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Abstract. Event-B is a formal method used for specifying and reason-
ing about systems. Rodin is a toolset for developing system models in
Event-B. Our experiment which is outlined in this paper is aimed at
applying Event-B and Rodin to a flash-based filestore. Refinement is a
useful mechanism that allows developers to sharpen models step by step.
Two uses of refinement, feature augmentation and structural refinement,
were employed in our development. Event decomposition and machine
decomposition are structural refinement techniques on which we focus in
this work. We present an outline of a verified refinement chain for the
flash filestore. We also outline evidence of the applicability of the method
and tool together with some guidelines.
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1 Introduction

Hoare and Misra [14] outline the importance of undertaking experiments in-
volving the application of theories and tools in order to push forward scientific
progress in formal methods. Experiments help us to understand the strengths
and weaknesses of theories and tools. A flash-based filestore has been selected
as case study for our experiment. This case study was proposed as a challenging
system by Joshi and Holzmann [19]. As stated in [19], the challenge is how to deal
with accidental failures that may occur while performing operations on a flash
memory. For example, how do we cope with power loss or sudden reboot? How
do we manage the data consistency when flash instructions being performed fail?
The flash architecture we chose is the ONFI (Open NAND Flash Interface) spec-
ification proposed in [16]. This specification is open and is commonly referenced
by researchers who are working in this area.

A flash array has physical characteristics that constrain the way it is used.
Taking account of physical characteristics and failure management is required.

* This work was part of the EU research project ICT 214158 DEPLOY (Industrial
deployment of system engineering methods providing high dependability and pro-
ductivity) www.deploy-project.eu.



Reading and writing of files to the flash array are expected to be consistent with
an abstract model of a filesystem.

Our experiment presented in this paper is the development of a verified refine-
ment chain for a flash-based filestore using Event-B and the Rodin platform. This
experiment is an extension of the work we presented in [11] where we outlined
a model of a tree-structured file system. The extension we address here consists
of replacing the abstract file system by the flash specification and dealing with
fault-tolerance. In Section 12 we discuss some related work on applying formal
methods to the file store problem. A distinguishing feature of our treatment of
the file store problem is the use of multiple levels of refinement to relate an ab-
stract model, with large atomic reads and writes on abstract data structures, to a
model with more complex concrete data structures and more fine-grained atomic
steps. The use of multiple levels of refinement means that the abstraction gap
is relatively small at each stage which means the gluing invariants required for
refinement verification are relatively simple. Simpler gluing invariants are easier
for modellers to formulate and lead to simpler proof obligations. We believe the
relative ease of the proof effort, reported in Section 11, testifies to this. Another
distinguishing feature of our development is the use of machine decomposition
to partition the development after several refinement steps. The partitioning led
to sub-models that were refined separately. While it is well-known that decom-
position is critical for scaling of formal development, it is rare to find examples
of its application in practice. Our file store development represents an exemplar
of multi-level refinement and of machine decomposition that we believe others
could learn from. This role as an exemplar is the main contribution of the paper.

Two uses of refinement were employed in our development: horizontal and
vertical refinements (details are given in Section 3). The horizontal development
was mainly presented in [11]. (In this paper, we focus on the vertical refinement.)
We first used horizontal refinement in an incremental way to construct the file
system model. The model started with an abstract tree structure. After that,
new features were gradually added in each refinement step. We finally got five
layers of specification describing an abstract file system.

Vertical refinement was later used to introduce more design details in order
to map the abstract file system to the flash architecture. In the case of vertical
refinement, while refining the file system down to the flash specification, the
event-decomposition technique [6] was used to decompose events like readfile
(read the whole content of the given file from the storage into the memory
buffer) and writefile (write the whole content of the given file on the buffer to
the storage) into three sub-events, start, step (read or write a page) and end.

We also applied the machine decomposition technique [6] to decompose the
machine of the last refinement into two sub-machines representing the specifi-
cation of the file system layer and the flash interface layer. The reason we do
this is to explore further refinements of the flash model separately from the file
system model.

The paper begins with an introduction to Event-B and Rodin in Section 2.
The refinement and event-decomposition techniques used in our development



are outlined in Section 3 and 4. An overview of an abstract file system is given
in Section 5. Vertical refinement and event-decomposition used to link the file
system to the flash specification are discussed in Section 6-8. Machine decom-
position and further refinement focusing on the flash specification are outlined
in Section 9 and 10. Proof statistics, related work and conclusion are discussed
in Section 11, 12 and 13, respectively.

Note: An archive of our development in Rodin may be downloaded!. This
can be imported by the Rodin tool release 0.9.2.1 or later?.

2 Event-B and Rodin

Event-B [3] is an extension of the B-method [1] for specifying and reasoning
about systems. An Event-B model is described in terms of contexts and ma-
chines. Contexts [4,5] contain the static parts of a model. Each context may
consist of carrier sets and constants as well as axioms that are used to describe
the properties of those sets and constants. Contexts may contain theorems which
are required to follow from the preceding axioms and theorems. Machines [4, 5]
represent the dynamic part of an Event-B model consisting of variables and
actions. A machine is made of a state, which is defined by means of variables, in-
variants, events and theorems. The theorems of a machine are required to follow
from the context and the invariants of that machine. Variables are typed as math-
ematical objects such as sets, relations, numbers, etc. Variables are constrained
by invariants. Invariants are expected to be preserved whenever variable values
change. This must be proved through the discharge of proof obligations [4].

A machine contains a number of atomic events which model the way that
a system may evolve. In general, an event is composed of four elements: name,
parameter, guard and action. The guard is the necessary condition for the event.
The action determines the way in which the state variables are going to evolve
when performing the event [4]. An event is guarded and atomic and may be
performed only when its guard holds. When the guards of several events hold at
the same time, then only one event may be performed at that time. The event
to be performed is non-deterministically chosen.

Refinement is the main development method supported by Event-B. In Event-
B, an event of an abstract machine may be refined by several corresponding
events in a refined machine. A refined machine may also have additional events
that are refinements of skip rather than being refinements of abstract events.
Note this is more flexible than the usual approach in, for example, Z, VDM or
“classical” B, where there is a strong one-to-one correspondence between ab-
stract and concrete events.

Rodin [4] is an open and extensible toolset for specifying and verifying sys-
tem models in Event-B. It contains a database of modelling elements used for
constructing system models such as variables, invariants, events, etc. The Rodin

! http://deploy-eprints.ecs.soton.ac.uk/125/
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toolset is accompanied by various useful plug-ins such as a proof-obligation gen-
erator, provers, model-checkers, UML transformers, etc [9].

3 Refinement Strategy

Incremental refinement has been used as our strategy to develop a model of a
flash-based file system. Two uses of refinement were employed in our develop-
ment: feature augmentation (or horizontal refinement) and structural refinement
(or vertical refinement) [8]. Feature augmentation is aimed at introducing new
requirements or properties which are not addressed in the initial model or may
be postponed to other levels. Thus, in each refinement step, additional state
variables and related events might be added to incorporate those features which
are introduced. The system models will be enlarged gradually when new prop-
erties are introduced. The purpose of structural refinement, on the other hand,
is to replace an abstract structure with more design details in each refinement
step down to an implementation. This kind of refinement may involve data re-
finement, event decomposition and machine decomposition.

In the development presented in [11], feature augmentation was used in an
incremental way to develop a model of a flash-based file system. That is, we
began with a small set of features and then enlarged the model by introducing
new features in each refinement step. We finally got five levels of a specification
describing an abstract file system. That is, the specification is the abstract model
plus a series of feature augmentations. As stated in [11], we regard the full chain
of augmentation (horizontal) refinements as constituting the specification, not
just the most abstract level.

Structural refinement, which is the focus of this paper, was used to relate
the abstract file system with the specification of the flash interface layer. This
kind of refinement was used to decompose the events readfile and writefile into
sub-events in order to map them with page-read and page-program interfaces
provided by the flash interface layer. Details will be given in Section 6 and 7.

4 Event Decomposition in Event-B

While refining a model we may find that some (atomic) events can be split into
sub-events. We can decompose this kind of event through a refinement step.
Among those sub-events which are split, at least one event refines the abstract
event, while other sub-events refine skip. In our case, for example, instead of
writing the whole content in one step, the abstract file write can be partitioned
into sub-events: (i) start write (set an initial state and buffers), (ii) write a single
page (occurs once for each page of a file) and (iii) end write (reset the state and
buffers of the given file). Note that we achieve this form of event decomposition
using the standard refinement rules of Event-B which allows for the introduction
of events that refine skip in a refinement [3].

To understand more about event decomposition, event refinement diagrams
proposed in [6] will be used to explain how an atomic event can be decomposed



into sub-events. Fig. 1 shows an example of such a diagram. In the figure, the
root represents an abstract event which is partitioned into events start, step, and
end in a refinement. A solid line indicates that the end event refines the abs_evt
event. That means the end event will be proved to refine the abstraction. The
dashed lines state that both start and step refine skip. The oval represents a
quantifier that specifies multiple interleaved instances of an event (i will range
over some set). Order, from left to right, constrains the order in which events
have performed. A step(i) event can be performed only when the start event is
completed, and end can be performed only when all step(i) events have been
occurred. The order amongst the step(i) events is nondeterministic. In Event-
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Fig. 1. An example of event refinement diagram

B, there are no explicit sequencing operations. Events are non-deterministically
performed when their guards hold. Thus, in order to control the order of event
execution, each event must be guarded by using additional states or flag vari-
ables. For example, in order to start writing a single page, the given file must
be in the writing state. Thus, a writing state should be introduced and used to
construct guards of events that we want to control.

The event refinement diagrams are used as an aid to constructing and un-
derstanding the formal models rather than being formal objects themselves. As
outlined in [6] , the diagrams were inspired by Jackson Structured Design (JSD)
diagrams [18]. In the future, we plan to investigate a more formal incorporation
of event refinement diagrams into the refinement proof obligations.

5 Outline of Abstract File System

In the development presented in [11], feature augmentation was used in an incre-
mental way to develop the model of an abstract file system. That is, we began
with a small set of features and then augmented the model by adding new fea-
tures in refinement steps. Additional state variables and events which are related
to the new features were introduced in each step. The event-extension feature?
provided by the tool was mainly used to develop this refinement chain. In each
refinement step, when new features were introduced the related events were ex-
tended by adding more details or constraints corresponding to those features.
The event extension may involve adding new parameters, guards and actions.

3 Event extension is a new feature of Rodin.



The layered specification of the abstract file system is briefly described as
follows.

Abstraction. Tree properties and basic operations affecting the tree structure
(create, delete, move and copy) were firstly specified in this level. No-loop
and reachability (all objects in a tree are reachable from the root) are two
main properties which were the focus of verification effort.

First refinement. Files and directories were introduced. In the abstraction, files
and directories are treated in the same way as objects which are nodes of
the tree structure. In this level, objects was replaced by files and directories.
That means an object can be either a file or a directory. The abstract event
create was refined into crifile (create a file) and mkdir (make a directory).

Second refinement. File content was introduced in this level. Additional con-
straints and events related to file content are also addressed. For example,
each file has a content, an existing file must be opened before reading or
writing.

Third refinement. Access permissions and related constraints were introduced.
For instance, each object has an owner, a group-owner and a list of permis-
sions. The user who issues read- or write-request must have the right to read
or write on the given file.

Fourth refinement. Additional properties which were not addressed in [11] —
such as objects’ name, creation date and last modification date — were in-
troduced here.

Fig. 2 shows the definitions of three variables of the abstract specification
along with an abstract file write event, named writefile, of the abstract file sys-
tem. The writefile event writes the whole content of the given file f from the
write buffer (wbuffer) into the storage in one step. Here fcontent represents the
content of each file on the storage, w_opened is a set of files which are opened
for writing, and CONTENT is defined as a sequence of DATA in a context seen
by this abstract machine.

6 Vertical Refinement

The purpose of this section is to outline the decomposition of the abstract events
readfile and writefile. The decomposition is based on the assumption that the
content of the file is read from or written to the storage one page at a time. As
shown in Fig. 3 (b), for example, instead of writing the buffer content into the
storage in one step, we introduced an intermediate variable named fcont_tmp.
This variable behaves like a shadow disk used for accumulating the content of the
pages as they are written one at a time. This shadow becomes the actual content
of that file only when all pages have been written to the shadow. The use of this
shadow allows us to deal with faults that may occur during writing a file — if a
fault occurs, we discard the shadow and keep the original. The use of the shadow
is an abstraction of the fact that when writing a file at the implementation level



feontent € files — CONTENT
w_opened C files
wbuffer € w_opened — CONTENT

Event writefile =
Any f Where
grdl : f € w_opened
Then
actl : feontent(f) := wbuffer(f)
End

Fig. 2. Event writefile of the abstract file system

readfile writefile

abstraction

fcontent rbuffer whuffer fcontent
r_step r_end w_step w_end
T > 7 7 7
_— il ——_—
- . refinement
fcontent r-_;r;w;) rbuffer whuffer f;n;r;t-__tr_n‘ fcontent
(a) read afile (b) write afile

Fig. 3. A diagram of refining events readfile and writefile



we use fresh pages on the flash array rather over-writing the pages used for the
previous version of the file. Additional details are explained in Section 7.

Note: Because of space constraints, instead of detailing the decomposition
of both file read and file write which are similar, we will present only file write
which is more interesting. Full details of the specification can be found in the
archive mentioned in Section 1.

7 Decomposing Event writefile

Fig. 4 (a) shows an event refinement diagram for the writefile event which is
decomposed into three sub-events: w_start (start write), w_step (write one page
at a time) and w_end (end write, when all pages are written completely). Event
w_end refines writefile of the abstraction while w_start and w_step refine skip.
This diagram states that w_start must be performed before w_step. Event w_step
will be repeated until all pages are written or programmed into the flash device.

In case of failures (see Fig. 4 (b)), in the abstraction, the writefileFail event
does nothing (i.e. skip). The content of file on the storage is not changed and
all memory buffers are released.

writefile writefileFail abstraction

[ W_sla;;t ] [ w_step(p) ] [ w_end ok ] [ w_st::llrt ] [w_end_fajl ] refinement

(a) success (b) fail

Fig. 4. Refinement diagram of event writefile

Fig. 5 shows machine invariants in this refinement step. Variable fcont_tmp
represents temporary content of the file while it is in the writing state. This vari-
able behaves like a shadow content of the file being written, as already discussed.
This shadow content becomes an actual content (fcontent) when all pages have
been written to the shadow. No change is made to fcontent if writing a file fails
at any point from the start to the end of writing a file. That means the content
of that file will be same as the previous state. We specified writing as a set of
opened files which are in the writing state. Variable wbuffer represents a write-
buffer of each writing file. Invariant inv6.3 states that for any file f which is in
the writing state, the temporary contents of f will be a subset or equal to the
content on its writing buffer.

Fig. 6 shows the refinement of event writefile when it is split into w_start,
w_step and w_end (in cases of success and fail). Consider the w_start event. In
order to start writing a file, the given file must be opened for writing and not



6.1 : writing C w_opened
nv6.2 : fcont_tmp € writing — CONTENT
inv6.3 :Nf-f € writing = feont_tmp(f) C wbuffer(f)

Fig. 5. Machine invariants of the refinement

already in the writing state (see grd1 and grd2 of event w_start). Event w_step
writes the contents of page i from the write buffer (wbuffer) into fecont_tmp.
In order to do this the given file must be in the writing state (see grd1). The
page being written must be a page in the write buffer that has not already been
written to the storage (see guards grd/ and grd5of event w_step). Event w_end_ok
is enabled when all pages have been written (grd2) and the file is in the writing
state. The effect of w_end_ok is to overwrite the existing file content with the
shadow content.

Guard grd2 of the w_end_ok event and Invariant inv6.3 play an important
role in proving that the w_end_ok event is a correct refinement of the writefile
event (given in Fig 2). Namely, the gluing invariant, inv6.3, is used to show that
feont_tmp(f) is equal to wbuffer(f) when the guards of the w_end_ok event holds.

8 Linking the Abstract File System to the Flash Interface
Layer

This section outlines our model of the flash specification, which is based on the
ONFT specification given in [16], and shows how it is related to the abstract file
system via data refinement. We first describe an abstract specification of the
flash in Section 8.1 and then show the refinement of the file system layer when
the flash specification is included.

8.1 Abstract Flash Interfaces Layer

An ONFI-based flash device is a collection of LUNs (Logical Units). Each LUN
is composed of a number of blocks. Each block has a number of pages. Each page
is a sequence of data items.

Flash pages are accessed via row addresses consisting of a LUN, a block
number within a LUN and a page number within a block. A flash device can be
specified as an array of pages which are identified by row addresses:

flash € RowAddr — PDATA

where RowAddr is a set of possible row addresses. PDATA represents a page data
within each page. To realise the file system layer, we assume that each PDATA is
composed of file data, the object identity to which the data belongs, the logical



Event w_start =
Any f Where

grdl
grd2
Then
actl
act2
End

1 f € w_opened
: f & writing

s writing := writing U {f}
: feont _tmp(f) .= @

Event w_step =

Any f,1,
grdl1
grd2

grd3 :

grd4

grds
Then

actl
End

cnt Where

: f € writing

t1eN

ent € DATA

4 — cnt € whuffer(f)
21 ¢ dom(feont_tmp(f))

: feont_tmp(f) := feont_tmp(f) U {i — cnt}

Event w_end_ok refines writefile =

Any f Where

grdl : f € writing

grd2 : dom(wbuffer(f)) = dom(fecont_tmp(f))
Then

actl : feontent(f) := feont_tmp(f)

act2 : writing := writing \ {f}

act3 : feont_tmp := {f} < feont_tmp
End

Event w_end_fail =

Any f Where
grdl : f € writing
Then
actl : writing := writing \ {f}

act?2
End

: feont _tmp = {f} < feont_tmp

Fig. 6.

Decomposition of the writefile event




page-id (or page index in the view of file system) and a version number. Fig. 7
represents the structure of PDATA. We model each component of PDATA by a
projection function. For example, the file data stored in a PDATA is modelled
by dataOfpage (axm1). The other projections represent file object, page index
and version number. A set of version numbers (VERNUM) is used to record the
version of data which is programmed in each page.

azml : dataOfpage € PDATA — DATA
azm?2 : objOfpage € PDATA — OBJECT
azm8 : pidxOfpage € PDATA — N

azmy : verOfpage € PDATA — VERNUM

Fig. 7. A structure of PDATA

The flash interface layer provides two main interfaces to the file system layer.
The first is page_read, read a page of data from a given row address, and the
second is page_program (or page_write), write a page of data into the flash device
at a given row address. These two interfaces will become part of the events r_step
and w_step of the file system layer.

8.2 Relating the File System Layer with the Flash Interface Layer

In this refinement step, flash properties are introduced together with variables
used to relate those two layers. Variables fcontent and fcont_tmp of the file system
layer are replaced by fat and fat_tmp respectively. The variable fat represents
the table of contents of each file. This table is a mapping of each file to a table
that maps each logical page-id of the file to its corresponding row address in
the flash. The corresponding row address represents the location (in the flash)
in which the content of that page is stored.

The properties mentioned above are described by the invariants given in
Fig. 8. Invariants inv7.8 and inv7.4 are gluing invariants introduced to relate
the abstract variables fcontent and fcont_tmp with the concrete variables fat
and fat_tmp respectively. They play an important role in proving the correctness
of this refinement. Variable programmed_pages represents the row addresses of
pages that have already been programmed or written, while obsolete_pages is
a set of programmed pages that are invalid to be used. Invariants inv7.8 and
1nw7.9 were introduced to relate the content of file with the actual content on
the flash device. For instance, inv7.8 says that for any page whose version equals
to the current version of the file to which the page belongs, the data of that page
will be the data of the given page-id of that file.

Fig. 9 illustrates how the file write of the abstract file system is replaced
by the flash specification. The top diagram represents the abstract file write



inv7.1 : fat € files — (N -» RowAddr)

inv7.2 : fat_tmp € writing — (N +— RowAddr)

inv7.8 :Yf-f € files = dom(fat(f)) = dom(feontent(f)

inv7.4 Nf-f € files A f € writing = dom(fat_tmp(f)) = dom(fecont_tmp(f))

inv7.5 : flash € RowAddr — PDATA
inv7.6 : programmed_pages C RowAddr
mv7.7 : obsolete_pages C programmed_pages

inv7.8 :Vp-p € PDATA N 0bjOfpage(p) € files
A verOfpage(p) = curr_version(objOfpage(p)) A pideOfpage(p) # 0
= pidzOfpage(p) — dataOfpage(p) € feontent(objOfpage(p))

inv7.9 :¥p-p € PDATA A 0bjOfpage(p) € writing
A verOfpage(p) = writing _version(objOfpage(p)) A pidzOfpage(p) # 0
= pidxOfpage(p) — dataOfpage(p) € feont_tmp(0bjOfpage(p))

Fig. 8. Machine invariants of replacing the file system by the flash specification

which is composed of three sub-events: w_start, w_step and w_end. The bottom
diagram represents the refinement where w_step is refined by event pagewrite.
In this event, page_program will be called in order to write the content of each
page into the flash device. When each page has been programmed successfully,
the fat_tmp will be updated. Finally, the fat_tmp will be copied to fat when all
pages have been completely programmed into the flash device.

Fig. 10 shows the pagewrite event which is a refinement of the w_step event.
The pagewrite event will look for an available page on the flash (grd6-grd7) in
order to write the content of page number i on the wbuffer. Parameter r repre-
sents a row address within the flash. Guards grd9-grd12 describe the contents of
pdata to be written to the flash. Action act! updates the temporary fat table
of the file f. Action act2 sets the content of the flash at row number r equal to
pdata. The row address identifying that page will be set as a programmed page
by act3.

9 Machine Decomposition

The aim of this section is to decompose the machine into a file system ma-
chine, modelling the file system layer, and a flash machine, modelling the flash
interface layer. As a result, further refinements of the flash interface layer can
be explored separately. The machine decomposition we apply here follows the
style described in [6]. Namely, machine variables and events are partitioned into
sub-machines. Sub-machines interact with each other via synchronisation over
shared parameterised events.



> S 7
abstraction

whuffer fcont_tmp fcontent

w_start pagewrite w_end
VR S
whuffer

page program

refinement

flash

Fig.9. A diagram of mapping writefile to the flash specification

Event pagewrite refines w_step =
Any f,1,cent, r, pdata Where

grdl

grd4

grd5 :
grd6 :
: v & programmed _pages

grd7

grd8 :
grd9 :

. f € writing
grd2 :
grd3 :
1 — cnt € whuffer(f)

1 €N
ent € DATA

i & dom(fat_tmp(f))
r € RowAddr

pdata € PDATA
verOfpage(pdata) = writing -version(f)

grd10 : objOfpage(pdata) = f
grd11 : lpidOfpage(pdata) = i
grd12 : dataOfpage(pdata) = cnt

Then

actl : fat_tmp(f) := fat_tmp(f) U {i — r}
act2 : flash(r) := pdata

actd -

End

programmed_pages := programmed _pages U {r}

Fig. 10. The refinement of the w_step event




Fig. 11 shows a diagram of machine decomposition illustrating the decom-
position of the events pagewrite and pageread. The top layer represents the file
system sub-machine consisting of machine variables fat, fat_tmp, wbuffer, and so
on. The lower layer represents the flash interface sub-machine which contains
machine variables named flash, programmed_pages and obsolete_pages. The ovals
represent synchronisation over shared parameterised events between the sub-
machines. In this case, both sub-machines interact by synchronising over the
page_write and the page_read events.

File System

fat, fat_tmp, whuffer, writing, rbuffer, ...

flash, programmed_pages, obsolete _pages
Flash Interface

Fig.11. A machine-decomposition diagram focusing on events page_read and
page_write

At this point, for example, we partitioned the pagewrite event given in Fig. 10
following the approach of [6] and got a specification of the page_program event
of the flash interface layer which is shown in Fig. 12. We also got a specification
of the pagewrite event of the file system layer given in Fig 13. Parameters r and
pdata represent shared parameters which are used for an interaction between

these two events.

Event page_program =
Any r, pdata Where
grd6 : r € RowAddr
grd7 : v & programmed_pages
grd8 : pdata € PDATA
Then
act2 : flash(r) = pdata
act3 : programmed_pages := programmed_pages U {r}
End

Fig. 12. An abstract page_program of the flash interface layer



Event pagewrite =

Any f,i,cent, r, pdata Where
grdl : f € writing
grd2 :i € N
grd3 : ent € DATA
grd4 : i+ cnt € wbuffer(f)
grd5 : i & dom(fat_tmp(f))
grd6 : v € RowAddr
grd8 : pdata € PDATA
grd9 : verOfpage(pdata) = writing_version(f)
grd10 : objOfpage(pdata) = f
grd11 : lpidOfpage(pdata) = 1
grd12 : dataOfpage(pdata) = cnt

Then

actl : fat_tmp(f) := fat_tmp(f) U {i— r}
End

Fig. 13. Event pagewrite of the file system layer

After decomposition we finally got a machine specifying the flash interface
layer which consists of events page_program and page_read that can later be
refined separately from the specification of the file system. We also got a machine
specifying the file system with pagewrite and pageread plus the other events from
earlier refinement such as w_start and w_end.

10 Further Refinements

Further refinements are focused on the flash interface layer. After decomposition,
the flash model is refined separately by adding more details of the flash specifi-
cation. For example, each LUN has at least one page register used for buffering
data. Writing a page is done in two phases. The first is writing the given data
into a page register within the selected LUN and the second is programming the
data on the page register into the flash array at the given row address. Simi-
larly for reading page data, the data will be first transferred to the page register
before it is read off chip into the memory buffer.

An additional event that we specify is block-erase. This event has the effect
of erasing a given block in order to be reused for writing. The number of erasures
per block is limited (the number is dependent on its manufacturing). The block
which fails to erase will become a bad block which is no longer to be used. In
order to reclaim a dirty block, the block should contain obsolete data and may
have one or more pages whose data is still valid. All valid pages within the block
being reclaimed must be relocated (moved to another fresh block). After all valid



pages have been relocated, the given block becomes obsolete and ready to be
erased. That means only obsolete blocks are allowed to be erased.

These further refinements mentioned are the refinements of the flash interface
layer which are refined separately from the model of the file system layer.

Note that the wear-levelling process® is an important feature that has not
been covered in our development yet. It is in our on-going work.

11 Proofs

The proof statistics, given in Table 15, show that 540 proof obligations (POs)
were generated by the Rodin tool. 501 POs (or 93%) were proved automati-
cally while others were discharged by interactive proof. In the case of interactive
proofs, almost 80% of proof steps involved instantiation of universal quantifiers
while the rest involved adding hypotheses, case distinctions, etc. In this table,
MCHO represents an abstract model; MCH1 up to MCH4 represent the first up
to the fourth horizontal refinements, MCH5 — MCHT represent the vertical re-
finements. MCH_FLO up to MCH_FL3 represent an abstract model (MCH_FLO)
of the flash interface layer and its refinements.

Table 1. Proof statistics

Machines | Total POs | Automatic | Interactive
MCHO 35 22 13
MCHI1 57 49 8
MCH2 33 32 1
MCHS3 37 34 3
MCH4 26 26 0
MCH5 27 26 1
MCHG6 31 30 1
MCH7 109 97 12

MCH_FLO 8 8 0

MCH_FL1 110 110 0

MCH_FL2 57 57 0

MCH_FL3 9 9 0
Overall 540 501 (93%) 39 (7%)

In each step of iteration of modelling, modification and proof, POs generated
by the tool were used as guidelines for modelling and reasoning about the model.
For example, they were used to determine which gluing invariant should be added

4 A technique used for prolonging the life time of flash memory covering reclaiming
and erasing blocks within a flash chip.

® These proof statistics are slightly different from the table given in [11] because we
have introduced events for deleting a file and removing an empty directory in MCHI1.



to the machine (e.g. inv6.3 given in Fig. 5), which guard should be added to
the event in order to strengthen the model, as well as which form of expressions
should be specified to make prove easier. For instance, specifying an expression
like pg — obj € 0bjOfpage is easier to discharge than objOfpage(pg) = obj. As a
result, this technique means we get a higher degree of automatic proof.

Results for automatic proof are good, but there is room for improvement. In
principle, when any change is made, Rodin has the ability to avoid re-running
proofs that are still valid. However, in some cases, some (unnecessary) proofs
need to be re-run when some changes are made. As a result, if there is a large
number of POs to be reproved and it can take a lot of time to re-run unnecessary
proofs whenever the model changes.

12 Related work

A number of formalisations of a file system have been developed by other re-
searchers. For example, a specification of a visual file system in Z by Hughes [15]
is focussed on tree properties and basic file operations affecting the tree struc-
ture, but file content and a manipulation of file content were not specified. The
commonly referenced model developed by Morgan and Sufrin presented in [21]
is a specification of a Unix file system in Z. In this specification, instead of us-
ing a tree structure, the location of each object is formulated as a sequence of
directory names, which is the path of each object. This work is focused on file
contents and naming operations used for manipulating these rather than struc-
ture manipulation operations such as directory copy and move. Based on the
specification of Morgan and Sufrin, Freitas, Woodcock and Fu [13] have devel-
oped a verified model of the POSIX filestore accompanied with a representation
and proof using the Z/Eves proof system. Since the filestore challenge was pro-
posed by Joshi and Holzmann [19] in 2005, other researchers have addressed this
challenge. For example, Butterfield, Freitas and Woodcock [10] have developed
an abstract specification in Z of the ONFTI specification [16]. In addition, Fer-
reira et al. [12] have developed and verified a specification of the Intel Flash File
System Core [17] in VDM. HOL and Alloy were used as a theorem prover and
model checker, respectively. Other work developed by Kung and Jackson [20] is
a formal specification and analysis of a flash-based filestore in Alloy. [20] focusses
on basic operations of a file system, such as read and write, and addresses fault
tolerance and wear-levelling process.

The approach of refining skip events to achieve decomposition of the atomic-
ity of events was used by Woodcock and Davies [22] to refine a file write operation
with the Z notation. Like us, they use a shadow disk in the refinement. They
show how the decomposition of the file write can be cast as either a forwards
simulation or a backwards simulation. In our case, we work only with forward
simulation as Rodin only supports forward simulation. We have not found this
restriction in Rodin to cause any difficulties.

Other researchers mentioned above also report statistics from mechanical
proof efforts. However, we found it difficult to perform a like-for-like comparison



of our results with others. Any comparison would depend heavily on the nature
of the proof obligations and on the proof support provided in the language. For
example, in Rodin, refined events may contain ‘witness’ clauses that are used
to instantiate existential proof obligations. Without this, we would have a lot
more interactive proofs whose only interactive step would be the provision of
witnesses for existential quantifiers. By providing the witnesses directly in the
model, we achieve a higher degree of automatic proof and the proofs are more
robust against model changes. In the future it would be useful for researchers in
this area to attempt to develop a common framework for comparing proof effort.

13 Conclusion and Discussion

We have presented a model of a flash-based filestore which was developed by
using Event-B and Rodin. In this development, we have outlined the use of
refinement for two different purposes. First refinement was used in feature aug-
mentation (or horizontal refinement) and second for structural refinement (or
vertical refinement).

Feature augmentation is a mechanism used for constructing a model of an
abstract file system which was presented in [11]. Instead of specifying every-
thing in one level that may give rise of proof difficulty, we decided to split the
whole system features into sub-features. These sub-features were chosen to be
introduced in refinement steps. We have found that this approach makes the
model easier to construct and prove. In addition, we have found that the event-
extension feature provided by the Rodin tool (release 0.9.x) makes models easier
to refine. Namely, some changes can be made to the abstract levels individually
and are propagated down automatically. This is in contrast to when we were de-
veloping the model of [11] using the Rodin tool release 0.8.2 that has no support
for event-extension.

Structural refinement was used to relate the abstract file system with the
flash specification. Event-decomposition is a structural refinement on which we
focused in this paper. We have shown how the decomposition technique can be
applied to our case study. This technique was used to partition atomic events
readfile and writefile into a number of sub-events as explained in Section 7.

We have found that the event-decomposition technique is very effective for
breaking an atomic event. It can be applied to other work whose events may
require to be decomposed in order to cope with fault-tolerance or concurrency.
An atomic event can be partitioned into sub-events that can be performed in an
interleaved fashion. In addition, as can be seen in Section 7, we could deal with
file write that may fail at any point between the start and the end of writing a
file.

Additionally, in Section 9, the machine decomposition was employed to sep-
arate part of the flash interface layer from the file system layer. The purpose
is to deal with further refinements of the flash interface layer separately. Those
two layers interact with each other via the shared parameterised events. Based
on this evidence, we believe that machine decomposition is useful for other de-



velopments whose specification involves a number of sub-systems that can be
partitioned and refined separately. Rodin does not provide any tool to decom-
pose machines directly, we still need to decompose machines manually using the
editor of the Rodin tool. Thus, in the future, it would be useful if a machine-
decomposition tool could be developed.

Although the proof statistics show a high degree of automatic proof, some
improvements are still required. As explained in Section 11, in some cases, proofs
are required to be re-run every time the model changes although they have
already been proved. This is because Rodin currently uses a mixture of new and
legacy provers and, while the new provers maintain sufficient information about
used hypotheses to be able to avoid re-running proofs, the legacy provers do not.
This is an engineering issue that is being addressed in Rodin.

As mentioned in the introduction, our file store development represents an
exemplar of multi-level refinement and of machine decomposition that we believe
others could learn from.
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