencies and errors. Basic types include integers, reals, booleans, strings, etc. User
defined types may be defined by using type constructors. This provides means for defining most
usual types: enumeration types, records, unions, sets, lists. Types may be recursive. Also, types and
functions may be specified into an external language.

E-Lotos remains a functional language in its semantics, Although it supports assignment of vari-
ables. This is a step toward user friendliness on the one hand, and interfacing with external languages,
on the other hand.

Modularity is a basic feature of E-Lotos. Constants, types, functions, and processes may be defined
in separate modules . The modules support the definition of local objects (constants, types, functions,
and processes). The visibility of local objects is specified by means of module interfaces . Modules
may be combined by importation . Another important feature for re-usability purposes is genericity .
Generic modules provide means for parameterizing modules with constants, types, functions, and
processes. As in Lotos, the dynamic semantics of behaviours and expressions are given only for fully
instantiated modules.

1.4 LOTOS NT versus E-LOTOS

Lotos NT is the language supported by the Traian compiler. It follows the main concepts of
E-Lotos and offers other features, in order to provide versatility, compilation and verification effi-
ciency.

[Sig99] exposes the main differences between Lotos NT and E-Lotos. We cite only two examples:

• In Lotos NT, functions names may be overloaded as in Ada [WWF87], i.e., two or more
functions may have the same name provided they have different profiles (list of parameters
types and result type). This is a useful feature because it improves the semantic consistency
of a Lotos NT specification—two similar operations on different types need not have different
names—and the semantic consistency of Lotos NT predefined functions themselves. Also, the
compatibility with ActOne is ensured.

• In Lotos NT, functions and processes may have input, output, and input/output parameters
as in Ada. This provides means for returning several results and for easy interfacing with
languages as Idl.

• The style of the Lotos NT language is fully imperative in syntax and semantics, unlike
E-Lotos which has functional semantics.

Release 2.6 February 21, 2008

§ 1.5 : Manual Structure 13

1.5 Manual Structure

This manual gives an informal definition of the Lotos NT language. A formal definition may be
found in [Sig99].

Chapter 2 presents the mathematical notations and concepts used. Chapter 3 presents the lexical
structure of the language. The language constructs are presented bottom-up, in order to make the
language easier to learn. We begin by presenting types and type declarations in chapter 4. The
language of data is presented in chapter 5. It contains data expressions, statements, and function
declarations. Chapter 6 presents the core of the language: behaviour expressions and process decla-
rations. Modules are presented in chapter 7.

Each section of the chapters defining the language presents language constructs in the following order:

• the goals and the rationales of the construct;

• its abstract syntax;

• its intuitive and its formal, static, and dynamic semantics;

• some examples of its use.

In this presentation, we use the “†” symbol to mark the features of the language which are not yet
supported by the Traian compiler.

Annex A presents the full syntax of the language.

We tried to present the information in a strictly linear order. However, where it is not possible to do
so, we signal forward references.

Release 2.6 February 21, 2008

14 Chapter 1 : Introduction

Release 2.6 February 21, 2008

Chapter 2

Basic mathematical concepts and

notation

2.1 General

This section contains a list of basic mathematical concepts and related notations used in the remainder
of the document.

def
= is defined as.
iff if and only if, i.e., double implication.

{a, b, c, ...} the set made up of elements a, b, c, The order in which the
elements are listed is immaterial.

6© the empty set .
x ∈ A x is an element of the set A.
x 6∈ A x is not an element of the set A.
A ⊆ B A is a subset of B.
A × B the Cartesian product of A with B, i.e., the set of all ordered

pairs < a, b > such that a ∈ A and b ∈ B.
A1 × A2 × ... × An the generalized Cartesian product of A1, A2, ..., An, i.e., the set

of ordered tuples < a1, a2, ..., an >, such that (∀i)ai ∈ Ai.
{x ∈ A | Q(x)} the set which contains only all those elements of A which

satisfy the property Q.

a1, ..., an the finite (or empty) list (or sequence, or n-tuple) made up of
the elements , or components a1, ..., an. Unlike sets, lists may
contain more than one instance of the same element, since
elements are distinguished by their position in the
ordering of the list; the length of the list is n;

<> the empty list has no elements, its length is 0;
a0, ..., an the non-empty finite list made up of the elements a0, ..., an;

the length of the list is n + 1;

Release 2.6 15 February 21, 2008

16 Chapter 2 : Basic mathematical concepts and notation

a the non-empty finite list made up of the elements a0, ..., an;
the length of the list is len(a);
a record is a n-tuple of which each element is labelled with a
unique label. If lab is the label of element x of record y, then
y.lab denotes x.

R ⊆ A × B R is a binary relation between A and B, i.e., a set of elements
of A × B;
the domain of R is defined as {a ∈ A | ∃b ∈ B. < a, b >∈ R};
the range of R is defined as {b ∈ B | ∃a ∈ A. < a, b >∈ R};

{} the empty relation;
f : A → B f is a (partial) function (finite map) from A to B,

i.e., f is a binary relation between A and B such that
for each a ∈ A there exists at most one b ∈ B such that < a, b >∈ f ;
the domain of f is denoted by Dom(f);
the range of f is denoted by Ran(f);
if < a, b >∈ f then f is defined for a, also written f(a) = b or a 7→ b;
the function f is total iff it is defined for all a ∈ A;
a function f : A → B is injective iff, for all a1, a2 in the domain
of f , f(a1) = f(a2) implies that a1 = a2;

f : A1 ×A2 × ...×An →B the function from the Cartesian product A1 × A2 × ... × An to B;
the function arity maps f to the number n of terms of the
Cartesian product.

2.2 Backus-Naur Form

The meta-language used in this manual to specify the syntax is based on Backus-Naum Form (BNF).
A BNF description of a language L is given by a set of productions , or re-write rules. The meta-
symbols used to compose rewrite rules are listed in Table 2.1.

Meta-symbol Name Pronunciation
"xyz" terminal symbol xyz
abc nonterminal symbol abc (nonterminal) abc
::= rewrite symbol is defined to be
| alternation symbol or, alternatively

[...] option operator 0 or 1 instances of
{...} repetition operator 0 or more instances of
; semi-colon end of BNF rule

Table 2.1: Meta-language symbols

A terminal symbol is a symbol that appears literally in L. A nonterminal symbol is a symbol that
denotes a syntactic construct of L (which is ultimately represented by a string of terminal symbols).

A rewrite rule has the form:

<nonterminal-symbol> ::= meta-expression ;

where the meta-expression is an expression constructed using terminal and nonterminal symbols, and
the operators listed in Table 2.1 except ::= and ;. Adjacent terminal or/and nonterminal symbols
occurring in a meta-expression denote the lexical concatenation of the texts they ultimately represent.
Concatenation respects the rules given in 3.

Release 2.6 February 21, 2008

§ 2.3 : Description of the Syntax 17

A rewrite rule is interpreted as follows: the nonterminal symbol of the left-hand side can be replaced
by any one of the of the sequences separated by the alternation symbol.

All operators (including implicit concatenation) have precedence order over the alternative operator.

2.3 Description of the Syntax

Descriptions of concrete syntax give formal rules to be implemented by a parser for the language.
Concrete syntax descriptions obey to constraints dictated by the implementation on a computer.
For instance, in order to avoid ambiguities and to provide a simple parser, the grammar must be
LALR(1).

However, the purpose of this document is to present the syntax to the user of the language. In
order to be more easily readable, we can abstract out some implementation details, and provide a
more informal presentation of the concrete syntax, using meta level syntactic facilities. A human will
understand the description better and faster than if written in a language designed for a machine.
It uses type-setting conventions which facilitate the user reading. The conventions used for the
presentation of the syntax are the following:

• terminals are represented using bold face;

• the special symbols are represented using teletype font. Note the difference between the special
symbols “[” and “]” and the (mathematical style) symbols “[” and “]” used to express optional
syntactic clauses in BNF.

• a non-empty list is represented like “a0,...,an”, i.e., with the indexes starting at 0. The possibly
empty lists are indexed from 1, i.e., “a1,...,an”.

More precisely, the BNF equivqlent of “a0,...,an” is “a{,a}”, while the BNF equivalent of
“a1,...,an” is “[a{,a}]”.

2.4 Data values

A data domain D is a set of sets; the elements of D are referred to as data carriers.

A special data carrier is the time data carrier. It is denoted by “time”.

NOTE: The domain of a type is a data carrier.

2.5 Structured Labelled Transition System

A structured labelled transition system is a 5-tuple
〈

Q, L ∪ {i}, D, T, qinit
〉

where:

• L is a set of labels ;

• i6∈ L is an internal event ;

• D is a data domain;

•
〈

Q, A, T, qinit
〉

is a labelled transition system, where

A
def
= {i} ∪ {G N | G ∈ L, N ∈ D} ∪ {d | d ∈ time}

Release 2.6 February 21, 2008

18 Chapter 2 : Basic mathematical concepts and notation

To emphasize the particular domain values D of a structured labelled transition system, this system
is also referred to as a labelled transition system over D.

Release 2.6 February 21, 2008

Chapter 3

Lexical Structure

This chapter presents1 the lexical conventions of Lotos NT.

Lotos NT programs uses the ISO Latin-1 (8859.1) character set.

The characters resulting from the lexical translations are reduced to a sequence of input ele-
ments (§ 3.2, p. 20), which are spaces, comments (§ 3.3, p. 20), and tokens. The tokens are: identi-
fiers (§ 3.5, p. 21), keywords (§ 3.7, p. 22), literals (§ 3.8, p. 22), and operators (§ 3.9, p. 25) of the
Lotos NT syntactic grammar.

3.1 ISO Latin-1 Character Set

The ISO Latin-1 character set is divided into:

• alphabetic characters (letters), made of ASCII 2 characters (octal codes #101–#132) and other
ISO Latin 1 characters (octal codes #300–#377). See Table 2 of ISO/IEC DIS 14750.

LETTER ::= #101..#132 ;

LETTER_WITH_ACCENT ::= #300..#377 ;

ALPHABETIC_CHARACTER ::= LETTER | LETTER_WITH_ACCENT ;

• digits, i.e., characters from “0” to “9”. See Table 3 of ISO/IEC DIS 14750.

DIGIT ::= "0".."9" ;

• spaces and formating characters, which include blanks, horizontal and vertical tabs, newlines,
form feeds. See Table 5 of ISO/IEC DIS 14750.

SPACE ::= HT | NL | FF | SP | LF | CR ;

NOTE: IDL considers also BEL, BS, but not SP.

1This section is an adaptation of The ISO/IEC DIS 14750 , Section 4 (IDL Syntax and Semantics); it differs in the
list of legal keywords and punctuation.

2ASCII (ANSI X3.4) is the American Standard Code for Information Interchange.

Release 2.6 19 February 21, 2008

20 Chapter 3 : Lexical Structure

Except for comments, identifiers, and the contents of character and string literals, all input elements
in a Lotos NT specification are formed only from ASCII characters (or escapes which result in
ASCII characters).

3.2 Input Elements and Tokens

The input characters and line terminators are reduced to a sequence of input elements. Input ele-
ments which are not blank spaces or comments are tokens. Tokens are the terminal symbols of the
Lotos NT syntactic grammar.

Input ::= [InputElement { InputElement }] ;

InputElement ::= SPACE | Comments | Token ;

Token ::= IDENTIFIER | Keyword | Literal | Operator | Separator ;

There are four classes of tokens: identifiers, keywords, literals, operators, and other separators. Blank
spaces and comments are ignored except as they serve to separate tokens. Some blank space is required
to separate otherwise adjacent identifiers, keywords, and literals.

If the input stream has been parsed into tokens up to a given character, the next token is taken to
be the longest string of characters that could possibly constitute a token.

3.3 Comments

Lotos NT defines two kinds of comments:

• (* text *) A Lotos comment; all the text from the ASCII characters (* to the ASCII char-
acters *) is ignored.

• -- text A single line comment: all the text from the ASCII characters -- to the end of the
line is ignored.

Comments do not nest. The comment characters --, (*, and *) have no special meaning within a
-- comment or within a (* comment. Comments may contain alphabetic, digit, graphic, and space
(but not newline) characters.

Comments are not part of the Lotos NT description. They may be inserted anywhere between two
other lexical units or left out, except when they play the role of separators.

Zero or more separators may occur between any two consecutive tokens, before the first token, or
after the last token of the Lotos NT text.

There shall be at least one token separator between any pair of consecutive tokens if the concatenation
of their texts change their meaning.

3.4 Includes

The library ... end library sequence allows to include files in the source code. This feature
enables to write Lotos NT descriptions in separate files, so as to improve modularity.

Release 2.6 February 21, 2008

§ 3.5 : Identifiers 21

The include mechanism works like the #include in C language: a file can be included anywhere in
the source code, and the lexical analyser is in charge of replacing the sequence by the content of the
included file.

Include ::= Library { SPACE | Comments }

""" Filename """ { SPACE | Comments }

{ "," { SPACE | Comments } Filename { SPACE | Comments } }

End { SPACE | Comments } Library ;

Library ::= ("l" | "L") ("i" | "I") ("b" | "B") ("r" | "R")

("a" | "A") ("r" | "R") ("y" | "Y") ;

End ::= ("e" | "E") ("n" | "N") ("d" | "D") ;

Filename is the path to the included file. It can be either absolute or relative to the current working
directory.

Several files can be included in the same library ... end library sequence. In this case, the files
will be included in the same order as they appear in the sequence.

3.5 Identifiers

An identifier is an unlimited-length sequence of alphabetic, digit, and underscore (“_”) characters.
The first character must be an alphabetic character.

IDENTIFIER ::= ALPHABETIC_CHARACTER { NORMAL_CHARACTER | "_" } ;

NORMAL_CHARACTER ::= DIGIT | ALPHABETIC_CHARACTER ;

In Lotos NT, identifiers are not case-sensitive. In a given declaration scope, two identifiers that
differ only in the case of their characters are considered redefinitions of one another: they will collide
and yield a compilation error. When comparing two identifiers to see if they collide:

• Upper- and lower-case letters are treated as the same letter. TBL 2 in (ISO/IEC DIS 14750)
defined the equivalence mapping of upper- and lower-case letters.

• The comparison does not take into account equivalences between diagraphs and pairs of letters
(e.g., “æ” and “ae” are not considered equivalent) or equivalences between accented or not
accented letters (e.g., “à” and “a” are not considered equivalent).

• All characters are significant.

3.6 Special Identifiers

In order to allow a more intuitive notation for the different mathematical operators, a special class
of identifiers is introduced. The special identifiers are built as follows:

SPECIAL_CHARACTER ::= "%" | "&" | "*" | "+" | "-" | "." | "/" | ">" | "="

| "<" | "@" | "\" | "^" | "~" | "{" | "}" ;

SPECIAL_IDENTIFIER ::= SPECIAL_CHARACTER { SPECIAL_CHARACTER } ;

Release 2.6 February 21, 2008

22 Chapter 3 : Lexical Structure

3.7 Keywords

The identifiers given in table 3.1 are keywords of Lotos NT. They are used for syntactic purpose
and cannot be used as normal identifiers. They are written between double quotes in the concrete
syntax and in boldface in the abstract syntax.

and andthen any array as behaviour
block by case choice do else
elsif end enum eqns eval exception
exceptions exit external false finite for
forall function gate gates generic hide
if iff implies import in inout
interface is library list loop module
not null of ofsort opns or
orelse out par process procs raise
raises record rename renaming return set
signal specification stop then trap true
type types value var xor wait
when while with

Table 3.1: The keywords of Lotos NT

3.8 Literals

A literal is the source code representation of a value of a primitive type (§ 4.3, p. 29).

Literal ::= INTEGER

| FLOATING_POINT

| CHAR

| STRING ;

3.8.1 Integer Literals

See Section 4.3.3 for a general discussion of the integer types and values.

Integer literals may be expressed in decimal (base 10), hexadecimal (base 16), or octal (base 8):

INTEGER ::= DECIMAL_NUMBER

| HEX_NUMERAL

| OCTAL_NUMERAL ;

A decimal numeral is either the single ASCII character 0, representing the integer zero, or consists
of an ASCII digit from 1 to 9, optionally followed by one or more ASCII digits from 0 to 9, and
represents a positive integer.

DECIMAL_NUMBER ::= "0"

| NON_ZERO_DIGIT { "_" | DIGIT } ;

NON_ZERO_DIGIT ::= "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;

Release 2.6 February 21, 2008

§ 3.8 : Literals 23

The simplest form of integer literal is simply a sequence of decimal digits. If the literal is very
long, it may be convenient to split it up into groups of digits by inserting isolated underlines thus
“123_456_789”. In contrast with identifiers, such underlines, are of course, of no significance other
than to make the literal easier to read.

NOTE: The use of “ ” character to format integers is also adopted by ADA language.

A hexadecimal numeral consists of the leading ASCII characters 0x or 0X followed by one or more
ASCII hexadecimal digits and can represent a positive, zero, or negative integer. Hexadecimal dig-
its with values 10 through 15 are represented by the ASCII letters a through f or A through F,
respectively; each letter used as a hexadecimal digit may be uppercase or lowercase.

HEX_NUMBER ::= "0" ("X" | "x") HEX_DIGIT { HEX_DIGIT } ;

HEX_DIGIT ::= "0".."9" | "a".."f" | "A".."F" ;

An octal numeral consists of an ASCII digit 0 followed by one or more of the ASCII digits 0 through
7 and can represent a positive, zero, or negative integer.

OCTAL_NUMBER ::= "0" OCTAL_DIGIT { OCTAL_DIGIT } ;

OCTAL_DIGIT ::= "0".."7" ;

Lexically correct integers may be refused by compilers if they denote values which do not fit (imple-
mentation dependent) range of type int (or nat).

3.8.2 Floating-Point Literals

See Section 4.3.4 for a general discussion of the floating-point types and values.

A floating-point literal has the following parts: a whole-number part, a decimal point (represented by
an ASCII period character), a fractional part, and an exponent. The exponent, if present, is indicated
by the ASCII letter e or E followed by an optionally signed integer.

At least one digit, in either the whole number or the fraction part, and a decimal point are required.
The exponent is optional.

FLOATING_POINT ::= DECIMAL_NUMBER "." [DIGIT { ["_"] | DIGIT }]

[("e" | "E") ["+" | "-"] DECIMAL_NUMBER]

| DECIMAL_NUMBER ("e" | "E") ["+" | "-"] DECIMAL_NUMBER

| "." DIGIT { ["_"] | DIGIT }

[("e" | "E") ["+" | "-"] DECIMAL_NUMBER];

Lexically correct floating point numbers may be refused by compilers if they denotes values which do
not fit (implementation dependent) range of type float.

Examples of floating-point literals:

1e1 2. .3 0.0 3.14 6.022137e+23 1e-9

3.8.3 Characters

A character literal is expressed as a character or an escape sequence, enclosed in ASCII single quotes.
A character literal is always of type char. See Section 4.3.5 for more details on the char type.

Release 2.6 February 21, 2008

24 Chapter 3 : Lexical Structure

CHAR ::= "’" CHAR_PRINTABLE "’" ;

CHAR_PRINTABLE = PRINTABLE | "\"" ;

PRINTABLE ::= TRULY_PRINTABLE

| "\n" -- linefeed LF

| "\t" -- horizontal tab HT

| "\v" -- vertical tab VT

| "\b" -- backspace BS

| "\r" -- carriage return CR

| "\f" -- form feed FF

| "\a" -- alert BEL

| "\\" -- backslash

| "\?" -- question mark

| "\’" -- single quote ’

| "\"" -- double quote "

| "\\" OCTAL_DIGIT [OCTAL_DIGIT [OCTAL_DIGIT]]

| "\\" "x" HEX_DIGIT [HEX_DIGIT] ;

TRULY_PRINTABLE = CHARACTER - "\’\"\\" ; -- printable characters

CHARACTER = #040..#176 + #240..#377 ;

The escape sequences allow for the representation of some non graphic characters as well as the single
quote, double quote, query, and backslash characters in character literals and string literals.

It is a compile-time error for the character following the TRULY PRINTABLE or ESCAPE SEQUENCE to
be other than a ’.

It is a compile-time error for a line terminator to appear after the opening ’ and before the closing ’.

It is a compile-time error if the character following a backslash in an escape is not from the set
specified above.

The following are examples of char literals:

’a’ ’%’ ’\t’ ’\\’ ’\’’ ’\xFFFF’ ’\177’

3.8.4 String Literals

A string literal consists of zero or more characters enclosed in double quotes. Each character may be
represented by an escape sequence.

A string literal is always of type string (§ 4.3.6, p. 32).

STRING ::= "\"" { STRING_PRINTABLE } "\"" ;

STRING_PRINTABLE = PRINTABLE | "\’" ;

As specified in Section (§ 3.2, p. 20), neither of the characters CR and LF is ever considered to be
PRINTABLE; each is recognized as constituting a line terminator. Instead, one should use the escape
sequences “\n” for LF and “\r” for CR.

It is a compile-time error for a line terminator to appear after the opening ” and before the closing
matching ”.

Release 2.6 February 21, 2008

§ 3.9 : Operators 25

The following are examples of string literals:

"" "\"" "\n" "This is a string"

3.9 Operators

The following special symbols are reserved tokens of the languages, formed from ASCII characters.
They appear into the concrete syntax between double quotes and in the abstract syntax in teletype
fonts.

Operator ::= "->" | "@" | "}" | "]" | ")" | "," | ":" | "::"

| ":=" | "[>" | "..." | "=" | "==" | "!" | "[]" | "=>"

| ">=" | ">" | "|||" | "|[" | "<=" | "<" | "|" | "-"

| "%" | "!=" | "#" | "{" | "[" | "(" | "+" | "**"

| "?" | "]|" | ";" | "*" ;

Release 2.6 February 21, 2008

26 Chapter 3 : Lexical Structure

Release 2.6 February 21, 2008

Chapter 4

Types

Lotos NT is a strongly typed language, a necessary condition for ensuring description safety.

Type declaration are used to define new types when the few predefined types are insufficient, which
is the case of most descriptions. The declaration of new types is very general. However, several well-
know type schemes1 may be derived. In this case, some implicit declarations of other Lotos NT
objects appear.

4.1 Type Definition

A type denotes a domain of values (see Section 2.4) on which Lotos NT objects are defined.

In Lotos NT, a type definition must be associated with a name which will be used to refer to it where
useful: this association is a type declaration. This means that anonymous types do not exist. For
this reason, the equality between types is given by the equality of their names (instead of structural
equality).

The definition of types in Lotos NT follows the general approach of constructed types in functional
languages where types are defined using type constructors. Constructors are special operations struc-
turing the domain of the type. They give a name to the sub-domain of the type represented by the
Cartesian product of the parameters.

The simpler syntax for type definition is the following:

type T is

C1 [(V 1
1 :T

1
1 , ..., V 1

m1
:T 1

m1
)],

· · · ,
Cn [(V n

1 :T n
1 , ..., V n

mn
:T n

mn
)]

end type

where T, T 1
1 , ... are type identifiers, C1, ..., Cn are constructor identifiers, and V 1

1 , ... are variable
identifiers. The default list of parameters is the empty list.

For a constructor Ci, the identifier V i
j is called field or formal parameter, and mi is called operation

arity.

The syntax given above must satisfy the following static semantics constraints:

1For Lotos, these schemes are also known as “rich term syntax” [Pec94].

Release 2.6 27 February 21, 2008

28 Chapter 4 : Types

• There must be at least one constructor declaration (n ≥ 1).

• For a given constructor Ci, the names of formal parameters must be pairwise distinct, i.e.,
∀j, k ∈ {1, ..., mi} (j 6= k) =⇒ (V i

j 6= V i
k).

• For the set of constructors of a given type, fields having the same name should have the same
type. For example, the type HeaderType defines the values that a header may have:

type HeaderType is

Header1 (dest_id, data_length, header_CRC: nat)

| Header2 (dest_id: nat, source_id: nat, data_length, header_CRC: nat)

entype

The field dest_id appears in the parameter list of the two constructors with the same type nat.
Note that the fields having the same type may be grouped in lists, like for Header1 constructor.

• Two or more constructors may have the same name (may be overloaded) if their profiles (the list
of the types of parameters and the result type) differ. Note that the name of formal parameters
does not solve the overloading.

• Type declarations may be mutually recursive. However, each type must be productive , i.e., it
must have at least one value. Formally, a type is productive iff: (a) it has a constructor of arity
0 or (b) all the parameters of its constructors have productive types.

Example 4.1.1

The type “bool” is defined in the (predefined) standard library as an enumeration of two values true

and false, which are the type constructors of arity 0.

type bool is

false,

true

end type

A more elaborate type is the type of a packet which contains a header part and a data part:

type PacketType is

Packet (header: HeaderType, data: DataType)

end type

The constructor of type PacketType, Packet, has two parameters: the first is named header and has
the type HeaderType, the second is named data and has the type DataType.

A list of packets may be defined using a recursive definition:

type PacketListType is

PacketList_empty,

PacketList_cons (head: PacketType, tail: PacketListType)

end type

The lists may be defined also using the rich term syntax as described in Section 4.4.

4.2 Predefined Operations

For each definition of a constructed type T , a set of predefined operations are automatically generated
(sheel definitions of [BM79]):

Release 2.6 February 21, 2008

§ 4.3 : Predefined Types 29

• “==” and “!=”, with the profile T, T → bool, for the equality (resp. non equality) test.

• “<”, “>”, “<=”, “>=”, with the profile T, T → bool, for the ordering test of values. Note that
values of constructed types are ordered lexicographically. The declaration order of constructors
is important: the constructor declared first is less than the constructors following it in the
declarations.

• “string”, with the profile T → string, returns the string representation of the value given as
parameter.

• “ord”, with the profile T →nat, returns the order number of the (first) constructor of the value.

• “card”, with the profile T → nat, returns the number of constructors for T .

Only for finite types (§ 4.4.2, p. 34), the following operations are also defined :

• “succ” and “pred”, with the profile T → T , return the successor (resp. the predecessor) of the
value given as parameter. For the border values, these operation are identities.

• “hash”, with the profile T → nat, returns the order number of the term in the domain of the
type T .

The user may specify explicitly the operations to be automatically generated when the type is de-
clared, using a “with” clause:

type T is

...
[with op1, ..., opn]

end type

where op1, ..., opn belong to the set of the predefined operations above. Note that “==” and “!=” are
always generated.

4.3 Predefined Types

As stated in the introduction, a “pure” FDT should not make assumption about the implementation
issues. The FDT Lotos respects this constraint by allowing for types like natural numbers or integers
only an axiomatic definition. In order to make easier the user task, the standard provides a standard
library of data types which contains types like: boolean, natural number, bit, octet, etc.

However, feedback from users showed that the axiomatic definition is not natural and easy to use
(e.g., natural numbers where 13 is expressed by 13 compositions of the operation “Succ” applied to
“0”!). By consequence, it seems useful to accept natural (programming languages) notations for a
set of predefined types. Chapter 3 defines the lexical tokens corresponding to these constants. This
alternative definition does not exclude implementation dependent definitions given by the compilers2.

This section presents some of the predefined types which form the static basis of any Lotos NT
description.

2For example, Traian provides such an implementation in the file incl/lotosnt predefined.h.

Release 2.6 February 21, 2008

30 Chapter 4 : Types

4.3.1 The boolean type

Values of the boolean type, written “bool”, are usual truth values true and false.

Besides the predefined operations provided for usual types, additional operations are available on
type bool, e.g., the binary conjunction and disjunction, the unary negation, and comparisons (false
< true). Binary operations may exist in strict and non-strict (short-circuit evaluation) versions. An
exhaustive list of these operations is given in Table 4.1.

Name Profile Description

not bool → bool boolean negation
or bool, bool → bool logical disjunction
orelse bool, bool → bool cancellative or
and bool, bool → bool logical conjunction
andthen bool, bool → bool cancellative and
implies bool, bool → bool logical implication
iff bool, bool → bool logical equivalence
xor bool, bool → bool exclusive or

Table 4.1: Predefined operations on type bool

4.3.2 The natural type

Values of natural type, written “nat”, are natural numbers.

Besides the predefined operations provided for usual types, additional operations available on type nat
are, for instance, binary operations such as addition, subtraction, multiplication, (Euclidean) quotient
and remainder, and conversions to other numerical types. An exhaustive list of these operations is
given on Table 4.2.

Name Profile May raise Description

+ nat, nat → nat addition
- nat, nat → nat RANGE_ERROR subtraction
* nat, nat → nat multiplication
** nat, nat → nat power
/ nat, nat → nat ZERO_DIVISION division
% nat, nat → nat ZERO_DIVISION remainder (modulus)
int nat → int RANGE_ERROR integer conversion
char nat → char RANGE_ERROR char conversion
real nat → real real conversion

Table 4.2: Predefined operations on type “nat”

4.3.3 The integral type

Values of integral type, written “int”, are signed naturals.

Besides the predefined operations provided for usual types, additional operations available on type int
are, for instance, binary operations such as addition, subtraction, multiplication, (Euclidean) division,

Release 2.6 February 21, 2008

§ 4.3 : Predefined Types 31

sign inversion, and conversions to other numerical types. An exhaustive list of these operations is
given on Table 4.3.

Name Profile May raise Description

sign int → int sign
- int → int sign inversion
+ int, int → int addition
- int, int → int subtraction
* int, int → int multiplication
** int, nat → int power
/ int, int → int ZERO_DIVISION division
% int, int → int ZERO_DIVISION remainder (modulus)
abs int → int absolute value
nat int → nat RANGE_ERROR natural conversion
char int → char RANGE_ERROR char conversion
real int → real float conversion

Table 4.3: Predefined operations on type int

4.3.4 The floating point type

Values of the floating point type, written “real”, are signed floating point numbers. Tools may
consider implementation defined approximations of real numbers in an implementation-defined range.

Besides the predefined operations provided for usual types, additional operations on these values
are the usual arithmetic operations, and conversions to another type. An exhaustive list of these
operations is given in Table 4.4.

Name Profile May raise Description

- real → real sign inversion
abs real → real absolute value
+ real, real → real addition
- real, real → real subtraction
* real, real → real multiplication
/ real, real → real ZERO_DIVISION division
** real, nat → real power
int real → int RANGE_ERROR int conversion

Table 4.4: Predefined operations on type real

4.3.5 The character type

Values of character type, written “char”, are characters of the ASCII alphabet. Additional operations
available on these values are, e.g., conversion into other types. An exhaustive list of these operations
is given in Table 4.5.

NOTE: Different character sets may be considered. Here, we consider for the predefined character type the

ISO Latin-1 character set.

Release 2.6 February 21, 2008

32 Chapter 4 : Types

Name Profile May raise Description

nat char → nat natural conversion
tolower, toupper char → char conversion
isupper, islower, isalpha,
isdigit, isxdigit, isalnum char → bool tests

Table 4.5: Predefined operations on type char

4.3.6 The string type

Values of string type, noted “string”, are dynamic-length character strings.

Additional operations available on these values may be concatenation, getting length of a string,
taking a substring of a longer string, taking all of a string except for a substring, inserting a string
into another one, searching a given substring in a longer string ... Strings are ordered by lexicographic
order. Strings may also be converted to other types. An exhaustive list of these operations is given
in Table 4.6.

Name Profile May raise Description

length string → nat length
concat string, string → string concatenation
index, rindex string, string → nat sub-string search
prefix, suffix string, nat → string sub-string selection
substr string, nat, nat → string sub-string selection
nth string, nat → char the n-th character
empty string → bool emptiness test
int string → int RANGE_ERROR int conversion
real string → real RANGE_ERROR real conversion

Table 4.6: Predefined operations on type string

4.3.7 The “none” type

The type “none” is the type whose domain is empty.

The type none is useful to give an uniform syntax for exceptions without value parameter, for functions
without result (§ 5.5.1, p. 54), for non-exiting processes (§ 6.7.1, p. 66), and for typing expressions
and statements.

4.3.8 The “time” type

The case of type “time” is special in Lotos NT. It denotes values of the time domain. In some
languages like: Atp[NS94], . . . the time domain must be discrete, i.e., isomorphic to the natural
numbers. In Lotos NT (as introduced by its predecessors ET-Lotos or RT-Lotos), the time
domain may be dense3, i.e., isomorphic to non-negative rational numbers.

The unique assumption made for the time domain is that it is countable. This implies that the
underlying semantics model is indeed a labelled transition system (§ 2.5, p. 17). In fact, it is possible

3An ordered set is dense if it is possible to find a value between any two different given values.

Release 2.6 February 21, 2008

§ 4.4 : Derived Types 33

with Lotos NT to define one’s own time domain, noted D, provided that some assumptions are
satisfied:

A1 There exists an associative and commutative operation “+ : D, D → D”.

A2 There exists an element 0 ∈ D such that it is neutral element for “+”.

A3 The domain D is left-cancellative, i.e., ∀t, u ∈ D . (t + u = t + v) =⇒ (u = v).

A4 The domain D is anti-symmetric, i.e., ∀t, u ∈ D . (t + u = 0) =⇒ (t = u = 0).

A5 Each time domain (D, +, 0) induces a binary order of precedence defined by:

∀t, u ∈ D . t ≤ u ⇐⇒ ∃v ∈ D . t + v = u

A6 There exists an absorption element ∞, defined such that ∀t ∈ D . t+∞ = ∞. So ∀t ∈ D . t ≤ ∞.

The assumptions A1–A4 imply that the time domain is a left-cancellative anti-symmetric
monoid [JSV93]. Examples of time domains include: the natural numbers (nat+ ∪ {∞}, +, 0), the
positive rational numbers, etc.

NOTE: In the current version, Traian considers that the time domain is nat.

4.4 Derived Types

The Lotos NT type declaration is very general. It allows the definition of more familiar types (e.g.,
enumerations, records, sets, lists, arrays) as derived types or “rich term syntax” [Pec94].

This section presents how some derived type declarations are introduced as syntactic sugar of the
more general type declaration.

4.4.1 Enumerated types

The enumerated type definition declares values of a (finite) domain ordered by the declaration order.
The declaration of an enumerated type TE with values C1, ..., Cn has the following syntax:

type TE is

enum C1,...,Cn

[with op1, ..., opn]
end type

For example:

type day_of_week is

enum Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday

with <

end type

The order in which the values of the type are declared induces an order relation, for example Monday

< Wednesday.

The declaration above is translated into the following constructed type declaration:

type TE is

C1 , ... , C2

[with op1, ..., opn]
end type

Release 2.6 February 21, 2008

34 Chapter 4 : Types

In Table 4.7 we give the exhaustive list of the additional operations for an enumerated type TE .

Name Profile May raise Description

min† → TE least value
max† → TE greatest value
TE

† nat → TE RANGE_ERROR TE conversion

Table 4.7: Operations predefined for enumerated types

4.4.2 Scalar and simple types

Scalar types are bool, nat, int, char, user defined finite types and enumerable types, and those only.

A type is finite if its domain is finite. Informally, a type is finite if either its constructors are of
arity 0 (enumerated types), or the arguments of its constructors are finite types which do not depend
recursively on the current type.

Formally, it is possible to detect finite types by constructing the dependency graph between types.
A type T depends on type T ′ if T ′ appears as the type of an argument of a constructor of type T .
The finite types are those contained in acyclic sub-graphs (trees) of the dependency graph having as
leaves user defined enumerated types, or bool, or char.

For finite types T it is possible to define:

• a function init† : →T which gives the smallest value of the domain,

• a function succ† : T → T which gives for a value the “next” value of the domain, and

• a function max† : →T which gives the biggest value of the domain.

An enumerable type is a type whose domain is isomorphic with the domain of natural numbers, and
a total order relation defined on its elements. For the user defined types, the order relation is given
by the lexicographic order induced by the declaration order of the constructors. Consider for example
the type HeaderType (§ 4.1, p. 27). Values constructed using the Header1 constructor are smaller
than values constructed using the constructor Header2.

For enumerable types, it is possible to define the functions init and succ, but not max.

Simple types are scalar types plus the type real.

4.4.3 Record types

A record type corresponds to the Cartesian product of component types, except that component
values are accessed by a name rather than by their position.

A simple syntax for record type definition TR with fields V1 of type T1, ..., Vn of type Tn is:

type TR is

record V1:T1, ..., Vn:Tn

[with op1, ..., opn]
end type

Release 2.6 February 21, 2008

§ 4.4 : Derived Types 35

The declaration above is translated into the following one:

type TR is

TR(V1:T1, ..., Vn:Tn)

[with op1, ..., opn]
end type

and operations as selection of a field, equality, inequality, and comparisons are defined as for the
constructed types.

4.4.4 Sets

A set type declaration introduces a type which is the power-set of some other scalar type, which is
called the basic type. The sets cannot have multiple occurrences of the same element. In order to
test if an element is equal to another, an equality relation should be defined over the domain of the
basic type.

The definition of a set type Tset with elements of the scalar type T has the following syntax:

type Tset is

set of T
[with op1, ..., opn]

end type

Values of such types are subsets of the set of all values of the basic type. Any set, whatever its size is,
can be represented, except when system-dependent limitation arises. Implementations may use some
techniques to be space and time efficient, but they cannot apply a general technique. For example, a
possible representation of a set type Tset with elements of type T is given by the following constructed
type definition:

type Tset is

NIL , CONS(HEAD:T, TAIL:Tset)

[with op1, ..., opn]
end type

where NIL denotes the empty set, and CONS denote the union between an element HEAD and a set
TAIL. Note that the union is not disjunct, so HEAD can be an element of TAIL.

Operations available on sets are construction, binary operations as union, intersection, and difference,
comparisons, and membership test. An exhaustive list of these operations for a type Tset which is a
set with elements of a given type T is presented in Table 4.8.

The values of type set may be represented “in extenso” (i.e., by giving the list of their elements)
using the notation:

{E1, ..., En}

where E1, ..., En are expressions returning values of type T .

This notation must be equivalent to the value union(CONS(E1, NIL), ...) in the representation given
above.

4.4.5 Lists

Values of type list are ordered, linear lists, the elements of which belong to the same type, called the
element type. There is no restriction on this type.

Release 2.6 February 21, 2008

36 Chapter 4 : Types

Name Profile May raise Description

{}† → Tset empty set
full† → Tset full set
union† Tset, Tset → Tset union
diff† Tset, Tset → Tset difference
comp† Tset → Tset complementation
inters† Tset, Tset → Tset intersection
isin† T , Tset → bool membership test
isempty† Tset → bool emptiness test
issubset† Tset, Tset → bool emptiness test
isdisjoint† Tset, Tset → bool emptiness test
card† Tset → int RANGE_ERROR number of elements

Table 4.8: Operations predefined for a set type

The definition of a list type TL with elements of type T has the following syntax:

type TL is

list of T
[with op1, ..., opn]

end type

This definition is translated into a constructed type definition as follows:

type TL is

NIL, CONS(HEAD:T,TAIL:TL)

[with op1, ..., opn]
end type

Operations available for lists are construction, efficient non-destructive concatenation, length, test
for emptiness, head , and tail . An exhaustive list of these operations for a type TL (list of elements
of type T) is presented in Table 4.9.

Name Profile May raise Description

nil → TL empty list
cons T , TL → TL list cons (front)
isempty† TL → bool emptiness test
tcons† TL, T → TL list cons (end)
head† TL → T EMPTY_LIST first element
tail† TL → TL EMPTY_LIST all elements but first
concat† TL, TL → TL concatenation
length† TL → int RANGE_ERROR number of elements
nth† TL, nat → T RANGE_ERROR n-th element

Table 4.9: Operations predefined for a list type

The list may be specified “in extenso” by using the following notation:

[E1, ..., En]

where E1, ..., En are expressions returning values of type T . This notation is equivalent to
CONS(E1, CONS(E2, ..., CONS(En, NIL))).

Release 2.6 February 21, 2008

§ 4.5 : Subtypes† 37

4.5 Subtypes†

A subtype type gives a name of a sub-domain of a base type, named host type, by specifying the set
of values of this sub-domain by a boolean predicate. The syntax for subtype definition Ts of host
type T is:

type Ts is

{V : T, E}
[with op1, ..., opn]

end type

where E is a predicate on the type T . A subtype is a new type in the sense of the type checking: values
of a subtype type are considered different from the values of the host type. The conversion between
values of the subtype and value of the host type should be done explicitly using “of” expressions.
The operations in the subtype types are those inherited from the host type.

4.6 Arrays†

Values of type array are tuples of a fixed dimension, the element of which belong to the same type,
called the base type. Base types must be finite so that arrays are finite. The dimension of the array
should be finite.

The definition of an array type TA of dimension n, with indexes from the product of types T1, ..., Tn,
and elements of type T0 has the following syntax:

type TA is

array [T1, ..., Tn] of T0

end type

4.7 External Types and Pragmas

In order to interface with other languages, a type definition may specify the name which should be
used for the type in an implementation. Moreover, it can also specify that a type has an external
definition. This is done using pragmas .

The general syntax for type definition becomes:

type T is type-pragmas

C1 [(V
1

1:T
1
1 , ..., V

1

m1
:T 1

m1
)] operation-pragmas,

· · · ,

Cn [(V
n

1:T
n
1 , ..., V

n

mn
:T n

mn
)] operation-pragmas

[with op1, ..., opn]
end type

Types pragmas are lists of type-pragma having the following forms:

• “!external” if the type has an external implementation; this implementation should be pro-
vided in an external file having the extension “.t”.

• “!implementedby STRING” if the external name used for the type is STRING.

• “!comparedby STRING” if the equality function == should be implemented by the STRING func-
tion.

Release 2.6 February 21, 2008

38 Chapter 4 : Types

• “!printedby STRING” if the values of the type should be printed by the STRING function.

• “!enumeratedby STRING” if the values of the type should be enumerated (if possible) by the
STRING function.

• “!pointer [INTEGER]” if the type has to be implemented by a pointer in C.
When INTEGER is strictly positive, then all values of type T will be stored into an hash table of
size INTEGER and, thus, represented as entries within this table. The hash table is extensible,
meaning that T can have more than INTEGER different values. For performance reasons, it is
advised to choose a value of INTEGER close to the cardinal of T.
When INTEGER is not specified, the type will be implemented as a pointer type, instead of
having its value stored in an hash table.

Operation pragmas are lists of operation-pragma having the following forms:

• “!external” if the operation has an external implementation in a file having the extension
“.f”.

• “!implementedby STRING” if the external name of the operation is STRING.

Release 2.6 February 21, 2008

Chapter 5

Expressions, Statements, and

Functions

The data part of Lotos NT is mainly based on types, expressions, statement, and functions. Types
and type definitions are presented in Chapter 4; expressions, statements, and functions are presented
in this chapter.

One may replace the data part of Lotos NT with another data description formalism ensuring the
safety property, for example ActOne data types. Note that the behaviour part of the language
contains symmetrical constructs of the data part.

There is a fundamental difference between the expressions/statements (and functions) and behaviours
(and processes). An expression or a statement cannot contain communication, non-determinism,
concurrency, or real-time. The data part is a sequential and deterministic language. The evaluation
of an expression takes no time, and should return a value, or may raise an exception. The evaluation
of a statement takes no time, and may return a value, assign some variables, and raise an exception.

An important characteristic of the data language presented here is its “clean” imperative style.
The language supports assignment and other imperative style facilities, but a proper semantics is
given [Sig99], which restricts undesirable effects like the use of uninitialized variables. The imperative
style is combined with constructs specific of functional languages, e.g., pattern-matching .

This chapter presents all aspects related to data language: constants, variables, expressions, state-
ments, and function declarations.

5.1 Constants

Primitive constants, written K, are boolean values true and false, integral numbers of type int or
nat, floating point numbers of type real, character constants of type char, and string constants of
type string.

Release 2.6 39 February 21, 2008

40 Chapter 5 : Expressions, Statements, and Functions

5.2 Value expressions

Value expressions (or shortly expressions) are primitive constants and terms of the user defined
types built using the application of constructors or functions. As a consequence, any value is typed.
Moreover, value expressions cannot assign variables and may raise exceptions (§ 5.4.9, p. 52) only by
function calls.

The following grammar gives the syntax of value expressions:

E ::= K primitive constant (E1)

| V variable (E2)

| C [(ES)] constructor application (E3)

| E C E infix constructor application (E4)

| [E {,E}] list or set construction (E5)

| array T [E {,E}] array construction (E6)

| F [(ES)] function call (E7)

| E F E infix function call (E8)

| V [E1, ..., En] array access (E9)

| E.V field selection (E10)

| E.′{′ ES ′}′ field update (E11)

| E of T type coercion (E12)

| E raises [XS] raise exception expression (E13)

| (E) parenthesized expression (E14)

ES ::= empty record (ES1)

| V1=>E1,...,Vn=>En record (ES2)

| E1,..,En tuple (ES3)

XS ::= [...] empty or dotted record (XS1)

| X ′
1=>X1,...,X

′
n=>Xn [,...] record (XS2)

| X1,..,Xn tuple (XS3)

where E, E1, ... denote value expressions, V denotes variables, C denotes constructor identifiers, ES
denotes lists of actual value expression parameters (named for record or unnamed for tuple), and XS
is a list of actual exception parameters (§ 5.4.9, p. 52). The precedence of operators appearing in
expressions is given in table 5.2.

Priority Operations

0. raises

1. - unary
2. of, . field selection and update
3. and, andthen, /, %, *, **
4. or, orelse, xor, +, -
5. ==, !=, <, <=, >=, >, iff, implies

Release 2.6 February 21, 2008

§ 5.2 : Value expressions 41

Value expressions are evaluated to value or normal forms. Values are primitive constants and ground
terms of the user defined types built using the application of constructors on value records. We will
write values N, N1, ... and sequences of values NS.

The construct “...” for exception parameters allows the user to avoid the explicit instantiation of the
actual exception parameters if they are the same name as the formal parameters. For example, if the
formal parameter exception of the function F is called X , one may call F like “F () raises [...]”
which is replaced by the compiler with “F () raises [X=>X]”; in this case, X should be already
declared in the environment.

5.2.1 Variables

Variables , noted V , are assignable objects containing values which are computed elsewhere. Note
that, from this point of view, the Lotos NT data language is an imperative language: it supposes
the existence of a memory (a set of cells represented by variables which can store some values) which
can be accessed for read and write operations. However, the static semantics constraints impose a
clean imperative style: the access to an uninitialized cell (variable) is signaled at compile time and
does not produce a run-time error.

A value expression may be a variable V . The variable must be initialized (contains a value). The
type of the expression is the type of the variable, and the result of the expression evaluation is the
value of the variable V .

Chapter 6 presents the use of variables in behaviours. The main constraint is that variables cannot
be shared between concurrent behaviours. More precisely, if a variable is written by a behaviour, it
cannot be read or written by a concurrent behaviour.

5.2.2 Constructor application

The constructor application computes values of the domain of their target type. The constructor
should be already defined in the current environment by type definitions (§ 4.1, p. 27). The actual
list of arguments of the constructor may be expressed either by name giving a record whose fields are
labelled with the names of formal parameters (alternative ES2), or by position giving the (ordered)
list of actual values (alternative ES3).

The expressions below use positional constructor application:

C (E1, ..., En)

E1 C E2

the following expression use the named style:

C (V1=>E1, ..., Vn=>En)

Note that the positional style may be translated into the named style using the static semantics
informations about the constructor declaration.

The number of actual parameters must be the same as the arity of the constructor. In the named
style, the names of the formal parameters (fields V1, ..., Vn) must be pairwise distinct, i.e., a formal
parameter Vi should appear only once in the list. The values E1, ..., En associated with these names
must have the same types as the corresponding formal parameters.

If the constructor has only two parameters it can be applied in the infix positional style.

If the constructor is overloaded, the informations given by the type of its parameters and the type of
the resulting value should suffice to solve the overloading (i.e., to find the unique constructor having

Release 2.6 February 21, 2008

42 Chapter 5 : Expressions, Statements, and Functions

this profile).

The evaluation of constructor application begins with the left-to-right evaluation of its actual param-
eters. The values obtained are used to form the constructed value which is the result of evaluation.
If one expression Ei raises an exception (§ 5.4.9, p. 52), the evaluation is blocked, and the exception
is signaled.

Example 5.2.1

Monday is a value of the type day-of-week.

Header1 (1, 2, 3), Header2 (1, 0, 2, 3) are values of type HeaderType.

Header1 (1, 2, 3) and Header1 (data length => 2, dest id => 1, header CRC => 3) repre-
sent the same value of type HeaderType.

5.2.3 Function application

The function application is largely treated in Section 5.5.2. Note that, for function application
expressions the function should return a value and cannot do side effects (have only “in” parameters).

Functions may be predefined operations described in 4.3.

5.2.4 Field selection

A field selection expression has the general form:

(E.V) raises [X]

where E is an expression and its value is of the form C(V1=>N1, ..., Vn=>Nn) (i.e., a constructed
value) and V is one of the fields V1, ..., Vn. The selection expression returns the value of this field.
Note that the parenthesis are needed in order to avoid some ambiguities in the grammar.

It is worth noticing that the exception X is raised (see Section 5.4.9) if the value returned by E does
not have a field of name V . In fact, the static semantics ensures that the field V is a field of one of
the constructors of the E type. However, this does not suffice to ensure that no dynamic error arises.

NOTE: To be sure that no exception is raised, one may wish to use field selections for record types only.

In this case, the static semantics will ensure that the single constructor of the record type has the field as

argument; thus, the raise clause should be omitted with current version of the compiler.

Example 5.2.2

If E is an expression of type HeaderType, the following expression:

(E.dest id) raises [X]

selects the component “dest id” of the value. More precisely, if E evaluates to
“Header1 (data length => 2, dest id => 1, header CRC => 3)”, the selection expression above
returns 2; if E evaluates to “Header2 (1, 0, 2, 3)”, the selection expression evaluates to 1 (the
field “dest id” is the first parameter of the “Header2” constructor).

Release 2.6 February 21, 2008

§ 5.2 : Value expressions 43

The field selection may be translated into a function call. For example, if E is an expression of type
T below:

type T is

C1(V1 : T1)
| C2(V2 : T2)
| C3(V1 : T1, V2 : T2)
| C4(V4 : T4)

end type

then, the expression (E.V1) raises [X] is equivalent to a function call having the following body:

case E is

C1(V1 : T1)
| C3(V1 : T1, V2 : T2) -> return V1

| any T -> raise X
end case

5.2.5 Field update

A field update expression has the general form:

(E.{V1=>E1, ..., Vn=>En}) raises [X]

where E is an expression and its value is of form C(V ′
1=>N1, ..., V

′
m=>Nm) (i.e., a constructed value)

and {V1, ..., Vn} ⊆ {V ′
1 , ..., V ′

m}.

The update expression returns the value of E where the fields V1, ..., Vn have been modified to values
resulted from the evaluation of E1, ..., En expressions. If the value represented by E has not (all) the
fields V1, ..., Vn, the exception X is raised.

NOTE: To be sure that no exception is raised, one may wish to use field updates for record types only.

In this case, the static semantics will ensure that the single constructor of the record type has the field as

argument; thus, the raise clause should be omitted with current version of the compiler.

5.2.6 Unambiguous Expressions

To solve the type ambiguity introduced by the function and constructor overloading, the explicit
typing of expression is allowed:

E of T

The evaluation of this expression is the same as the evaluation of E; the type T is used only at
compile time.

The construct “(E of T) raises [X]” is used for type-subtype coercion†.

Another source of ambiguity is the precedence of Lotos NT predefined operations. This precedence
can be forced using parenthesized expressions:

(E)

(E) evaluates like E. Parenthesis may be also used for esthetic considerations.

Release 2.6 February 21, 2008

44 Chapter 5 : Expressions, Statements, and Functions

5.3 Patterns

A pattern is a construct allowing to obtain informations about the structure of values. The patterns,
denoted by P , have the following form:

P ::= V variable (P1)

| K constant pattern (P2)

| any wildcard (P3)

| V as P aliasing (P4)

| C [(PS)] constructed pattern (P5)

| [PS] list pattern (P6)

| P of T explicit typing (P7)

where PS denotes lists of pattern parameters (named for records or unnamed for tuples):

PS ::= [...] empty or wildcard record (PS1)

| V1=>P1, ..., Vn=>Pn [,...] record (PS2)

| P1, ..., Pn tuple (PS3)

The variables V belonging to a pattern P are “initialization” occurrences (i.e., they should be already
declared, but may be non initialized). It is not allowed to use several times the same variable V in
the same pattern P .

NOTE: Like in ActOne, and unlike in functional languages, the occurrence of a variable in a pattern is

a “use” occurrence and not a “define” occurrence. This design choice is compatible with the “declare before

use” requirement of imperative style languages.

The pattern-matching of a value N with a pattern P has two effects:

1. Sends a boolean result which is true if N has the same structure as P , false otherwise.

2. If N matches P , the variables V used by P are initialized with the values extracted from N .

Matching is defined (recursively) as follows. Remind that patterns and values match only if they
have the same type.

Pattern Value Condition Effect Result

V N None V receives N true
K K None None true
K N K 6= N None false

any N None None true
V as P N P and N match V receives N true
V as P N P and N do not match None false

C(P1, . . . , Pn) C(N1, . . . , Nn) Each Pi, Ni match None true
C(P1, . . . , Pn) C(N1, . . . , Nn) Some Pi, Ni do not match None false
C(P1, . . . , Pn) N N has not the form C(N1, . . . , Nn) None false

P of T N Same as matching P and N

Note that:

• in the pattern V as P , V cannot occur in P ;

Release 2.6 February 21, 2008

§ 5.4 : Statements 45

• P of T is used only to solve ambiguities caused by constructor overloading.

The “...” notation is a shorthand meaning that all fields of the record have an “any” pattern. Note
that the type of the record should be unambiguous. Also, the “...” shorthand can be used following
a sequence of labelled patterns. It will be translated to a record in which the unspecified fields are
“any” patterns.

Example 5.3.1

For a value of type HeaderType, the following patterns:

Header1 (dest, length, crc)

Header2 (dest_id => dest of int, data_length => data, header_CRC => crc, ...)

allow to obtain the destination (into the variable dest), the length of data (into the variable length),
and the CRC (into the variable crc) of the value. The source value is neglected since the “...” are
translated to source id => any.

Note that the variables initialized by the matching of the pattern P against the value N may be
used in the remainder of the description iff the pattern-matching is successful. This ensures that the
variables defined inside a pattern are always initialized before use.

The patterns are mainly used in the “case” statement (§ 5.4.6, p. 48) and behaviour (§ 6.2.2, p. 60),
but they appear also in the trap statement (§ 5.4.9, p. 53) and behaviour (§ 6.2.4, p. 62).

5.4 Statements

A Lotos NT statement , denoted by I, may return a value, assign variables, and raise exceptions.
The main difference between expressions and statements is that statements only may assign variables
and explicitly raise exceptions.

Each statement is typed by the record of variables assigned and the value returned. The evaluation
of a statement may modify the memory, return a value, or/and raise an exception.

The following grammar gives the syntax of statements:

I ::= return E value return (I 1)

| null termination (I 2)

| V :=E assignment (I 3)

| I ; I sequential composition (I 4)

| var V :T [:=E] {,V :T [:=E]} in variable declaration (I 5)

I

end var

| case E [:T] is [var V L in] case statement (I 6)

IM

end case

| if E then I conditional statement (I 7)

{ elsif E then I }

[else I]

end if

| eval [V :=] F [(V S)] [raises [XS]] procedure call (I 8)

Release 2.6 February 21, 2008

46 Chapter 5 : Expressions, Statements, and Functions

| loop I end loop forever loop (I 9)

| loop X in breakable loop (I 10)

I

end loop

| while E do while loop (I 11)

I

end while

| for I while E by I do for loop (I 12)

I

end for

| break X loop break (I 13)

| raise X [E] raise exception (I 14)

| trap {exception X [:T] is I} in trapping exceptions (I 15)

I

end trap

V ::= V {,V } list of variable identifiers (VL1)

V L ::= ~V :T {,~V :T } variable list (VL2)

IM ::= P {| P} [[E]] -> I match-statement (IM1)

| IM | IM list (IM2)

V E ::= E actual parameter “in” (VE1)

| ?V actual parameter “out” and “inout” (VE2)

V S ::= [...] empty or wildcard (VS1)

| V ⇒ V E {,V ⇒ V E} [,...] disjoint union (VS2)

| V E {,V E} list (VS3)

where IM are match instructions, V E are actual value parameter, and V S are sequences of actual
value parameters.

In the following we present each Lotos NT statement.

Release 2.6 February 21, 2008

§ 5.4 : Statements 47

5.4.1 Value return

The evaluation of the statement “return E” begins with the evaluation of E. If E evaluates success-
fully, the statement returns the value of E. If E raises an exception, the statement raises the same
exception and terminates unsuccessfully (blocks).

5.4.2 Null Statement

The statement “null” has no other effect than termination. It does not return any value and it does
not assign any variable.

5.4.3 Assignment

The effect of an assignment statement “V :=E” is the modification of the value stored by the variable
V at the value given by the expression E. Note that lateral side effects are avoided because the
expression E cannot assign other variables. It can only return a value.

The evaluation starts by evaluating E. If E terminates successfully, the resulting value is assigned
to the variable V . If E raises an exception (§ 5.4.9, p. 52), the exception is propagated and V is not
assigned.

The value of a variable may also be modified by function call (§ 5.5.2, p. 56) or process call (§ 6.7,
p. 66). A variable can take several successive values, for example:

V := 0 ; V := V + 1

where the variable V receives values 0 and 1. As long as statements and expressions cannot have a
behaviour, the variable V takes these values at the same instant.

5.4.4 Sequential Composition

In the sequential composition of statements “I1 ; I2”, the statement I1 cannot return a value but
may assign variables (i.e., the return statement should be in the final position of the sequential
composition).

The evaluation starts by evaluating I1. If I1 terminates successfully, the result is given by the
evaluation of I2. If I1 raises an exception (§ 5.4.9, p. 52), the exception is propagated and I2 is never
started. For example “raise X; V:=1” will never assign 1 to V.

5.4.5 Variable declaration

Variables may be declared (and initialized) using the local variable declaration statement, which has
the simple form:

var V1:T1[:=E1], ..., Vn:Tn[:=En]
in I
end var

where V1, ..., Vn are variable identifiers, T1, ..., Tn are type identifiers, E1..., En are expressions, and I
is a statement.

Release 2.6 February 21, 2008

48 Chapter 5 : Expressions, Statements, and Functions

A “var” statement declares the names of variables having the same scope, their types, and (optionally)
their initial values. The scope of a variable declaration is the body I. Scoping is lexical: any re-
declaration of a variable hides the outer declaration.

Variables V1, ..., Vn should be different. The types of expressions E1..., En should be resp. T1, ..., Tn.

5.4.6 Case statement

Lotos NT allows to describe conditional processing of data by using constructs similar to those used
by the usual programming languages: “case” and “if”.

The most general conditional statement offered by Lotos NT is the “case” statement, whose sim-
plest form is:

case E0:T is

var V1:T1,...,Vn:Tn in

P1 [E1] -> I1

| · · ·
| Pn [En] -> In

end case

where n ≥ 1. The expression E0 must have the same type as the patterns P1, ..., Pn. The expressions
E1, ..., En must be boolean guards , and their default value is true. The statements I1, ..., In should
return a value of the same type and initialize the same set of (non-local declared) variables. This
condition is important for the control of the variable flow. The scope of variables V1, ..., Vn are the
patterns Pi, the boolean guards Ei, and the statements Ii.

The patterns P1, ..., Pn must be exhaustive, i.e., they must cover all the possible values of type
T . There exists algorithms that check statically this condition [Sch88]. To make a list of patterns
exhaustive one can add a clause “any of T -> In+1” at the end of the list.

The evaluation of a “case” statement is made as follows. Let N0 be the value of the expression E0;
N0 is matched sequentially over the clauses corresponding to patterns P1, ..., Pn until it matches one.
The value N0 matches a clause “Pi [Ei]” if N0 matches Pi and the evaluation of Ei in the context
of variables bound by the matching returns true. The result of the case statement is the same as the
result of the statement Ii (evaluated in the context of variables bound by Pi) corresponding to the
first clause i which matches N0.

Example 5.4.1

The statement below returns the destination identifier of an expression E of type HeaderType:

case E of HeaderType is

var dest: int in

Header1 (dest, any, any) -> return dest

| Header2 (dest => dest, ...) -> return dest

end case

Note that the patterns cover all the values of type HeaderType. The wildcard “any” are used to
match all values which are not interesting for the remainder of the statement.

Note that constant values may be filtered by giving their values, excepting the floating point values
(of real type). Constants may also be filtered by using the “if” statement.

A more sophisticated form of the “case” statement provides factorization of clauses which have the
same target statement Ii. Consider for example, the statement which encodes the working days of a
week by 1 and the week-end days by 0 using the above “case” statement:

Release 2.6 February 21, 2008

§ 5.4 : Statements 49

case E: day_of_week is

Monday -> return 1

| Tuesday -> return 1

| Wednesday -> return 1

| Thursday -> return 1

| Friday -> return 1

| Saturday -> return 0

| Sunday -> return 0

end case

A simpler form with the same effect is:

case E is

Monday | Tuesday | Wednesday | Thursday | Friday -> return 1

| Saturday | Sunday -> return 0

end case

A value N0 matches a clause “P 0
i | ... | Pmi

i [[Ei]]” iff one of the pattern P j
i matches, and the

guard Ei evaluated in the context of variables bound by P j
i returns true.

5.4.7 If statement

The “if” construct allows conditional computations; it is generally included in all languages. In
Lotos NT it has the form:

if E0 then I0

elsif E1 then I1

...
elsif En then In

[else In+1]
end if

where n ≥ 0, so the “elsif” clauses are optional. The default “else” clause is “exit null”.

The expressions E0, ..., En are called conditions . They must be of type bool, and do not have side
effects. The statements I0, ..., In+1 should return a value of the same type and should initialize the
same variables. This constraint is important for the control of the variable flow.

The evaluation of an “if” statement is done as follows. The conditions E0, ..., En are evaluated in this
order until a condition Ei evaluates to true; the evaluation of the “if” statement is the same as the
evaluation of Ii. If all conditions are false, the result of “if” is the result of In+1, which by default is
“null”.

Example 5.4.2

The following statement computes the maximum of two integral numbers X and Y:

if X >= Y then return X else return Y end if

Release 2.6 February 21, 2008

50 Chapter 5 : Expressions, Statements, and Functions

The “if” statement is less powerful than the “case” statement. Moreover, the “if” statement above
may be translated into the following (equivalent) “case” statement:

case E0 is

true -> I0

| false ->

caseE1 is

true -> I1

| false -> ...
end case

end case

However, in this case it is recommended to use the “if ’” statement instead of the sophisticated “case”
statement.

5.4.8 Iteration Statements

Lotos NT allows to describe repetitive processing of data by mean of several iteration constructs.
The most general and simplest one is the unbreakable loop, but several specialized iteration constructs
are also provided, like breakable, conditional (“while”), and iterative (“for”) loops.

Iterative constructs provide a way to express recursive processing of data without use of recursive
functions. This avoids the stack overflow due to the infinite or great number of recursive function
calls.

Loop forever statement The simplest iterative construct offered by Lotos NT is the “loop”
forever statement:

loop I end loop

where I is called the loop body .

The evaluation of a “loop” forever statement never terminates. The statement I is repeatedly
evaluated. It can read and write variables of the current context. This type of iteration may introduce
non-terminating processing of data. This may be signaled by the compiler. Note that if I raises a
handled exception (§ 5.4.9, p. 52), the loop is interrupted.

Breakable loop statement In practice, it is difficult to imagine examples of data processing which
never terminate. Statements are generally used to compute (instantaneously) values. For this reason
a form of breakable loop is provided:

loop X in

I
end loop

where X is the loop identifier, i.e., the loop name. The statement I may read and write variables of
the current context with respect to static semantics constraints.

A loop is broken using the “break” statement which has the following syntax:

break X

where X is the name of the loop to be broken. Note that “break” cannot interrupt other types of
loops (“while” and “for”).

Release 2.6 February 21, 2008

§ 5.4 : Statements 51

Example 5.4.3

The following statement computes the sum of elements of a given list of integers xs:

var ys: intlist := xs, total: int := 0

in

loop Sum in

case ys is

var z: int, zs: intlist in

nil -> break Sum

| cons (z, zs) -> total := total + z;

ys := zs

end case

end loop

end var

The named loops are used to break loops which are not the inner one, for example:

loop fred in

loop janet in

if V then break fred

...

As will be shown in Section 5.4.9, the breakable loop is a syntactic sugar for infinite loop construct
and exception handling.

While statement The conditional execution of a loop may be expressed using the “while” con-
struct which exists in most languages:

while E0 do

I
end while

where E0 is an expression of type bool. I is the body of the loop, which may return a result (not
used), read or write the variables of the current context.

At each iteration the expression E0 is evaluated; if it returns true, the statement I is evaluated;
otherwise, the “while” statement terminates. This loop cannot be interrupted by “break” since no
name is specified.

Example 5.4.4

The statement below computes the factorial of n:

var k: int := n,

fact: int := 1

in

while (k > 0) do

fact := fact * k;

k := k - 1

end while;

return fact

end var

The property fact = n!/k! is the invariant of the loop, and the termination is ensured by the fact
that k decreases at each iteration. The result of the statement is fact = n!/0! = n!.

Release 2.6 February 21, 2008

52 Chapter 5 : Expressions, Statements, and Functions

This form of loop may be translated into a breakable loop as follows:

loop X in

if E0 then I
else break X
end if

end loop

For statement The last iterative construct, the “for” statement, allows to describe in a compact
form finite iterations. Its form is closed to the “for” construct of the C language:

for I0 while E1 by I2 do

I
end for

where I0 is a statement doing only variable assignments; E1 is an expression of type bool; I2 is
a statement doing only assignments; I is the body of the loop, repeatedly executed. It can assign
variable but it cannot return a result.

The evaluation of a “for” statement begins with evaluating the initialization statement I0 in the
current context of variables. Then, while the boolean expression E1 evaluates to true, the body of
the loop, I, is evaluated and when I terminates then I2 is evaluated. If E1 evaluates to false, the
“for” statement terminates. This loop cannot be interrupted by “break” since no name is specified.

In fact, this form of loop is syntactic sugar of breakable loop; it can be translated as follows:

I0;

loop X in

if E1 then I; I2

else break X
end if

end loop

5.4.9 Exceptions and their handling

An important feature of the language is the possibility to signal and treat the errors or unexpected
cases by raising and trapping exceptions.

Raise statement Exceptions are used to interrupt the evaluation of expressions or statements. An
exception may be raised using the “raise” statement, whose simplest form is:

raise X

X is an exception identifier which should be already declared. The declaration of an exception is
made using the “trap” statement.

The evaluation of a “raise” signals the exception X and blocks the evaluation.

Example 5.4.5

The following specification raises the exception Hd if one tries to take the head of an empty list:

case xs: intlist is

var x: int in

nil -> raise Hd

| cons (x, any) -> return x

Release 2.6 February 21, 2008

§ 5.4 : Statements 53

end case

Exceptions may carry values. The syntax of a valuated exception raising is:

raise X E

This form of exception raising is useful to pass a value to the handler (§ 5.4.9, p. 53).

Example 5.4.6

The presence of an unknown error code may be signaled by sending the value of the code:

if (error_code == 0) then

return "minor error"

elsif (error_code == 1) then

return "major error"

else

raise Unknown error_code

end if

Trap statement Exceptions either propagate to top level, or are trapped by a “trap” construct
containing the exception handler. The simplest syntax of the “trap” construct is:

trap

exception X1 [V1:T1] is I1

· · ·
exception Xn [Vn:Tn] is In

in

I0

end trap

where n ≥ 0. The clauses contained between keywords “trap” and “in” are called exception handlers .
An exception handler declares the name of the exception Xi, its type Ti (by default none), and its
treatment Ii.

The scope of exception identifiers X1, ..., Xn is only the statement I0. So exceptions X1, ..., Xn are
handled only if raised by I0. If one of I1, ..., In raises an exception Xi, it is not handled by the current
“trap” statement.

The statements I1, ..., In may either return a value of the same type and initialize the same variables
as the statement I0, or block. These constraints are checked statically. They ensure that the “trap”
statement is well typed, and the flow of initialized variables is the same whatever the evolution of
evaluating I0 is.

The evaluation of the “trap” statement begins with the evaluation of I0. If I0 raises one of the
exceptions Xi, its evaluation is interrupted, and the result of the “trap” statement is the result of
Ii. If I0 terminates normally, i.e., without raising any of the exceptions Xi, the “trap” statement
also terminates.

Example 5.4.7

The following statement returns 0 when c equals 0, or assigns the value of b/c to a otherwise.

trap

exception ZD is return 0

in

Release 2.6 February 21, 2008

54 Chapter 5 : Expressions, Statements, and Functions

a := (b/c) raises [ZD]

end trap

Example 5.4.8

The breakable loop below:

loop X in

I
end loop

is a syntactic sugar for an infinite loop broken by an exception raising:

trap

exception X is null

in

loop I end loop

end trap

The statement “break X” is syntactic sugar for “raise X”.

The “trap” statement both declares and traps the exception—this means it is impossible for an
exception to escape outside its scope.

NOTE: This can be contrasted with a language such as SML where exception declaration and handling are
separated, so it is possible for exceptions to escape their scope.

local

exception Foo
in

raise Foo
end

Note that the only way in which an exception can be observed by its environment is by trapping it.

Implementation issues If the code generated by Traian is used in external implementations, the
C function TRAIAN INIT () must be called before any action. This function initializes the structures
used by Traian for the implementation of the exception mechanism.

5.5 Functions

Functions are a mean for code structuring and re-usability.

This section describes how Lotos NT users may define and use functions. The Lotos NT predefined
functions are described in Section (§ 4.3, p. 29).

5.5.1 Function definition

A function definition has the following syntax:

function F ([A1] V 1:T1, ..., [An] V n:Tn) [:T]
[raises [X1:T1, ..., Xm:Tm]]

is I
end function

Release 2.6 February 21, 2008

§ 5.5 : Functions 55

where Ai may be “in”, “out”, or “inout”. The default value for Ai is “in”.

NOTE: This form for function declaration was chosen for syntactic compatibility with IDL (and Ada) and

for an easier interface with C.

F is the name of the function. Two function names may be the same if their profiles (i.e., the types
of parameters or the result type) differ.

([Ai] V 1:T1, ...) is the list of formal value parameters . Value parameters may be constant values
(“in” parameter), result values (“out” parameter), or modifiable values (“inout” parameters); the
default type is “in”. An “in” parameter may be read but its value is not changed by the function call,
although its value may be changed by I. An “out” parameter should be assigned by I and its value
is visible after the function call. An “inout” parameter has an initial value, and I may modify them;
the value of the parameter assigned by I is visible after the function call. The scope of variables in
the lists V 1, ..., V n is the body of the function, I.

T is the result type of the function.

[X1:T1, ...] is the list of formal exception parameters . The scope of the exceptions in the lists
X1, ..., Xm is the body of the function, I.

The statement I computes the result value of the function and the output parameters. Its environment
is the list of formal parameters (value and exception). In Lotos NT it is not possible to assign
“global” variables or to raise “global” exceptions. All variables and exceptions used by the body of
the function must be declared as function parameters. If T is given, the result type of I must be T .
The values assigned to output parameters must be correctly typed.

Example 5.5.1

Consider the declaration of the function hd:

function hd (xs: intlist) : int raises [Hd: none]

is

case xs is var x: int in

nil -> raise Hd

| cons (x, any) -> return x

end case

endfun

where xs is an input parameter of type intlist. Note that the body of the function does not assign
global variables, the variable x being local to the second clause of the “case” statement.

The declaration below uses the output parameters to return several results:

function partition (in xs: intlist, out less: intlist, in x: int, out gtr: intlist)

is

var ys: intlist := xs,

ls: intlist := nil,

gs: intlist := nil

in

loop P in

case ys is var z: int, zs: intlist in

nil -> break P

| cons (z, zs) ->

if (z < x) then

ls := cons (z, ls)

else

gs := cons (z, gs)

Release 2.6 February 21, 2008

56 Chapter 5 : Expressions, Statements, and Functions

end if;

ys := zs

end case

end loop;

less := ls;

gtr := gs

end var

end function

5.5.2 Function call

Function calls can be used in both expressions and statements. In expressions, functions that have
two parameters can be used either in the prefix form or in the infix form.

The call of a function F in Lotos NT has two forms. The “positional” function call give the ordered
list of the parameters:

eval [V :=] F ([?V ′
1 |E1], ..., [?V ′

n|En]) raises [X ′
1, ..., X ′

m]

where n, resp. m, must be equal to the number of formal value parameters, resp. to the number
of formal exception parameters. ([?V ′

1 |E1], ...) is the list of actual value parameters . Expressions Ei

should appear in the same position as the “in” parameters and must have the same type. Variables Vi

should appear as actual parameters of the “inout” and “out” formal parameters, and must be already
declared with the same type as the formal parameters. X ′

1, ..., X
′
n are actual exception parameters .

The result of the function, if any, may be assigned to the variable V .

The “named” call of the functions use the name of formal parameters to specify the correspondence
between formal and actual parameters; the order of the actual parameters is not important. The
three alternatives below are equivalent:

eval [V :=] F (V1=>[?V
′
1 |E1], ..., Vn=>[?V

′
n|En]) raises [X ′

1, ..., X ′
m]

where the list of actual value parameters is named,

eval [V :=] F ([?V ′
1 |E1], ..., [?V ′

n|En]) raises [X1=>X
′
1, ..., Xm=>X ′

m]

where the list of actual exception parameters is named, and

eval [V :=] F (V1=>[?V
′
1 |E1], ..., Vn=>[?V

′
n|En]) raises [X1=>X

′
1, ..., Xm=>X ′

m]

where both lists are named. The constraints above are also applied here.

Note that the “positional” style cannot be merged with the “named” style in the same list of actual
parameters. This style of function call is similar to the Ada style.

The “...” shorthand for the record of actual parameters V S is expanded to the list of unspecified
parameters as follows: if the parameter is an “in” one, the expression is the variable which has the
same name as the formal parameter; if the parameter is an output (“inout” and “out”), the actual
parameter is the query symbol followed by the name of the formal parameter. Similarly for the list
of actual exception parameters.

The evaluation of a function call begins with the left-to-rigth evaluation of expressions corresponding
to the input parameters. For the “inout” parameters, the input value is the value of the variable given
as parameter. Then, the body of the function is evaluated in the context of actual values for input
parameters and of actual exception parameters. The body should assign all the “out” parameters
and should return a value if the function returns a value.

Release 2.6 February 21, 2008

§ 5.5 : Functions 57

Note that Lotos NT supports call by value (“in” parameters) and (a restricted form of) call by ref-
erence (“inout” and “out” parameters). Functions as arguments of functions (second order functions)
are not allowed.

Example 5.5.2

The function partition may be used by a quick sort function as follows:

function quicksort (xs: intlist) : intlist

is

case xs is var y: int, ys: intlist in

nil -> nil

| cons (y, ys) ->

var l: intlist, g: intlist

in

eval partition (xs, ?l, y, ?g);

return append (quicksort (l), cons (y, quicksort (g)))

end var

end case

end function

Note that the variables l and g are locally declared to the second clause of the case because the first
clause does not initialize them.

Release 2.6 February 21, 2008

58 Chapter 5 : Expressions, Statements, and Functions

Release 2.6 February 21, 2008

Chapter 6

Behaviour Expressions and

Processes

In a language dedicated to the description of behaviours of (information processing) systems, the
behaviour expressions are the most important concept. This chapter describes how Lotos NT sup-
ports the description of behaviours and the definition of processes. It introduces important notions
as: concurrency, communication, non-determinism, signaling, exceptions and exception handling,
real-time.

Although behaviour expressions use the expressions of the data part of the language, this chapter
does not make any assumption about the form of these expressions. It supposes only that expressions
of the data part may be evaluated into values , i.e., the terms of the domains of the types defined
into the specification, or may assign variables. This assumption allows to interface the control part
of Lotos NT with any language expressing data expressions. Chapter 5 presents the data language
supported by Lotos NT. The behaviour language can be seen as an extension of the data language
with concurrency, non-determinism, and real-time features.

Some constructs of the language use bracketed keywords: “par—end par”, etc. The unbracketed
constructs, like “[]” are left associative. To resolve remaining syntactic ambiguities, any behaviour
can be bracketed using parenthesis “()”. Lotos NT is fully orthogonal: operators can be freely
mixed in an arbitrary way. One can compose parallel behaviours sequentially, or put sequences in
parallel, one can subject any behaviour to a trapping, etc.

6.1 Basic Behaviours

There are four basic pure behaviours:

block

stop

null

wait (E)

The “block” behaviour is an inactive behaviour, which cannot do any communication, never termi-
nates, and stops time evolving. The “stop” behaviour pauses forever and never terminates nor does
any communication. The “null” behaviour terminates instantaneously when started. The “wait”
behaviour terminates after the elapsing of the time given by the evaluation of the expression E. E

Release 2.6 59 February 21, 2008

60 Chapter 6 : Behaviour Expressions and Processes

must be of type time.

Note that the “block” behaviour is the one of ET-Lotos, the “stop” behaviour already exists in
Lotos but in its untimed version, and the “null” behaviour corresponds to the unvalued “exit”
behaviour of Lotos.

6.2 Regular Behaviours

As already mentioned, the control part and the data part of Lotos NT are symmetrical: behaviours
are extensions of statements. The constructs which are similar in both languages are grouped in the
generic class of regular behaviour expressions.

The regular behaviour expressions are: variable declaration (“var”), conditional behaviours (“case”
and “if”), loop behaviours (infinite and breakable “loop”, “while”, and “for”), exception raising
and handling (“raise” and “trap”).

In order to avoid repetition, the regular behaviour expressions will be presented shortly. For more
details, the reader must refer to the corresponding section of Chapter 5.

6.2.1 Variable declaration

Variables may be declared (and possibly initialized) using the local variable declaration behaviour,
which has the form:

var V1:T1[:=E1], ..., Vn:Tn[:=En]
in B
end var

where V1, ..., Vn are variable identifiers, T1, ..., Tn are type identifiers, and E1..., En are expressions.
The scope of a variable declaration is the body B.

See Section (§ 5.4.5, p. 47) for more details.

6.2.2 Conditional behaviour

The most general conditional expressions offered by Lotos NT is the “case” expression, whose
simplest form is:

case E0:T is

var V1:T1,...,Vn:Tn in

P1 [E1] -> B1

| · · ·
| Pn [En] -> Bn

end case

where n ≥ 1, P1, ..., Pn are patterns (see (§ 5.3, p. 44)), and E1, ..., En are boolean guards (see (§ 5.4.6,
p. 48)). The behaviours B1, ..., Bn (which substitute statements I1, ..., In in 5.4.6) must initialize the
same set of variables if they terminate. The scope of variables bound by a pattern Pi are the boolean
guards Ei and the behaviours Bi.

The “case” behaviour has the same semantics and needs the same constraints as the corresponding
“case” statement (§ 5.4.6, p. 48).

Release 2.6 February 21, 2008

§ 6.2 : Regular Behaviours 61

The “if” construct allows conditional computations; it is also called deterministic selection. It has
the following form:

if E0 then B0

elsif E1 then B1

...
elsif En then Bn

[else Bn+1]
end if

where n ≥ 0, i.e., the “elsif” clauses are optional. The “else” clause has the default value “exit null”.

Behaviours B0, ..., Bn+1 play the same role as expressions I0, ..., In+1 in (§ 5.4.7, p. 49). They must
initialize the same variables if terminate. This constraint is important for the control of the variable
flow.

The “if” behaviour has the same semantics and needs the same constraints as the corresponding “if”
statement (§ 5.4.7, p. 49).

6.2.3 Iteration behaviour

The iteration constructs provided by the behaviour language are similar to those of the data lan-
guage (§ 5.4.8, p. 50). The body of the loop is a behaviour and not a statement.

The loop forever behaviour has the form:

loop B end loop

where B is called the loop body . B is repeatedly executed after its termination.

The breakable loop behaviour has the form:

loop X in

B
end loop

This loop is broken by the “break” behaviour:

break X

which breaks the loop X and blocks.

The conditional execution of a loop may be expressed using the “while” construct:

while E0 do

B
end while

B is executed while the boolean condition E0 returns true.

The “for” iteration has the syntax:

for I0 while E1 by I2 do

B
end for

where B is executed repeatedly after the initializations I0, while E returns true. At the end of each
iteration, the statement I2 is executed (it should contain only assignments).

Release 2.6 February 21, 2008

62 Chapter 6 : Behaviour Expressions and Processes

6.2.4 Exception raising and handling

In the control part, the exceptions are a special case of signals (see Section 6.6). The behaviour
raising an exception:

raise X [E]

is equivalent to signaling X with the value given by evaluating E, followed by a “block” behaviour
(“signal X [E]; block”). So, raising an exception blocks (time cannot pass) the current behaviour
after the exception signaling.

An exception (or a signal) either propagates to top level, or is trapped by the “trap” behaviour
containing the exception handler. The syntax of the “trap” behaviour is:

trap

exception X1 :T1 is B1

· · ·
exception Xn :Tn is Bn

in

B0

end trap

where n ≥ 0. The constraints given in Section 5.4.9 must be respected, where the statements
I0, I1, ..., In are substituted with the behaviours B0, ..., Bn respectively.

6.3 Assignment and Procedure Call

The assignment behaviour extends the assignment statement defined in Section (§ 5.4.3, p. 47).
Assignment behaviour may be deterministic or non-deterministic. They terminate instantaneously.

The deterministic assignment behaviour has the form:

V := E

where V is a variable (§ 5.4.5, p. 47), and E is a data expression. The variable and the expression
must have the same type. The value stored by the variable V is given by the expression E.

Example 6.3.1

The behaviour below declares the variable V of type time (whose domain is discrete) and waits 15
time units:

var V : time

in

for V:=0 while V <= 5 by V:=V+1 do

wait (V)

end for

end var

The non-deterministic assignment behaviours have the form:

V := any T [[E]]

where V is a variable, T is a type (the same as the declared type for V), and E is a data expression
of type bool, also called boolean guard . The default value for the guard is “[true]”. The non-
deterministic assignment assigns to V a value of the domain of T which satisfies the guard E. It

Release 2.6 February 21, 2008

§ 6.4 : Communication and Actions 63

corresponds to the logical formula:

∃V : T. E =⇒ ...

Example 6.3.2

The behaviour below declares the variable V of type time (whose domain is discrete) and waits a
while, but strictly less than five time units, i.e. no more than four.

var V : time

in

V := any T [V < 5];

wait (V)

end var

The behaviour function call has the same form as the function call statement (§ 5.5.2, p. 56). For
example:

eval V :=F ([?V ′
1 |E1], ..., [?V ′

n|En]) raises [X ′
1, ..., X ′

m]

is a positional call of function F . The same constraints as mentioned in 5.5.2 for the actual parameters
are available. The function call is instantaneous.

6.4 Communication and Actions

In Lotos NT, as in Lotos, the behaviours communicate by rendezvous on gates . If G is a gate, the
behaviour:

G

is the simplest one which communicates on G. It waits for the rendezvous on gate G, and than
terminates.

The time at which the communication takes place can be obtained using the annotation “@”, as
follows:

G @V [[E]]

where V is a variable of type time, and E is an expression of type bool. E is also called boolean guard .
The variable V can appear in the boolean guard E.

The behaviour waits for a communication on gate G till the guard E evaluates to true. At any
moment, V gives the time elapsed from communication enabling. After communication, the be-
haviour terminates immediately. If the communication cannot take place, the behaviour has the
same semantics as “stop”.

Example 6.4.1

The following behaviour waits for a rendezvous on gate G at most 3 time units:

G @t [t < 3]

where t is a variable of type time.

The following behaviour may execute a rendezvous on G at 3 time units after its beginning:

G @t [t == 3]

Release 2.6 February 21, 2008

64 Chapter 6 : Behaviour Expressions and Processes

This simple form of rendezvous does not allow to send or receive data, so it is a pure communication.
The most general form of communication allows for data exchange over the gates with the following
syntax:

G[.C] (O1, ..., On) [@V] [[E]]
G[.C] (V1=>O1, ..., Vn=>On) [@V] [[E]]

where n ≥ 0, and O is an offer . Offers have two forms:

O ::= !E send value offer (O1)

| ?P receive value offer (O2)

The offer “!E” corresponds to an emission over the gate G of the value of expression E. The offer
“?P” corresponds to the reception over the gate G of a value which is matched against P . The
variables of P must be already declared.

NOTE: It is possible to introduce the same syntactic sugar as in Lotos, i.e., “?V :T” meaning the

declaration and the initialization of V . This form is closer to patterns, but it goes against the “imperative”

style of the language.

The gates in Lotos NT must be typed. So the offers are also typed, and their types must correspond
to the type of the gate. NOTE: The use of types for typing gates does not allow the same syntactic means

to express communication as channels (multiple profiles and in/out) or sub-typing (multiple profiles).

The communication is blocked by both sending and receiving values: the behaviour waiting for a
rendezvous is suspended (time can pass) and terminates immediately after the rendezvous takes
place. The rendezvous takes place if the values exchanged match and the boolean guard “[E]”
evaluates to true.

In Lotos NT, the rendezvous is symmetrical: there is no difference between the sender and the
receiver. The rendezvous on a gate may allow several sending and offers at the same time. Moreover,
the same gate may be used in several rendezvous either with a receive offer, or with a send offer.

Example 6.4.2

The following behaviour accepts rendezvous on LINK DATA recv, with 0 as destination field, after 5
time units:

LINK_DATA_recv (dest_id => !0, source_id => ?src, data => ?d) @t [t > 5]

The variables src and d are respectively assigned the values of fields source_id and data. The gate
LINK DATA recv has the type LinkPacketType defined below:

type LinkPacketType is

record dest_id: int, source_id: int, data: LinkDataType

end type

The header of a packet is communicated by the Link layer to a Physical layer over the gate
Physical Data which has the type HeaderType. The behaviour below accepts rendezvous on
Physical Data where the header contains a source field of value 3:

Physical_Data.Header2 (source_id => !3, dest_id => any,

data_length => any, header_CRC => any)

Gates are declared using the “hide” operator (§ 6.10, p. 74), the “rename” operator (§ 6.11, p. 76),
by a process declaration (§ 6.7, p. 66), and by the local declarations of a specification (§ 7.5, p. 89).

There are two special gates in Lotos NT: “i” and “δ”. “i” is a keyword of the language, also
called the internal gate. It specifies an internal action of the behaviour, and it terminates imme-

Release 2.6 February 21, 2008

§ 6.5 : Sequential Behaviours 65

diately. It cannot have offers or guard. “δ” is also called termination gate. It does not appear
explicitly in the language, but it appears each time a behaviour terminates. For example, the “null”
behaviour does only a rendezvous on the δ gate. The termination gate plays an important role on
synchronization (§ 6.9, p. 70).

6.5 Sequential Behaviours

Like for statements 5.4.4, the sequencing of behaviours is done by “;” sequential composition operator:

B1 ; B2

where B1 and B2 are behaviours.

The first behaviour B1 is instantaneously started when the sequence is started. If B1 terminates, B2

is immediately started and the sequence behaves as B2 from then on. If B1 stops, blocks, or raises
an exception, B2 is never started.

Example 6.5.1

The following behaviour waits for a rendezvous on gate MONEY (receives the money) and then a
rendezvous on gate TEA (distributes a cup of tea), and terminates:

MONEY; TEA

A one place buffer of integers which communicates on gates input and output has the following
behaviour:

var x: int

in

input (?x); output (!x)

end var

The gates input and output should have type int.

The Lotos NT operator “;” is associative and accepts “null” as neutral element.

Note that the sequential composition may be seen as a synchronization on “δ”: as soon as the
behaviour B1 does a rendezvous on δ (i.e., terminates), the behaviour B2 is started. The termination
of B1 and the beginning of B2 are atomic; δ does not appear as an action of the sequential behaviour.
This is similar to the action prefix operator “;” of Lotos, but differs from the Lotos sequencing
operator “>>” which introduces an internal action.

6.6 Signaling

Lotos NT introduces a new class of observable actions, called signals . Signals are an extension of
exceptions used in the data part (§ 5.4.9, p. 52). They are used to broadcast an urgent information
throughout the behaviour which is the scope of the signal. A signal may carry value information, so it
is a typed object. The signals of Lotos NT are similar to the “signal” model of Timed CSP [Sch93].

Instantaneous signal emission is realized by the “signal” behaviour whose general form is:

signal X [E]

where X is a signal identifier. The expression E must have the same type as the declared type of X .
The expression E is not present if X is of type none.

The “signal” behaviour evaluates the data expression E to N (if exists), does action X N , and

Release 2.6 February 21, 2008

66 Chapter 6 : Behaviour Expressions and Processes

terminates instantaneously. Since the evaluation of E does not take any time, the “signal” behaviour
has no time evolving.

Signaling is similar to raising exception ((§ 5.4.9, p. 52) and (§ 6.2.4, p. 62)) except that it allows com-
putation to carry on after the raising of the signal: “raise X” is a shorthand for “signal X; block.

Apart from exception raising, signals are also a mean to broadcast urgent information about a specific
internal action occurrence (see Section 6.10 for more details).

Signals, like exceptions, may be declared by the “trap” behaviour (§ 6.2.4, p. 62), by the “rename”
behaviour (§ 6.11, p. 76), by the process declaration (§ 6.7, p. 66), and by the local declarations of a
specification (§ 7.5, p. 89).

6.7 Processes Definition and Instantiation

Lotos NT (like Lotos) allows to name a behaviour using a process definition. A process is an
object which denotes a behaviour; it can be parameterized by a list of formal gates, a list of formal
variables, and a list of formal signals (exceptions). Note that processes, like functions, cannot be
parameters of processes: Lotos NT is a first order language.

6.7.1 Process definition

A process definition has the following syntax:

process Π [[G1:T1, ..., Gp:Tp]]([A1] V1:T1, ..., [An] Vn:Tn)

[raises [X1:T1, ..., Xm:Tm]]
is B

end process

It declares the process Π (possibly parameterized by the formal gates G1, ..., Gp, the formal variables
V1, ..., Vn, and the formal signals X1, ..., Xm) whose body is the behaviour B. The default formal
variables are “in”.

NOTE: In Lotos, gates are not typed. One may see this like typing gates by a type “any” which is a

super-type of all types. In Lotos NT, gates are strongly typed.

Process names cannot be overloaded. The name Π must be unique.

The formal variables must respect the same constraint as for functions (§ 5.5.2, p. 56).

The behaviour B may be any behaviour which initializes all the “out” parameters. It is executed
in the context built from the formal parameters, the declared types, functions, and processes. In
Lotos NT it is not possible to assign “global” variables or to raise “global” exceptions. All gates,
variables, and exceptions used in the body of the function must be declared as parameters or declared
as local in the body.

Example 6.7.1

The process below declares a generic task uniquely identified by the id parameter, and which executes
an activity taking d time units. Before beginning it does a rendezvous on the gate start. It indicates
the end of its activity by doing a rendezvous on the gate end.

process Task [start, end: int] (id: int, d: time)

is

start !id; wait (d); end !id; stop

end process

Release 2.6 February 21, 2008

§ 6.7 : Processes Definition and Instantiation 67

6.7.2 Process instantiation

The instantiation of a process is done by substituting the actual parameters to the formal ones. The
simplest form is the “positional” (§ 5.5.2, p. 56) process instantiation which gives the ordered list of
actual parameters:

Π [[G′
1, ..., G

′
p]] [([?V ′

1 |E1], ..., [?V ′
n|En])] [raises [X ′

1, ..., X
′
m]]

where p, n, and m must be respectively equal to the number of formal gate parameters, the number
of formal value parameters, and the number of formal exception parameters. The actual parameters
must have the same type as the formal ones. Expressions Ei should appear at the same position as
the “in” parameters and must have the same type. Variables Vi should appear as actual parameters
of the inout and out formal parameter, and must be already declared with the same type as the
formal parameter.

This behaviours denote the body of Π where the formal gate parameter Gi is renamed into G′
i, the

formal “in” (or “inout”) parameter Vi is substituted with the value of Ei, and the formal signal
parameter Xi is renamed into X ′

i.

The evaluation of expressions in the list of actual parameters is done left-to-right.

Example 6.7.2

The process above is recursively instantiated after five time units and a rendezvous at its formal gate:

process CP [Tk] is

wait (5); Tk; CP [Tk]

end process

The actual list of parameters may be specified in the “named” style, where the formal names of
parameters appear. For example, the process instantiation using the “named” style for actual variable
parameters has the form:

Π [G′
1, ..., G

′
p] (V1=>[?V

′
1 |E1], ..., Vn=>[?V

′
n|En]) raises [X ′

1, ..., X
′
m]

The application of Standard Lotos for realistic descriptions shows that the actual gate parameters
are usually the same as the formal ones. Moreover, the gate parameter list is often very long (in some
realistic example it has 20 elements). In this case, the process instantiation becomes very hard to
write. Eliminating the actual gate parameters reduces sometimes the specification text of 20%.

To solve this problem, the keyword “...” may be used when the formal list of parameters uses the
same names as the actual one.

Example 6.7.3

Although the number of gate parameters is not big for the process below, the use of “...” makes the
specification shorter and clearer.

process Scheduler [Tk1, Tk2, Tk3]

(d1, d2, d3: time)

is

...

Scheduler [...] (d1-5,d2,d3)

...

Scheduler [Tk1, Tk2, Tk3] (d1-5,d2,d3)

Release 2.6 February 21, 2008

68 Chapter 6 : Behaviour Expressions and Processes

end process

The same convention may be used for the actual list of variables and signals.

6.8 Non-deterministic Behaviours

Non-determinism is an important feature of a specification language. Lotos NT offers several op-
erators to express non-determinism. One of them is the non-deterministic assignment presented in
Section 6.3. It is similar to the internal choice of CSP [Hoa85].

The operators presented in this section are external choice operators.

The interaction of real-time capabilities, non-deterministic choice (external or internal), and urgent
actions (termination, internal, and signals) raises some problems which are discussed in [Sig99].

6.8.1 Operator “[]”

The unbracketed form of the choice operator has the form:

B1 [] B2

where B1 and B2 are behaviours. Informally, the “B1 [] B2” behaviour may execute either B1 or
B2. In order to be able to control the variable initialization, B1 and B2 must initialize the same
variables.

The start of the choice behaviour starts the evolution of both B1 and B2. They evolve in time with
the same pace. If time is blocked on one side, it is also blocked for the whole process. The first action
(i.e., rendezvous, internal action, termination, or signaling) executed by one of B1, B2 (call it Bi)
solves the choice in favor of Bi.

Example 6.8.1

The following behaviour models a coffee machine which, after receiving the payment (rendezvous at
gate MONEY) may distribute tea, coffee, or chocolate (rendezvous at TEA, COFFEE, or CHOCOLATE gates):

MONEY;

(TEA

[] COFFEE

[] CHOCOLATE

)

The non-deterministic choice means that the machine may accept any of these interactions. Its final
behaviour is determined by the iteration with its environment (i.e., the machine selection button).
The three of the choices are active till one of the buttons is selected.

A timeout may be expressed using the non-deterministic choice and urgent actions. For example, the
behaviour below will execute the internal action i if the interaction on gate MONEY waits more than 5
time units:

MONEY

[]

wait (5); i

The rendezvous on gate MONEY is available from the beginning of behaviour execution. After 5 time
units, the second behaviour of the choice cannot evolve in time and must execute the internal urgent

Release 2.6 February 21, 2008

§ 6.8 : Non-deterministic Behaviours 69

action i. So the choice is solved in favour of the second behaviour.

There are some cases where the choice is completely non-deterministic:

signal X

[]

signal Y

Both branches of the choice are urgent (cannot evolve in time). At the beginning of the behaviour,
either the signal X or the signal Y is emitted. Since it is not possible to do a rendezvous on a
signal (§ 6.9, p. 70), the behaviour is completely non-deterministic.

The operator “[]” is commutative, associative, and accepts “stop” as neutral element.

Note that the non-deterministic choice and the sequential composition are orthogonal operators. One
may write:

(B1 [] B2); B3

which is not possible using the Lotos action prefix operator “;”.

6.8.2 Operator choice over values

Lotos NT provides with the non-deterministic assignment a mean to choose a value of a domain.
This choice is internal, i.e., it does not depend on the environment. A derived behaviour is provided
by choice over values which allows to choose a value of a finite enumerable domain.

Let B0 be a behaviour which contains a use occurrence of variable V of the enumerable type T . Let
BN be the behaviour “V :=N;B0” where N is a value of the domain of T . In order to express the
behaviour:

BN1
[] ... [] BNn

[] ...

where N1, ..., Nn, ... are all the values of the domain of T , Lotos NT (like Lotos) allows the following
shorthand notation:

choice V :T [] B0 end choice

The scope of V is the behaviour B0.

The general form of the “choice” operator allows several iteration variables:

choice ~V1:T1, ..., ~Vn:Tn [] B0 end choice

where each variable of the list “~Vi” is a variable of type Ti.

The reception of a value (offer “?”) may be expressed using the “choice” operator. For example:

G (?V) [E]; B0

where V is a variable of type T , is equivalent to:

choice V :T [] G (!V) [E]; B0 end choice

In the current semantics of Lotos NT, the choice over values is a syntactic sugar of non-deterministic
assignment. For example, the following behaviour:

choice V1:T1,...,Vn:Tn [] B

may be translated using the non-deterministic assignment as follows:

var V1:T1,...,Vn:Tn in

V1:= any T1 ; ... ; Vn:= any Tn ; B
end var

Release 2.6 February 21, 2008

70 Chapter 6 : Behaviour Expressions and Processes

6.9 Concurrency

The behaviours presented till now are sequential ; Lotos NT (like Lotos) provides means to put
behaviours in parallel and to synchronize them. This section presents the parallel composition oper-
ators.

6.9.1 Synchronization operator

To express that two behaviours B1 and B2 evolve in parallel and synchronize on gates G1, ..., Gm,
and termination (δ), the following syntax is used:

B1 |[G1, ..., Gm]| B2

Note that it is not possible to synchronize on the internal gate i.

The parallel behaviour forks its component behaviours, starting instantaneously all branches. When
one branch offers a rendezvous at a gate G of the list G1, ..., Gm, it must wait for the other branches to
offer a rendezvous at G. If the rendezvous is possible, all the branches do an action synchronously on
G carrying values exchanged by the rendezvous. The rendezvous at a gate different from G1, ..., Gm

is done independently from other branches, in a asynchronous manner. The whole behaviour evolves
in time when all its branches may evolve in time. The time passes with the same pace in all branches.
The behaviour terminates when all branches terminate, waiting for the last one if some branches
terminate earlier. In fact, the “δ” gate is always present—implicitly—in the synchronization list.

Variables can be shared among the parallel branches if they are read-only. If a branch writes a
variable V , then no other branch can read nor write V .

Example 6.9.1

The coffee machine (example (§ 6.8.1, p. 68)) and a tea consumer doing her (his) choice after 5 time
units may be put in parallel as follows:

MONEY;

(TEA

[] COFFEE

[] CHOCOLATE

)

|[MONEY, TEA, COFFEE, CHOCOLATE]|

MONEY; wait (5); TEA

Since there are no time constraints on the rendezvous at the gate TEA from the part of the machine,
this rendezvous will take place after 5 time units or more.

Note that the sequencing operator “;” has a higher precedence than the parallel operator, as explained
in Section 6.12.

Note that synchronization between parallel behaviours may be done only using gates. There is no
mean to synchronize parallel behaviours on signals. This constraint is largely discussed in [Sig99].

When the gate carries values, the rendezvous on the gate takes place iff the offers are compatible.
Consider the two rendezvous below on the gate G:

G[.C1] (V 1
1 =>O

1
1, ..., V 1

n1=>O1
n1) [@V 1] [[E1]]

G[.C2] (V 2
1 =>O

2
1, ..., V 2

n2=>O2
n2) [@V 2] [[E2]]

They may synchronize if and only if the following four conditions are satisfied:

1. The tags C1 and C2 have the same name

Release 2.6 February 21, 2008

§ 6.9 : Concurrency 71

2. The number of offers is the same n1 = n2

3. There exists a permutation ρ of indexes such that V 1
i = V 2

ρ(i) and O1
i and O2

ρ(i) match. The
matching relation between different form of offers is synthesized in Table 6.1. Note that match-
ing occurs only when offers have the same type, which is verified statically.

offer no 1 offer no 2 matching condition effect name

!E1 !E2 result(E1) = result(E2) null value matching
?V1 !E2 None V1:=E2 value passing
!E1 ?V2 None V2:=E1 value passing
?V1 ?V2 None V1:= any T;V2:=V1 value generation

Table 6.1: The matching relation between offers

4. The guards E1 and E2 evaluate to true.

Example 6.9.2

The behaviour below (see example (§ 6.4.2, p. 64)):

Physical_Data.Header2 (source_id => ?src, dest_id => !3,

data_length => ?l, header_CRC => ?crc)

|[Physical_Data]|

Physical_Data.Header2 (dest_id => ?dest, source_id => !0

data_length => !4, header_CRC => !1)

is equivalent to the behaviour

Physical_Data.Header2 (dest_id => !3, source_id => !0

data_length => !4, header_CRC => !1);

dest := 3;

src := 0;

l := 4;

crc := 1

6.9.2 Full synchronization operator

A particular case of the synchronization operator is obtained when the list of synchronization gates
is the list of all gates defined in the current context. The binary form of the full synchronization
operator is the following:

B1 || B2

For example, the synchronization operator “|[MONEY, TEA, COFFEE, CHOCOLATE]|” of the example
above may be simply written “||”.

6.9.3 Interleaving operator

Another special case of the synchronization operator is obtained when the synchronization is done
only on termination gate “δ”. The binary form of the interleaving is the following:

B1 ||| B2

Release 2.6 February 21, 2008

72 Chapter 6 : Behaviour Expressions and Processes

Example 6.9.3

Suppose the existence of three independent consumers who interact with the coffee machine (exam-
ple (§ 6.8.1, p. 68)). Each consumer asks a different drink. The consumers are modeled by interleaved
behaviours using the “|||” operator. The interaction between the coffee machine and the consumers
is a full synchronization.

MONEY;

(TEA

[] COFFEE

[] CHOCOLATE

)

||

(

MONEY; wait (5); TEA (* first consumer *)

||| MONEY; wait (3); COFFEE (* second consumer *)

||| MONEY; wait (1); CHOCOLATE (* third consumer *)

)

6.9.4 Generalized parallel operator

The parallel composition operators play a crucial role in any non-trivial description of systems.
In highly abstract (implementation-independent) descriptions, where the intended properties of the
system are given as a set of mutually independent temporal constraints on the occurrences of certain
events, parallelism is often used to express the logical conjunction of these properties. Such use of the
parallel operator is known as the constraint-oriented specification style [VSS88]. In implementation-
oriented descriptions, where the actual resources to be used in the implementation are identified and
modeled (the resource-oriented specification style [VSS88]), parallel composition is used to describe
the interconnection pattern of the implementation components.

So, a systems’ description may be seen as a set of n processes communicating via a set of gates. This
representation is also called a process-gate net of arity n [Bol90].

The necessary and sufficient conditions for a process-gate net to be translated into a Lotos behaviour
expression using its (binary) parallel composition operator are studied in [Bol90]. These results may
be also applied to Lotos NT. As a conclusion, [Bol90] claims the need for a more complex parallel
composition operator, which should fill the gap between graphical and textual representation of
process-gate nets.

The limits of previous parallel operators are essentially related to the fact that an expression is a
linear object, while graphical representations consider multiple dimensions. The under-estimation of
these limits may lead to ambiguous or complex textual descriptions.

To fill this gap, Lotos NT provides a new and original operator, called the generalized parallel
composition operator. It extends the network operator of CSP [Hoa85] in order to allow “m among
n” synchronization. The syntax of this operator is:

par [with G1[#m1], ..., Gp[#mp] in]
G1

1, ..., G
1
q1

-> B1

|| ...
||Gn

1 , ..., Gn
qn

-> Bn

end par

Release 2.6 February 21, 2008

§ 6.9 : Concurrency 73

G

G G

B1

B2 B3

G

Figure 6.1: “2 among 3” and “3 among 3” synchronization on gate G

where m1, ..., mp are natural numbers in the range 1, ..., n. We define G0 to be the set {G1, ..., Gp},
Gi to be the set {Gi

1, ..., G
i
qi
} for 1 ≤ i ≤ n and we require that G0 ∩ Gi = 6© for all 1 ≤ i ≤ n. Note

that we do not require the gates G1, ..., Gp to be paiwise distinct.

The operator describes a set of behaviours B1, ..., Bn which are the processes of the net. Each
behaviour Bi communicates with all others by the gates of the “interface” Gi = Gi

1, ..., G
i
qi

and by

the gates of G0. The communication over a gate Gi
j of its interface should be synchronized with all

other behaviours having the Gi
j in their interfaces. The communication over a gate Gk ∈ G0 should

be synchronized with a number of behaviours equal to one of the synchronization degree declared
for Gk. As for the classical parallel operator, the termination of behaviours is synchronous: all Bi’s
synchronize on the termination gate (“δ”).

Note that: (1) all gates should be already declared, and (2) Bi do not share variables (i.e., a variable
written by a behaviour cannot be read or written by another parallel behaviour).

The timed dynamic semantics respects the principle of ordinary parallel composition: all the processes
evolve in time simultaneously.

The “par” operator can express both process interconnection and the degree of the interconnection in
a simple manner. In the following examples we show how one may translate graphical representations
into a textual one using this operator.

Example 6.9.4

In the process-gate net of Figure 6.1, behaviours Bi synchronize on gate G w.r.t. two patterns: “2
among 3” pattern and “3 among 3” pattern. In this case, the textual representation specifies the gate
G in the “interface” list of each behaviour and the degrees 2 and 3 for G:

par with G#2, G#3 in

B1 ||B2 ||B3

end par

Notice that the structure of the graphical representation is maintained.

Example 6.9.5

For the process-gate net of Figure 6.2, the textual representation specifies for each behaviour the
gates through which it synchronizes. The degree of these gates is the default one, namely 3.

par

G1, G3->B1 || G1, G4->B2

|| G1, G2, G3, G4->B3

|| G2, G3->B4 || G2, G4->B5

end par

Release 2.6 February 21, 2008

74 Chapter 6 : Behaviour Expressions and Processes

B1 B2

B3

B4 B5

G4G3

G1

G2

Figure 6.2: A two-dimensional process-gate net

6.9.5 Parallel over values operator

Similarly to the operator choice over value, Lotos NT provides a mean to express parallel compo-
sition of behaviours iterating on a finite domain.

Let B0 be a behaviour which contains a use occurrence of variable V of type T . Let “op” be one of
the parallel composition operators “|[...]|”, ||”, or “|||”. Let BN be the behaviour “V :=N;B0”
where N is a value of the domain of T . In order to express the behaviour:

BN1
op ... op BNn

where values N1, ..., Nn are n values of the domain of T , Lotos NT1 allows the following shorthand
notation:

par V :T in ES op B0 end par

where ES is a list of expressions. The scope of V is the behaviour B0.

Example 6.9.6

The behaviour below sends over the gate G all the working days of a week in any order:

par V:day_of_week in Monday, Tuesday, Wednesday, Thursday, Friday

||| G (!V); stop

end par

6.10 Hiding

Lotos NT provides a mean to hide some gates of a given behaviour. The syntax of the operator is
like in Lotos, except that the (declared) gates are typed:

hide G1:T1, ..., Gn:Tn in

B
end hide

1This operator is not a Lotos operator.

Release 2.6 February 21, 2008

§ 6.10 : Hiding 75

The hide operator declares the gates G1, ..., Gn with their respective types in the behaviour B. The
resulting behaviour substitutes all actions on the gates G1, ..., Gn by the internal action “i”.

Example 6.10.1

A two places buffer may be expressed using two one place buffers which synchronize on a gate mid.
The actions on gate mid are internal to the buffer.

hide mid: int in

var x:int in

input (?x); mid (!x)

|[mid]|

mid (?x); output (!x)

end var

end hide

The substitution of the hidden gates by the internal urgent gate “i” allows to express that a syn-
chronization should occur as soon as made possible by all the processes involved. For example the
behaviour:

hide G in

wait(1); G; B1

|| wait(2); G; B2

end hide

has the same semantics as:

wait(2); i;

hide G in

B1 || B2

end hide

The hidden G occurs after 2 time units, which is as soon as both processes can perform G.

The behaviour:

hide G in

G@?t[t > 3]; B
end hide

has two possible semantics depending on whether the type time is discrete or dense. If time is a
synonym for natural number (discrete time), the behaviour has the same semantics as:

wait(4); t:=4; i;

hide G in B end hide

because 4 is the smallest natural number strictly greater than 3. On the other hand, if time is a
synonym for rational number (dense time), the behaviour has the same semantics as:

wait(3); block

The reason why this process time stops after 3 time units without even performing the hidden G is
because there is no smallest rational (or earliest time) strictly greater than 3.

The urgency of hidden actions is inherited from ET-Lotos. It is largely discussed in [LL97]. Having
to hide synchronizations to make them occur as soon as possible is sometimes criticized, because there
are cases where one would still like to observe those gates. The problem here lies in the interpretation
of the word “observation”. Observing requires interaction, and interaction may lead to interference.
Clearly, we would like to show the interaction to the environment without allowing it to interfere.
There is a nice solution to this problem. It suffices to raise an exception (signal) immediately after

Release 2.6 February 21, 2008

76 Chapter 6 : Behaviour Expressions and Processes

the occurrence of the hidden interaction.

Example 6.10.2

Consider the two places buffer example (§ 6.10.1, p. 75), and suppose that one wants to signal the
passing of the value from one place to another, as soon as it takes place. For this, a special monitoring
behaviour is added. It synchronizes on mid and then raises the Transfer signal:

hide mid: int in

var x:int in

input (?x); mid (!x)

|[mid]|

mid (?x); output (!x)

|[mid]|

mid (?x); signal Transfer (* the monitor *)

end var

end hide

Since the signaling is urgent, Transfer will be signalled the same time as the internal action resulted
from synchronization on gate mid.

6.11 Renaming

The “rename” operator has the following form:

rename

ren-clause1

· · ·
ren-clausen

in

B
end rename

where n ≥ 0, and the renaming clauses are given by the following grammar:

ren-clause ::= exception X [P] :T is X ′ [E] renaming exceptions

| gate G [P] :T is G′[.C] (V1=>O1, ..., Vp=>Op) renaming gates

where m, p ≥ 0. Note that the named form of rendezvous may be substituted with a positional
one. Also, the terms on the right of the keyword “is” are similar to signaling and communication
behaviours, except that for exceptions, the keyword “raise” is not specified. For this reason, these
terms must satisfy the constraints of the corresponding behaviour expressions (see Sections 6.4 and
6.6): the signals X ′ and the gates G′ must be defined in the current context, and their parameters
(if exist) must be of compatible types.

The “rename” operator declares the signals X and the gates G in the behaviour B. Their type is T .
The pattern P matches the values carried by X or G; its variables are visible only in E or O1, ..., On.
The gate G cannot be the internal gate i.

The “rename” behaviour is equivalent to the behaviour B where, at the execution (i.e., in the Lts),
the signal X carrying a value matching the corresponding pattern P is substituted with the signal X ′

carrying the result of E, and where communication on gate G carrying values matching the pattern
P is substituted with communication on gate G′ with the corresponding offers. This semantics for

Release 2.6 February 21, 2008

§ 6.12 : Unambiguous Behaviours 77

renaming corresponds to a post-relabelling operator like in Timed CSP [Sch93].

Renaming an observable action into another observable action may be much more powerful than one
might think at first, because it allows one to do more than just renaming gate names. For example,
it can be used to change the structure of events occurring at a gate (adding or removing attributes),
or to merge or split gates.

The simplest form of renaming just renames one gate to another:

rename gate G x: int is G’ !x

in ...

end rename

This form of renaming is so common that a shorthand for it is provided:

rename gate G : int is G’

in ...

end rename

The renaming allows the removing of a field from a gate:

rename gate G (x: int, y: bool) : Record2 is G !x

in ...

end rename

where the type Record2 has the following definition:

type Record2 is record x: int, y: bool end type

Note that G has the type Record2 in the body of the “rename” behaviour, and it has the type int

in the context of the “rename” behaviour.

A new field may be added to the gate:

rename gate G x: int is G (x => !x, y => !true)

in ...

end rename

where G is already declared with type Record2 in the context of the “rename” behaviour.

Two gates G1 and G2 can be merged into a single gate G:

rename gate G1 x: int is G (x => !x, y => !true)

gate G2 x: int is G (x => !x, y => !false)

in ...

end rename

A gate G may be split into gates G1 and G2:

rename gate G (x: int, true) : Record2 is G1 !x

gate G (x: int, false) : Record2 is G2 !x

in ...

end rename

Signals may be renamed in a similar way.

6.12 Unambiguous Behaviours

The priority degree of binary operators of Lotos NT control part is given in table 6.2. The operators
with a higher priority degree have lower priority (or give precedence). For example B1 [] B2; B3

Release 2.6 February 21, 2008

78 Chapter 6 : Behaviour Expressions and Processes

is parsed B1 [] (B1; B3) because the sequential composition has a smaller priority degree than
the choice operator.

Priority Operators

0. basic behaviours, actions, assignments, signaling, bracketed operators
1. ;

2. ||, |[...]|, |||
3. []

Table 6.2: The precedence of Lotos NT behaviour operators.

This precedence can be forced by using parenthesized behaviours:

(B)

Parenthesis may be also used for esthetic considerations. Its semantics is the same as the semantics
B.

All parallel binary operators are right associative.

Release 2.6 February 21, 2008

Chapter 7

Modules

This chapter presents the structure of a Lotos NT specification and a number of related concepts:
modularity, equational specification, genericity.

The modularity is an important concept for specifying “in the large”. It is well known from practical
specification that, especially when large specifications are developed, one wishes to encapsulate one or
more types, operations, or processes so that they can be regarded as a single unit. It is also common
experience that a major part of the specification effort lies in deciding what are these logical units
of the specification. Finally, it is desirable that manipulation of such units can be expressed in the
specification language itself, so that it becomes subject to automatic checking. In conclusion, the
module system shall provide mean for structuring, abstraction, and re-usability.

One of the goals of Lotos NT is to develop a modularization system, which should allow export
and import, hiding, and genericity. This goal is justified by the limited form of modularity offered by
Lotos. The modules in Lotos encapsulate data types and operations, but not processes. Moreover,
this mechanism does not support abstraction: every object declared in a module is exported outside.
These deficiencies make Lotos difficult to use, and cause problems for users and tool implementors
alike. A critical evaluation of Lotos data types from the user point of view can be found, for instance,
in [Mun91].

NOTE: Since 1988, there have been several proposals for enhancing Lotos modules. An overview of those
proposals is given in [Que96, Section 3].

Our proposal is based on the ActOne style of modules (called types), and extend it in two directions:

• The specification of processes is allowed inside the module units. This allows new processes to be
generated as types (by renaming and instantiation).

• The genericity feature of ActOne is cleaned in order to offer a better control of the formal (generic)
parameters of a specification.

• In order to avoid cumbersome renaming, a one-level dot notation is provided. The identifiers may be
“long”, that is one may specify explicitly the name of the definition module for a type, constructor,
function, and process identifier.

The one-level depth of the dotted notation implies that importation is, like in ActOne but unlike SML
or IDL, non generative (i.e., the imported objects do not become local objects of the module importing
them. Introducing generative importation complicates the identifier analysis and the static semantics
checking.

Release 2.6 79 February 21, 2008

80 Chapter 7 : Modules

7.1 Generalities

The module system concerns both parts of the language: the data part and the control part, so
process declarations are allowed as well as type and function declarations. The Lotos NT module
language allows to define a set of related objects — types, functions, and processes, and to control
the visibility of these objects at each point of the description.

There are two important concepts: the module interface which declares the visible objects of a module
and what is necessary to use them (e.g., function profiles), and the definition module in which the
actual description of objects (visible or not visible) is given. The interface is an outside view of a
module, and represents a “contract” between the author of the module and its users, while the module
contains the inner mechanisms which should remain hidden to the module user.

Three features improve this clean separation between the module structure and the module descrip-
tion:

• The visible part of a module may be seen through several interfaces provided that these inter-
faces respect the declaration given by the module.

• Types and other objects in an interface may be declared as being opaque (or abstract), which
means that their structure is not know by the user; only functions and processes provided in the
corresponding implementation module may operate in an opaque type; functions and processes
are always opaque.

• A module may be parameterized (“generic”) by a collection of objects to adapt general be-
haviours to particular situations.

Each declaration of an object O inside an interface I declares the scope interface of O as being I.
Each definition of an object O inside a module M declares the scope module of O as being M . The
scope interfaces and modules are associated with each object identifier occurrence. This association
is called extended object identifier. It allows the solving of names conflicts by using the “dotted”
notation for identifiers: “scp.id” where scp is the scope (module or interface) of the identifier id .
This notation has one level of depth because it is not allowed to nest modules or interfaces.

The structured set of objects of an interface (or module) is called the signature of the interface (or
module). The set is structured into three classes: the class of types, the class of functions, and the
class of processes. Each class binds the extended identifier of the object with the declaration (profile)
of the object.

In an interface (or module) signature, the objects of the same class must have different extended
identifiers (i.e., either different module definitions, or different names) except for functions, where
overloading is allowed.

In conclusion, a specification in modular Lotos NT is a set of interface declarations (see Section 7.2),
module declarations (see Section 7.3), generic modules declarations (see Section 7.4), and a unique
entry point declaration called specification1 (see Section 7.5).

1This will change in future versions of Lotos NT.

Release 2.6 February 21, 2008

§ 7.2 : Interfaces 81

7.2 Interfaces

7.2.1 Interface declaration

An interface describes the external (visible) part of the objects — types, functions, and processes
— described inside a module. The parameters of a generic module (§ 7.4, p. 86), and the objects
imported from other modules, may enter in this collection.

The visible part of a type is its name and maybe its definition (implementation). If the definition is
given (§ 4.1, p. 27), all the operations applicable to that type (pattern-matching, field selection, etc.)
are available. Otherwise, the type is opaque. An opaque type declaration has the form:

type T

In this case, no operation is implicitly defined for this type, except (non-)equality functions (==, !=).
The only functions defined on such an opaque type are those declared in the interface. Opaque types
are very useful to implement abstract data types .

The visible part of a process is its complete header:

process Π [[G1:T1, ..., Gp:Tp]][([A1] V1:T1, ..., [An] Vn:Tn)]
[raises [X1:T1, ..., Xm:Tm]]

where Ai may be “in”, “out”, or “inout”. The types of formal parameters must be either predefined,
imported, or declared by the interface. The body of a process never appears inside an interface, i.e
processes are always opaque. NOTE: A proposal to describe the process interface by giving equivalence

relations or logic formulas is given in [GM96, Sig99].

The visible part of a function is its complete header:

function F ([A1] V1:T1, ..., [An] Vn:Tn) [:T]
[raises [X1[:T1], ..., Xm[:Tm]]]

where Ai may be “in”, “out”, or “inout”. The same constraints for the types used in the profile
must be satisfied. As for processes, the body of a function never appears inside an interface. However,
it is possible to specify the axioms that the function satisfies, using equations (§ 7.2.3, p. 83).

An interface declaration has the general form:

interface int-id [import IE1, ..., IEn] is

IB
end interface

where int-id is the interface identifier, IE, IE1, ..., IEn are interface expressions . IE1, ..., IEn are
called imported interfaces , and IB is called the interface body . The importation cannot be circular,
as explained in Section 7.6.

7.2.2 Interface expression

An interface expression may be:

• An interface declaration: This interface expression can appear only in an interface body.

Example 7.2.1

The interface of a Monoid module (i.e., a domain with an associative and commutative operation
“+”, whose neutral elements is “0”) is:

interface Monoid is

Release 2.6 February 21, 2008

82 Chapter 7 : Modules

type Monoid

function 0: Monoid

function + (x: Monoid, y: Monoid) : Monoid

end interface

• An interface identifier int-id ′: In an importation clause, this means that the objects of int-id ′

are imported in int-id , but their declaration interface is int-id ′. In the interface body, this
means that the objects of int-id have the same form as those of int-id ′, but their declaration
interface is int-id .

Example 7.2.2

A monomorphic list is a monoid with a single type of elements, denoted by E:

interface List import Monoid is

type E

function inj (x: E) : Monoid

end interface

The function inj is a bijection from the element type domain to the list domain.

• An interface renaming:

[int-id ′ renaming (ren-list)]

where ren-list are explicit renaming of int-id ′ objects. Renamings have the form:

ren-list ::= [types ren] type

[opns ren] operations

[procs ren] processes

ren ::= id ′
1 := id1,...,id

′
n := idn

where the unprimed identifiers are the new names (of int-id), and the primed identifiers are the
old names (of int-id ′). The renaming clauses declare an isomorphism from the int-id names
to the int-id ′ names, which is the identity for the names of int-id ′ which are not specified in
the renaming list. This isomorphism is uniformly applied to all the profiles of objects of the
interface.

Example 7.2.3

The interface for a String monoid module may be obtained by renaming the Monoid interface:

interface String is

[Monoid renaming (types Monoid := string

opns 0 := empty)]

end interface

This declaration is equivalent to the following one:

Release 2.6 February 21, 2008

§ 7.2 : Interfaces 83

interface String is

type string

function empty : string

function + (x: string, y: string) : string

end interface

Note that for “+”, the renaming isomorphism is an identity, but its profile is changed according
to the renaming of the Monoid type.

• An interface body, possibly renamed:

[IB [renaming (ren-list)]]

This form is useful to give directly the profile of the objects, without explicitly declaring an
interface.

All objects visible by an interface, including the imported objects, are visible from outside and may
be imported in other interfaces. The importation is transitive through interfaces. Also, an interface
may be transitively imported several times. This is not a conflictual situation, the interface being
imported one time (the “diamond” scheme).

It is not allowed to have multiple declarations for an identifier belonging to the same class of objects,
except for functions if the overloading constraints are respected. For example, if the interface int-id
declares a type T , it cannot declare another type having the same name.

7.2.3 Equation declaration

Interfaces may contain an axiomatic specification of functions. These descriptions are given using
ActOne equations for compatibility with Lotos data language. However, the equations are just like
(type checked) comments. It is ensured that (like in Extended ML) the equations can be commented
out without affecting the semantics of the module.

The equation declarations have the form:

eqns

forall V1:T1, ..., Vn:Tn

ofsort T
[E′

1=>] E1 = E′
1;

...
[E′

p=>] Ep = E′
p;

end eqns

where V1, ..., Vn are variables used by the expressions Ei, E
′
i, and T is the type of the expressions

Ei, E
′
i. The meaning of an equation “E′

i=> Ei = E′
i” is that the terms Ei and E′

i denote the same
value in the domain of T if the premise E′

i is true.

Example 7.2.4

In the Monoid interface, the function “+” may be characterized by the following equations:

eqns

forall x, y, z: M

ofsort M

x + 0 = x ;

Release 2.6 February 21, 2008

84 Chapter 7 : Modules

0 + x = x ;

(x + y) + z = x + (y + z) ;

end eqns

which express that the operation “+” is associative and has 0 as neutral element.

7.3 Modules

The Lotos NT modules contain the description (implementation) of a set of related types, functions,
and processes. The visibility of these objects is controlled using interfaces.

7.3.1 Module declaration

The declaration of a Lotos NT module has the form:

module mod-id [:IE] [import ME1, ..., MEn] is

MB
end module

where mod-id is the name of the module, IE is an interface expression (§ 7.2, p. 81), ME1, ..., MEn

are module expressions (§ 7.3.2, p. 85), and MB is the module body .

The interface IE controls† the visibility of objects defined in the module mod-id : all the objects
declared in IE are visible. Note that IE is self contained (§ 7.2, p. 81). By default, the interface of
the module is the list of objects imported by the importing clause, and the list of objects declared
by the module body.

The import clause makes the objects declared by the module expressions ME1, ..., MEn visible inside
the module.

The body of a module defines the objects of the module — types, functions, and processes. Types may
be defined as shown in Section (§ 4.1, p. 27). Functions are defined using function definitions (§ 5.5.1,
p. 54), and processes are defined as indicated in Section (§ 6.7.1, p. 66). Another mean to define
the module objects is using the module expression (§ 7.3.2, p. 85), i.e., renaming and generic module
instantiation.

The module definitions must be self-contained: all the objects used must be either imported by the
importation clause, or defined in the current module. The reference to an object which is not visible
in the module is forbidden. Recursive definitions of types, processes, and functions are allowed.

Example 7.3.1

The specification of a data-flow process is:

module DataFlow is

type Record2 is

record x: int, y: int

end type

process Flow [Input: Record2, Output: int] is

var x: int, y: int

in

loop

Input (?x, ?y);

Output !(x+y)

end loop

Release 2.6 February 21, 2008

§ 7.3 : Modules 85

end var

end process

end module

The default interface for the DataFlow is:

interface DataFlow is

type Record2

process Flow [Input: Record2, Output: int]

end interface

Note that the standard module of the predefined types is included by default, an explicit importation
clause is not needed.

Example 7.3.2

The following module defines the one point domain:

module OnePoint is

type M is zero end type

function 0: M is return zero end function

function infix + (x: M, Y: M) : M is

case x is

zero -> case y is zero -> return zero end case

end case

end function

end module

Note that modules are not nested.

7.3.2 Module expression

A module expression may be:

• A module identifier mod-id ′: If it appears in the importation clause, it corresponds to the
importation of all visible objects of the module. If it appears as the body of a module mod-id ,
the objects of mod-id are the same definitions as the objects of mod-id ′, but their definition
module is mod-id (instead of mod-id ′).

• A module identifier mod-id ′ restricted by an interface int-id ′, noted “mod-id ′:int-id ′”. If it
appears in the importation clause, it corresponds to the importation of the objects M ′ declared
in int-id ′. If it appears as the body of a module, the objects of mod-id are the objects declared
in int-id ′ with the definition given by mod-id ′, but the definition module is mod-id .

• A renaming module expression:

mod-id ′ [:I ′] renaming (ren-list)

where the renaming clauses ren-list are described in (§ 7.2.2, p. 81). The renaming clauses
declare an isomorphism from the mod-id names to the mod-id ′ names, which is identity for the
names of mod-id ′ which are not specified in the renaming list.

• A generic module instantiation (§ 7.4.2, p. 87).

Release 2.6 February 21, 2008

86 Chapter 7 : Modules

Example 7.3.3

The Monoid module is constructed by renaming the OnePoint module as follows:

module Monoid is

OnePoint renaming (types M := Monoid)

end module

7.3.3 External modules

External module declaration is provided for interfacing with other specification or implementation
languages. An external module declaration has the form:

external module M:IE is

file-id
end module

The interface of the module is compulsory because it gives the names and the profiles of the objects
implemented by the module.

7.4 Generic Modules

Genericity is a useful tool for building specifications and for code reuse. It is provided in Lotos NT
by the generic modules.

7.4.1 Generic module declaration

The declaration of a generic module has the form:

generic gen-id (mod-id1:IE1, ...,mod-idn:IEn) [:IE]
[import ME1, ..., MEp] is

MB
end generic

where gen-id is the name of the generic module, mod-id1, ...,mod-idn are module identifiers,
IE, IE1, ..., IEn are interface expressions (§ 7.2.2, p. 81), ME1, ..., MEn are module expres-
sions (§ 7.3.2, p. 85), and MB is the module body (§ 7.3, p. 84).

The module identifiers mod-id1, ...,mod-idn are also called the parameters of the generic module. The
visible objects of mod-id i are those declared by the interface expression IEi. They may be used by
the objects defined in the generic module body.

Example 7.4.1

The interface below specify modules implementing monomorphic lists:

interface List import Monoid is

type E

function inj (x: E) : M

end interface

A generic module implementing monomorphic lists (example (§ 7.2.2, p. 82)) is parameterized by
the type of elements of the list:

Release 2.6 February 21, 2008

§ 7.4 : Generic Modules 87

interface EqType is

type E

end interface

generic GenericList (Eq: EqType) : List is

type M is nil, cons (e: E, l: M) end type

function 0 : M is return nil end function

function infix + (x: M, y: M) : M is

case x is var z: E, zl: M in

nil -> return y

| cons (z, zl) -> return cons (z, zl + y)

end case

end function

function inj (x: E) : M is

return cons (x, nil ())

end function

end generic

7.4.2 Generic module instantiation

A generic module instantiation replaces the formal parameters of the generic module with the actual
parameters which give the implementation of the formal objects. Its simplest form is:

gen-id (ME1, ..., MEn)

where the module expressions ME1, ..., MEn define the objects declared by the interface expressions
IE1, ..., IEn (i.e., the parameters of the generic module mod-id). So, the actual parameters shall
match the interface specified for the formal parameter in all objects. For instance, the constructors
shall be instantiated with constructors in order to flatten correctly the pattern-matching expressions.

Example 7.4.2

The module below defines the type E as being a one point domain:

module Element : EqType is

OnePoint renaming (types M := E)

end module

The interface of the module is the EqType interface, so the module Element may be used to instantiate
the GenericList module:

module OnePointList : List is

GenericList (Element)

end module

Note that the type M declared by the module OnePoint must be renamed in E before instantiation,
in order to match the interface EqType. For this reason, the module Element is declared.

Declaring a module for each module instantiation may become cumbersome. For this, a simpler form
form of generic module instantiation is provided:

gen-id (ren1, ..., renp)

where ren1, ..., renp are renaming of form “id => id′” where id is the identifier of the formal objects
declared by the generic module parameters, and id ′ is the identifier of the actual parameter. The

Release 2.6 February 21, 2008

88 Chapter 7 : Modules

actual objects must be visible inside the instantiation context.

Example 7.4.3

Using this syntax, the previous example may be written:

module OnePointList : List import OnePoint is

GenericList (types E := OnePoint::M)

end module

Only the objects declared in the interface List are visible. Those imported from the module OnePoint
are not visible. The type E has the same definition as the type M.

To obtain a list of integers, one has to declare:

GenericList (types E := int)

because the type int is visible in each point of the specification.

The generic module instantiation creates new objects. These objects have as definition module the
module where the instantiation is done. For example, the module OnePointList has as (visible)
objects the type E, the function 0, and the functions “+” and “inj”; all these objects have as
definition module OnePointList.

Generic modules may be partially instantiated or used to build other generic modules.

Example 7.4.4

For example, consider the following generic module implementing stacks of generic elements of type
E:

generic GenericStacks (Eq: EqType) is

type Stack is empty, push (e: E, s: Stack) end type

function pop (s: Stack) : Stack raises EMPTY_STACK:none is

case s is

var s1: Stack in

empty -> raise EMPTY_STACK

| push (any, s1) -> return s1

end case

end function

function top (s: Stack) : E raises EMPTY_STACK:none is

case s is var x: E in

empty -> raise EMPTY_STACK

| push (x, any) -> return x

end case

end function

end generic

In order to obtain stacks of (generic) list, one shall declare:

generic StacksOfList (Eq: EqType) import GenericList (Eq) is

GenericStacks (types E := M)

end generic

In the resulting generic module, the formal (generic) element Eq is used to instantiate the GenericList
module and then the GenericStack module is instantiated using the list type M instead of the formal
element E.

Release 2.6 February 21, 2008

§ 7.5 : Specification 89

7.5 Specification

The entry point on a Lotos NT description is the specification declaration. It defines a list of
imported modules, a list of gates, a list of signals (exceptions), and the body of the specification. The
body of the specification may be either a behaviour or an expression.

specification Σ [import ME1, ..., MEk] is

[gates G1:T1, ..., Gp:Tp]
[exceptions X1:T1, ..., Xm:Tm]
(behaviour B | value I)

end specification

Note the similarity between specification definition and function or process definition. For this rea-
son the gates and the exceptions declared in a specification are also called the parameters of the
specification. This corresponds to the interface of the system modeled by the specification.

The object used by the behaviour B or by the expression E are the parameters of the specification
and all other objects imported by the specification.

Note that the types used must be already declared.

7.6 Importation Rules

If some interface (or module) A imports some objects from interface (or module) B, then A is said
to be dependent on B. To prevent any problem with circular definitions2, it is required that this
“dependency” relation does not contain cycle.

2Such as an object X of A defined in terms of an object Y of B and vice versa.

Release 2.6 February 21, 2008

90 Chapter 7 : Modules

Release 2.6 February 21, 2008

Appendix A

Syntax Summary

This chapter presents the full concrete grammar (syntax) of the language. The notations used are
those presented in Chapter 2. The lexical structure of the language is defined in Chapter 3.

A.1 Syntax of the module part

Equation declaration

eqn ::= [E {,E}⇒] E = E simple equation (eqns1)

eqn-list ::= ofsort T eqn {; eqn} list of equations (eqns2)

eqns ::= [forall V L] eqn-list {eqn-list} equations (eqns3)

Extended identifiers:

id ::= T | F | C | Π simple identifiers (eid1)

uid ::= mod-id | int-id | gen-id unit identifier (eid2)

eid ::= id simple extended identifier (eid3)

| uid :: id extended identifier (eid4)

Renaming list:

R ::= eid:=eid {,eid:=eid} renaming (RL1)

RL ::= [types R] type renaming (RL2)

[opns R] operation renaming

[procs R] process renaming

Release 2.6 91 February 21, 2008

92 Appendix A : Syntax Summary

Interface body:

IB ::= type T [with F {,F}] abstract type (IB1)

| type T is complete type (IB2)

TD [with F {,F}]

end type

| function F [(V FL)] [:T] [raises [XL]] function interface (IB3)

| process Π [[GL]] [(V FL)] [raises [XL]] process interface (IB4)

| eqns eqns end eqns equations (IB5)

| IB IB sequence (IB6)

Interface expressions:

IE ::= int-id [renaming (RL)] identifier (IE1)

| [IB] explicit interface (IE2)

Module body:

MB ::= D {D} declarations (MB1)

| ME module expressions (MB2)

Module expressions:

ME ::= mod-id module identifier (ME1)

| gen-id (MS) instantiation (ME2)

| gen-id (RL) instantiation with renaming (ME3)

| ME:IE constraint (ME4)

| ME renaming (RL) renaming (ME5)

Sequence of module expressions:

MS ::= empty (MS1)

| mod-id ⇒ ME {,mod-id ⇒ ME} disjoint union (MS2)

| ME {,ME} list (MS3)

Unit declaration:

UD ::= interface int-id [import IE {,IE}] is interface (UD1)

IB

end interface

Release 2.6 February 21, 2008

§ A.2 : Syntax of the data part 93

| module mod-id [:IE] [import ME {,ME}] is simple module (UD2)

MB

end module

| external module mod-id :IE [import ME {,ME}] is external module (UD3)

file

end external

| generic gen-id (mod-id:IE {,mod-id:IE}) [:IE] generic module (UD4)

[import ME {,ME}] is

MB

end generic

| specification spec-id [import ME {,ME}] is specification (UD5)

[gates G1:T1, ..., Gp:Tp]

[exceptions X1:T1, ..., Xm:Tm]

(behaviour B | value I)

end specification

Description:

descr ::= UD {UD} Lotos NT description (descr1)

Declarations:

D ::= type T is type (D1)

TD

[with F {,F}]

end type

| function F [(V FL)] [:T] [raises [XL]] is function (D2)

I

end function

| process Π [[GL]] [(V FL)] [raises [XL]] is process (D3)

B

end process

A.2 Syntax of the data part

Attributes of parameters:

A ::= [in] input formal parameter (A1)

| out output formal parameter (A2)

Release 2.6 February 21, 2008

94 Appendix A : Syntax Summary

| inout input/output formal parameter (A3)

List of variable:

V ::= V {,V } list of variable identifiers (VL1)

V L ::= V :T {,V :T } list of variables (VL2)

V FL ::= A V :T {,A V :T } formal parameter list (VFL1)

List of exceptions:

X ::= X {,X} list of exception identifiers (XL1)

XL ::= X:T {,X:T } list of exceptions (XL2)

Type definition:

TD ::= C [(V L)] {, C [(V L)]} constructed type (TD1)

| enum C {,C} enumeration (TD2)

| record V L structure (TD3)

| set of T set (TD4)

| list of T list (TD5)

| array [T {,T }] of T array (TD6)

| ′{′V :T, E ′}′ subtype (TD7)

Sequence of expressions:

ES ::= [...] empty or wildcard (ES1)

| V ⇒ E {,V ⇒ E} [,...] disjoint union (ES2)

| E {,E} list (ES3)

Sequence of exceptions:

XS ::= [...] empty or wildcard (XS1)

| X ⇒ X {,X ⇒ X} [,...] disjoint union (XS2)

| X {,X} list (XS3)

Release 2.6 February 21, 2008

§ A.2 : Syntax of the data part 95

Expressions:

E ::= K primitive constant (E1)

| V variable (E2)

| C [(ES)] constructor application (E3)

| E C E infix constructor application (E4)

| [E {,E}] list or set construction (E5)

| array T [E {,E}] array construction (E6)

| F [(ES)] function call (E7)

| E F E infix function call (E8)

| V [E1, ..., En] array access (E9)

| E.V field selection (E10)

| E.′{′ ES ′}′ field update (E11)

| E of T type coercion (E12)

| E raises [X] raise exception expression (E13)

| (E) parenthesized expression (E14)

The precedence of operators appearing in expressions is given on table A.2.

Priority Operations

0. raises

1. - unary
2. of, . field selection and update
3. and, andthen, /, %, *, **
4. or, orelse, xor, +, -
5. ==, !=, <, <=, >=, >, iff, implies

All the binary arithmetic operators are left associative.

Sequences of patterns:

PS ::= [...] empty or wildcard (PS1)

| V ⇒ P {,V ⇒ P} [,...] disjoint union (PS2)

| P {,P} list (PS3)

Patterns:

P ::= V variable (P1)

| any wildcard (P2)

| V as P aliasing (P3)

| K constant (P4)

| C [(PS)] constructed pattern (P5)

| P C P constructed pattern infixed (P6)

| [P {,P}] list pattern (P7)

Release 2.6 February 21, 2008

96 Appendix A : Syntax Summary

| P of T explicit typing (P8)

Match statements:

| P {| P} [[E]] -> I composed (IM1)

| IM | IM list (IM2)

Actual value parameters:

V E ::= E actual parameter “in” (VE1)

| ?V actual parameter “out” and “inout” (VE2)

V S ::= [...] empty or wildcard (VS1)

| V ⇒ V E {,V ⇒ V E} [,...] disjoint union (VS2)

| V E {,V E} list (VS3)

Statements:

I ::= return E value return (I 1)

| null termination (I 2)

| V :=E assignment (I 3)

| I ; I sequential (I 4)

| var V :T [:=E] {,V :T [:=E]} in variable declaration (I 5)

I

end var

| case E [:T] is [var V L in] case statement (I 6)

IM

end case

| if E then I conditional statement (I 7)

{ elsif E then I }

[else I]

end if

| eval [V :=] F [(V S)] [raises [XS]] procedure call (I 8)

| loop I end loop forever loop (I 9)

| loop X in breakable loop (I 10)

I

end loop

| while E do while loop (I 11)

Release 2.6 February 21, 2008

§ A.3 : Syntax of the behaviour part 97

I

end while

| for I while E by I do for loop (I 12)

I

end for

| break X break loop (I 13)

| raise X [E] raise exception (I 14)

| trap {exception X [:T] is I} in trapping exceptions (I 15)

I

end trap

A.3 Syntax of the behaviour part

Gate lists:

G ::= G {,G} list of gate identifiers (GL1)

GL ::= G:T {,G:T } list of gate declarations (GL2)

Sequences of gates:

GS ::= [...] empty or wildcard (GS1)

| G ⇒ G {,G ⇒ G} [,...] disjoint union (GS2)

| G {,G} list (GS3)

Sequences of offers:

OS ::= empty (OS1)

| V => O {,V => O} disjoint union (OS2)

| O {,O} list (OS3)

Offers:

O ::= !E send a value (O1)

| ?P receive a value (O2)

| ‘.‘C (OS) constructed offer (O3)

| (OS) record (O4)

Release 2.6 February 21, 2008

98 Appendix A : Syntax Summary

Match behaviour:

BM ::= P [[E]] -> B simple (BM1)

| P {| P} [[E]] -> B composed (BM2)

| BM | BM list (BM3)

Behaviours:

B ::= block time block (B1)

| wait (E) delay (B2)

| null successful termination (B3)

| stop inaction (B4)

| V :=E assignment (B5)

| eval [V :=] F [(V S)] [raises [XS]] function call (B6)

| G [O] [@P] [[E]] communication action (B7)

| i internal action (B8)

| B ; B sequencing (B9)

| var V :T [:=E] {,V :T [:=E]} in variable declaration (B10)

B

end var

| Π [[GS]] [(V S)] [raises [XS]] process instantiation (B11)

| case E [:T] is [var V L in case (B12)

BM

end case

| if E then B conditional (B13)

{ elsif E then B}

[else B]

end if

| signal X [E] signaling (B14)

| raise X [E] raising exception (B15)

| break X breaking iteration (B16)

| trap {exception X [V :T] is B} in exception trapping (B17)

B

end trap

| loop I end loop loop forever (B18)

| loop X in named loop (B19)

B

end loop

| while E do while loop (B20)

B

Release 2.6 February 21, 2008

§ A.3 : Syntax of the behaviour part 99

end while

| for I while E by I do for loop (B21)

B

end for

| rename renaming (B22)

{(gate G [P]:T is G [O]) | (exception X [P]:T is X [E])}

in B

end rename

| B [] B choice (B23)

| V :=any T [[E]] non deterministic assignment (B24)

| choice V L [] B end choice choice over values (B25)

| B op-par B parallel (B26)

| par [with G[#n]{,G[#n}] in] general parallel (B27)

G->B{||G->B}

end par

| par V :T in E{,E} parallel over values (B28)

op-par B

end par

| hide GL in gate hiding (B29)

B

end hide

| (B) parenthesized behaviour (B30)

op-par ::= ||| interleaving (op-par1)

| || fully synchronization (op-par2)

| |[G]| synchronization (op-par3)

The level of priority for the (base) operators is given by the Table A.1.

Priority Operators

0. basic behaviours, actions, assignments, signaling, bracketed operators
1. ;

2. ||, |[...]|, |||
3. []

Table A.1: The precedence of Lotos NT behaviour operators.

All parallel operators are right associative.

Release 2.6 February 21, 2008

100 Appendix A : Syntax Summary

Release 2.6 February 21, 2008

Bibliography

[BM79] R.S. Boyer and J.S. Moore. A Computational Logic. Academic Press, New York, NY,
1979.

[Bol90] T. Bolognesi. A Graphical Composition Theorem for Networks of Lotos Processes. In
IEEE Computer Society, editor, Proceedings of the 10th International Conference on
Distributed Computing Systems, Washington, USA, pages 88–95. IEEE, May 1990.

[Cd95] J.P. Courtiat and R.C. de Oliveira. A Reachability Analysis of RT-LOTOS Specifications.
Technical Report 95159, LAAS, May 1995.

[CGM+96] Ghassan Chehaibar, Hubert Garavel, Laurent Mounier, Nadia Tawbi, and Ferruccio Zu-
lian. Specification and Verification of the PowerScale Bus Arbitration Protocol: An
Industrial Experiment with LOTOS. In Reinhard Gotzhein and Jan Bredereke, edi-
tors, Proceedings of the Joint International Conference on Formal Description Techniques
for Distributed Systems and Communication Protocols, and Protocol Specification, Test-
ing, and Verification FORTE/PSTV’96 (Kaiserslautern, Germany), pages 435–450. IFIP,
Chapman & Hall, October 1996. Full version available as INRIA Research Report RR-
2958.

[dMRV92] Jan de Meer, Rudolf Roth, and Son Vuong. Introduction to Algebraic Specifications
Based on the Language ACT ONE. Computer Networks and ISDN Systems, 23(5):363–
392, 1992.

[GH93] Hubert Garavel and René-Pierre Hautbois. An Experiment with the Formal Description
in LOTOS of the Airbus A340 Flight Warning Computer. In Maurice Nivat, Charles
Rattray, Teodor Rus, and Giuseppe Scollo, editors, First AMAST International Workshop
on Real-Time Systems (Iowa City, Iowa, USA), November 1993.

[GM96] Hubert Garavel and Radu Mateescu. French-Romanian Proposal for Capture of Re-
quirements and Expression of Properties in E-LOTOS Modules. Rapport SPECTRE
96-04, VERIMAG, Grenoble, May 1996. Input document [KC4] to the ISO/IEC
JTC1/SC21/WG7 Meeting on Enhancements to LOTOS (1.21.20.2.3), Kansas City, Mis-
souri, USA, May, 12–21, 1996.

[Gut77] J. Guttag. Abstract Data Types and the Development of Data Structures. Communica-
tions of the ACM, 20(6):396–404, June 1977.

[Hoa78] C. A. R. Hoare. Communicating Sequential Processes. Communications of the ACM,
21(8):666–677, August 1978.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

Release 2.6 101 February 21, 2008

[ISO89a] ISO/IEC. LOTOS Description of the Session Protocol. Technical Report 9572, Interna-
tional Organization for Standardization — Open Systems Interconnection, Genève, 1989.

[ISO89b] ISO/IEC. LOTOS Description of the Session Service. Technical Report 9571, Interna-
tional Organization for Standardization — Open Systems Interconnection, Genève, 1989.

[ISO92a] ISO/IEC. Distributed Transaction Processing — Part 3: Protocol Specification. Interna-
tional Standard 10026-3, International Organization for Standardization — Information
Technology — Open Systems Interconnection, Genève, 1992.

[ISO92b] ISO/IEC. Formal Description of ISO 8072 in LOTOS. Technical Report 10023, In-
ternational Organization for Standardization — Telecommunications and Information
Exchange between Systems, Genève, 1992.

[ISO92c] ISO/IEC. Formal Description of ISO 8073 (Classes 0, 1, 2, 3) in LOTOS. Technical
Report 10024, International Organization for Standardization — Telecommunications
and Information Exchange between Systems, Genève, 1992.

[ISO95a] ISO/IEC. LOTOS Description of the CCR Protocol. Technical Report 11590, Interna-
tional Organization for Standardization — Open Systems Interconnection, Genève, 1995.

[ISO95b] ISO/IEC. LOTOS Description of the CCR Service. Technical Report 11589, International
Organization for Standardization — Open Systems Interconnection, Genève, 1995.

[JSV93] A. Jeffrey, S. Schneider, and F. Vaandrager. A Comparison of Additivity Axioms in
Timed Transition Systems. Technical Report cs1193, COGS, University of Sussex, 1993.

[LL95] R. Lai and A. Lo. An Analysis of the ISO FTAM Basic File Protocol Specified in LOTOS.
Australian Computer Journal, 27(1):1–7, February 1995.

[LL97] Luc Léonard and Guy Leduc. An Introduction to ET-LOTOS for the Description of
Time-sensitive Systems. Computer Networks and ISDN Systems, 29:271–292, September
1997.

[Mil89] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

[Mun91] Harold B. Munster. LOTOS Specification of the MAA Standard, with an Evaluation of
LOTOS. NPL Report DITC 191/91, National Physical Laboratory, Teddington, Middle-
sex, UK, September 1991.

[NS94] Xavier Nicollin and Joseph Sifakis. The Algebra of Timed Processes ATP: Theory and
Application. Information and Computation, 114(1):131–178, 1994.

[Pec94] Charles Pecheur. A proposal for data types for E-LOTOS. Technical Report, University
of Liège, October 1994. Annex H of ISO/IEC JTC1/SC21/WG1 N1349 Working Draft
on Enhancements to LOTOS.

[QA92] J. Quemada and A. Azcorra. Structuring Protocols with Exception in a LOTOS Exten-
sion. In Proceedings of the 12th IFIP International Workshop on Protocol Specification,
Testing and Verification (Orlando, Florida, USA). IFIP, North-Holland, June 1992.

[Que96] Juan Quemada, editor. Revised Working Draft on Enhancements to LOTOS (V2).
ISO/IEC JTC1/SC21/WG7 N10108 Project 1.21.20.2.3. Output document of the Ot-
tawa meeting, January 1996.

[Sch88] Philippe Schnoebelen. Refined Compilation of Pattern-Matching for Functional Lan-
guages. Science of Computer Programming, 11:133–159, 1988.

[Sch93] S. Schneider. Rigorous Specification of Real-time Systems. In Proceedings of 3rd In-
ternational Conference on Algebraic Methodology and Software Technology AMAST’93,
Twente, The Netherlands, June 1993.

[Sig99] Mihaela Sighireanu. Contribution à la définition et à l’implémentation du langage “Ex-
tended LOTOS”. Thèse de Doctorat, Université Joseph Fourier (Grenoble), January
1999.

[VSS88] C. Vissers, G. Scollo, and M. van Sinderen. Architecture and Specification Style in Formal
Descriptions of Distributed Systems. In S. Aggarwal and K. Sabnani, editors, Proceedings
of the 8th International Workshop on Protocol Specification, Testing and Verification
(Atlantic City, NJ, USA), pages 189–204. IFIP, North-Holland, 1988.

[WWF87] D. Watt, B. Wichmann, and W. Findlay. ADA Language and Methodology. Prentice-Hall,
1987.

Index

δ, 64
..., 67
any

assignment, 62
offer, 64

array, 37
behaviour, 89
block, 59
break

behaviour, 61
statement, 50

call, 63
case

behaviour, 60
statement, 48

choice, 69
else, 49, 61
elsif, 49, 61
enum, 33
eqns, 83
exceptions, 89
exception, 53, 62
exit, 62
external, 86
false, 28, 30
forall, 83
for

behaviour, 60, 61
statement, 52

function, 54, 81
gates, 89
gate, 76
generic, 86
hide, 74
if

behaviour, 60, 61
statement, 49

import

generic module, 86
interface, 81
module, 84

specification, 89
inout, 54
interface, 81
in, 47, 53, 54, 60, 62, 66, 72, 74, 76
is, 48, 54, 60, 66
i, 64
list, 36
loop

behaviour, 60, 61
breakable, 50, 52, 54, 61
forever, 50, 61
statement, 50

module, 84, 86
noexit, 66
null, 47

behaviour, 59
ofsort, 83
of, 43
out, 54, 66
par, 72
process, 66, 81
raises, 54, 66
raise

behaviour, 60, 62
statement, 52, 53

record, 34
rename

behaviour, 76
renaming, 82, 83, 85
set, 35
signal, 65, 76
specification, 89
stop, 59
then, 49, 61
trap

behaviour, 60, 62
statement, 53

true, 28, 30
type, 81
value, 89
var

Release 2.6 105 February 21, 2008

behaviour, 60
statement, 47

wait, 59
while

behaviour, 60, 61
statement, 51

†, 3, 13
TRAIAN INIT, 54
[] (choice), 68

action
gate, 63
internal, 64
signal, 65
termination, 65

assignment
behaviour, 62
non-deterministic, 62
statement, 47

behaviour
basic, 59
regular, 60

BNF (Backus-Naum Form), 16

call
by name, 41
by position, 41

choice, 68
over values, 69

communication
guard, 63
offers, 64
pure, 64
receive offer, 64
send offer, 64
time, 63

conditional
behaviour, 60
statement, 48

constructor
application, 41

data
carrier, 17
domain, 17

equation, 83
exception

raising, 52, 62
trapping, 62

expression, 40
parenthesized, 43

function, 54
call, 56, 63

named, 56
positional, 56

definition, 54
interface, 81

gate, 63
synchronization degree, 73

generic module
declaration, 86
instantiation, 85, 87

handler, 53

identifier
extended, 80

importation, 89
interface, 80, 81

declaration, 81
expression, 81
renaming, 82, 83

iterative
behaviour, 61
statement, 50

labelled transition system
internal event, 17
labels, 17
structured, 17

module, 80
body, 84
declaration, 84
expression, 84, 85
external, 86
renaming, 85

non-determinism, 68

parallel, 70
interleaving, 71
with full synchronization, 71
with synchronization, 70

parameter
inout, 55, 56
in, 55, 56
out, 55, 56

actual, 56
exception, 55
formal, 55
value, 55

pattern, 44
in case, 48

pragma, 37
pragmas

operation, 38
type, 37

process
definition, 66
instantiation, 67
interface, 81

process-gate net, 72

renaming, 82, 85
behaviour, 76

rendezvous, 63
return

statement, 47

scope, 80
selection, 42
sequential

behaviour, 65
statement, 47

signal, 62, 65
raising, 65

signature
interface, 80
module, 80

specification, 89
statement, 45
syntax

concrete, 17

token
CHAR, 24
DECIMAL NUMBER, 23
FLOATING POINT, 23
HEX NUMBER, 23
OCTAL NUMBER, 23
STRING, 24

type, 27
array, 37
bool, 30
char, 31
constructor, 27
declaration, 27

enumerable, 34
enumerated, 33
finite, 34
finite enumerable (see scalar), 34
int, 30
interface (opaque), 81
list, 35
nat, 30
none, 32, 53
real, 31
record, 34
scalar, 34
set, 35
string, 32
subtype, 37

typing
explicit, 43

update, 43

value, 41
primitive constants, 39

variable, 41
declaration, 47, 60

