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Abstract

Event-B is a formal method that allows one to develop various kinds of systems including discrete control
systems. However, it is lacking a systematic approach for developing this type of systems and it hinders
the applicability of Event-B. Our contribution is such an approach and it is presented in this paper. Our
proposed method focuses on a set of elements that should be captured by the formal model and prescribes
an order in which they should be introduced. The key aspect of our approach is to first model the required
behaviour of the environment, and then to introduce the controller to appropriately influence the environ-
ment. It has the advantage that every step of such a development is dictated by the information available
so far, including the requirements. We argue that having a clear development strategy early in the design
process will assist the developers in producing high-quality models of the future software systems.
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1 Introduction

Event-B [2] is a modelling method for discrete transition systems which are correct-

by-construction. Its applications range from sequential programs, concurrent pro-

grams to distributed systems. In particular, Event-B is one of the few modelling

methods having control systems within its scope. More importantly, the develop-

ment of such systems in Event-B includes the model of the environment which is a

necessity for the assurance about the correctness of the future systems.

As a result, developing systems in Event-B is a complex task involving the

management of several aspects of the systems, including the environment. A central

aspect of Event-B is the use of step-wise refinement to reduce the complexity of

system modelling. Abrial suggested in [2] that in practice, before engaging in the
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actual modelling task, developers should design a refinement strategy specifying for

each refinement step which details will be introduced into the model. However,

coming up with a good and helpful refinement strategy, which aids the system

development, is a challenging task. Guidelines are needed in order to design such a

refinement strategy.

For developing control systems, Butler has proposed modelling guidelines in

what is known as the cookbook [3]. An application of the cookbook for developing

a cruise control system is reported in [7]. Our approach and the cookbook’s differ

mainly in the order in which various ingredients are introduced during developments.

More comparisons are in Sect. 5.

In the present paper, we propose our development strategy which differs from

that of the cookbook in some key aspects (see Sect. 5). We start in Sect. 2 by

offering a summary of the Event-B notation; in Sect. 3, we explain our strategy and

apply it to a control problem in Sect. 4. Finally, we discuss our results in Sect. 5.

2 The Event-B Modelling Method

Event-B is supported by a specialized notation for abstract machines, the central

object of the development method. It supports both the formulation of formal

specifications and their refinement. We give a brief overview of some essential

aspects of Event-B in this Section. For a full details of Event-B, we refer our

readers to [2].

Specification

In the Event-B notation, a machine is characterized by its state space modelled

by some variables v and its transitions modelled by some events. The state variables

v are constrained by some invariant I(v). An event evt has the following form:

evt =̂ any p where G(p, v) then S(p, v, v′) end , where p is a list of parameters,

G(p, v) specifies the enabled condition, and S(p, v, v′) is the action. A dedicated

event without parameters and guards is used as the initialisation.

Action S(p, v, v′) contains several assignments that are supposed to happen si-

multaneously. Each assignment can take one of the three forms: v := E(p, v),

v :∈ E(p, v), or v :| P (p, v, v′). While the first form deterministically assigns the

value of expression E(p, v) to v, the second form non-deterministically assigns to v

some value from E(p, v). The last assignment form is the most general. It assigns

to v some value satisfying the before-after predicate P (p, v, v′).
A machine is consistent if its invariant holds at any given time. In practice, this

is guaranteed by proving that the invariant is established by the initialisation and

maintained by all its events.

Refinement

Refinement is a well-known technique for reducing the complexity of developing

formal models. One starts with an abstract machine capturing some central aspect

of the system, and subsequently refines the machine by adding more concrete details
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to the model. When refining a machine, it is possible to introduce new variables

and new events.

Consistency has to be proved between a concrete machine and its abstract ma-

chine. In practice, this is done on a per event basis. An event of the concrete

machine is a refinement of an abstract event if the guard is strengthened and the

action of the concrete event can be simulated by the action of the abstract event.

Tool Support

Developing in Event-B is supported by the Rodin platform [1]. This is an in-

dustrial tool-set including supports for constructing Event-B models, proving their

consistency, and animating them.

3 Development Strategy

Despite being a powerful modelling method, Event-B lacks a systematic approach

for developing different types of systems. We suggest here some guidelines, which we

call a development strategy, for developing control systems together with a model

of their environment. The environment and the controller communicate in a bi-

directional fashion: the controller receives input from the environment via various

sensors; reciprocally, the controller produces output to change the environment via

various actuators. This interaction is illustrated in Figure 1.

Environment Controller
sensors

actuators

Fig. 1. Interaction between the Environment and the Controller

Our development strategy contains four different stages. Note that each stage

can be developed through several refinements.

Stage 1 To model the environments as it should behave.

Stage 2 To model the actuators to command the changes in the environment.

Stage 3 To model the sensors together with the controller.

Stage 4 To model some appropriate scheduler for the controller.

Stage 1 aims at describing an environment with the desirable properties, based

on the requirements document. At this stage, we omit the controller completely,

focus on global safety properties and how the physical components should work

together to achieve such properties.

In Stage 2, actuators are introduced as means by which the controller will affect

the environment, such that the physical components interact correctly with each

other. This, in turns, puts some constraints on how the actuators can be set.

Up until Stage 2, all the control of the environment via actuators is done with

perfect information of the whole system. Since this is unrealistic, Stage 3 aims at
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interposing sensors between observed components and the controller. This enforces

an appropriate specification for the controller.

At Stage 4, we can introduce a scheduling strategy to the controller. The purpose

is to optimise its efficiency.

Benefits of the Approach

Desirable safety properties of the systems are modelled earlier in the development

in Stage 1. We can rely on refinement for the preservation of these properties during

the development.

The safety properties captured in Stage 1 serve as guidelines to introduce as

needed the actuators (Stage 2) and, in turn, the sensors and the controller (Stage

3). This way, the controller and its interface are introduced as a solution to the

problem of maintaining safety in the system.

The role of the actuator is therefore to force the environment to behave as we

modelled it. Shortly after, the introduction of the sensors will answer the question:

“on the basis of what information are the actuators acting?” Introducing the sensors

before the actuators then seems upside down: the actuators are the reason we need

information about the state of the environment. It seems reasonable to find out

what information it needs before we arrange for gathering said information.

By deciding to introduce scheduling at the end of the development, we facilitate

the design of the controller: the models are not poluted by scheduling details. We

can have separate models corresponding to different scheduling algorithms.

4 A Signal Control System

In this section, we first present a requirements document of a signal control sys-

tems, then subsequently describe our formal development, applying our proposed

development strategy 4 .

4.1 Requirements Document

Our aim is to develop a signal control system at a particular train station. An

overview of the system can be seen in Fig. 2. In the following, we give a set

of plausible requirements for the management of a train station. They have been

tailored to let us solve some interesting problems. Some realism has been abandoned

for the sake of simplicity. We are trying to solve only a few problems in this paper.

Our first set of requirements concern the trains and the topology of the network.

ENV0 The station contains a number of platforms in between an entry block and

an exit block.

ENV1 A train occupies no more than one block.

4 The model is developed using the Rodin platform and is available on-line at http://deploy-eprints.
ecs.soton.ac.uk/308/.
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entry block

in-switch

platform blocks

out-switch

exit block

entry signal exit signal

=⇒

Fig. 2. A signal control system

ENV2 The track is one-way, i.e. the train enters the station via the entry block

and leaves the station via the exit block.

The next requirements concern the switches located at the two ends of the stations.

ENV3 There are two switches connecting the entry and exit block to some plat-

forms, called in-switch and out-switch accordingly.

ENV4 A train at entry block can only enter some platform block if the in-switch

is set to that particular block. Similarly for the out-switch.

We make an assumption that the switch changes its position instantaneously.

The most important property of the system concerns safety: the system must

guarantee that trains never collide. This is ensured by precluding the simultaneous

presence of two trains on the same block.

SAF5 Two trains cannot be on the same block.

In this simplified example, we are not interested in proving that trains will not

derail. Doing so would complicate the development and divert the attention from

the illustration of our approach.

Two (light) signals are installed at the two ends of the station, called entry signal

and exit signal respectively.

ENV6 There are two signals which are either red or green.

ENV7 Trains are assumed to stop at red signals.

The controller receives input from various sensors and output its commands via

actuators.

ENV8 There are sensors detecting whether a block is occupied.

ENV9 There are sensors detecting the status of the signals.

ENV10 The sensors reflect the current status of the corresponding components 5

.

We design a controller for changing the switch positions connecting to a certain

platform, and changing the signal from red to green. The signals automatically

change from green to red when a train passes by.

5 This assumption does not effect the applicability of our approach.
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ENV11 For each signal, there is an actuator for the controller to command the

signal to turn from red to green.

ENV12 The signals change from green to red when a train passes by.

ENV13 For each switch, there is an actuator for the controller to command the

switch to change to a specific platform.

4.2 Stage 1. The Model of the Environment

In the first stage, we build a model of the environment. We proceed step-by-step

by introducing the details of the system in the following sequence: the blocks, the

switches, the signals and the trains. We adopt the following conventions for our

Event-B models to have a clear distinction between different modelling elements.

• The environment variables and events are in capital letters.

• The controller variables and events are in lower cases prefixed by ctr.

• The sensor variables are in lower cases prefixed by snsr.

• The actuator variables are in lower cases prefixed by act.

The Blocks. We specify the set of blocks (BLOCK ) containing an entry (ENT ),

an exit (EXT ) and a set of platform blocks (PLFS ). This corresponds to our

requirement ENV0. In the initial model, variable OCC is used to record the set

of occupied blocks. Initially, OCC is assigned ∅, the empty set. There are four

different events, namely ARRIVE, MOVE IN, MOVE OUT, and LEAVE, to model

different cases on how the status of a block can be changed.

ARRIVE : ENT becomes occupied (because of an arriving train).

MOVE IN : ENT becomes unoccupied and a platform becomes occupied (because

of a train moving into the station).

MOVE OUT : EXT becomes occupied and a platform becomes unoccupied (be-

cause of a train moving out of the station).

LEAVE : EXT becomes unoccupied (because of a leaving train).

Because of the symmetry between these events, we only present the events MOVE IN
and ARRIVE, and their subsequent refinements.

ARRIVE

when

ENT /∈ OCC

then

OCC := OCC ∪ {ENT}
end

MOVE IN

any p where

p /∈ OCC

ENT ∈ OCC

then

OCC := (OCC ∪ {p}) \ {ENT}
end

The Switches. In this refinement step, we introduce the variables IN SW and

OUT SW to model the two switches located at the two end of the station. The

status each switch represents which platform block they are connected to. This

corresponds to our requirement ENV3. Initially, the switches are set arbitrarily to

any platform.
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We only need to adjust event MOVE IN. Its parameter p is instantiated with

the platform the in-switch is connected to. This reflects requirement ENV4.

MOVE IN

when

IN SW ∈ PLFS \OCC

ENT ∈ OCC

then

OCC := (OCC ∪ {IN SW }) \ {ENT}
end

The step is finalised by providing a means to change the switches. Events

TURN IN SW and TURN OUT SW are introduced and we leave the choice arbi-

trary. We focus on TURN IN SW and its refinements.

TURN IN SW

begin

IN SW :∈ PLFS

end

The Signals. In this refinement step, we introduce the signals ENT SGN and

EXT SGN located at the two ends of the station. The signals are either RED

(meaning that passage is forbidden) or GRN (meaning that passage is allowed).

This corresponds to requirement ENV6. Initially, both signals are RED .

We refine MOVE IN event accordingly, by refining its guards using ENT SGN

instead of referring directly to the status of ENT block. This also reflects the

requirement that trains obey the signals (ENV7).

However, this guard substitution is only valid if it constitutes a strengthening

which we ensure by introducing the following invariant.

invariants:

inv2 0 : ENT SGN = GRN ⇒ IN SW /∈ OCC

To preserve inv2 0, we make sure that the signal becomes red as soon as the

platform designated by the in-switch becomes occupied (ENV12). Also for the

sake of preserving inv2 0, we strengthen the guard of TURN IN SW accordingly.

MOVE IN

when

ENT SGN = GRN

ENT ∈ OCC

then

OCC := (OCC ∪ {IN SW }) \ {ENT}
ENT SGN := RED

end

TURN IN SW

when

ENT SGN = RED

then

IN SW :∈ PLFS

end

There are two new events to change the status of the signals, namely

ALLOW ENTRY and ALLOW EXIT. We show here ALLOW ENTRY only, taking

into account inv2 0.
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ALLOW ENTRY

when

IN SW /∈ OCC

then

ENT SGN := GRN

end

The Trains. In the last refinement of the environment model, we introduce the

trains into the system. The safety properties concerning the trains all concern their

position so this is a good candidate for a new variable. POS is thus introduced

to map each train to the only block where it is located (as stated by inv3 0),

consistently with ENV1. To rule out the possibility of collisions, i.e. to enforce

SAF5, we can now introduce inv3 1 which states that each train is alone on its

block 6 . Finally, for the sake of consistency with the variable OCC , we introduce

inv3 2 so that only trains can occupy a block 7 .

invariants:

inv3 0 : POS ∈ TRAIN �→ BLOCK

inv3 1 : ∀t1, t2 ·t1 ∈ dom(POS) ∧ t2 ∈ dom(POS) ∧ t1 
= t2 ⇒ POS(t1) 
= POS(t2)

inv3 2 : ran(POS) = OCC

In this model, events such as TURN IN SW and ALLOW ENTRY stay unchanged

since it does not directly interact with train positions. We refine events MOVE IN
and ARRIVE accordingly to include how the train position are updated.

MOVE IN

any t where

ENT SGN = GRN

t ∈ dom(POS)

POS(t) = ENT

then

OCC := (OCC ∪ {IN SW }) \ {ENT}
ENT SGN := RED

POS(t) := IN SW

end

ARRIVE

any t where

ENT /∈ OCC

t /∈ dom(POS)

then

OCC := OCC ∪ {ENT}
POS(t) := ENT

end

Finally, inv3 2 enables us to rewrite the guard of MOVE IN as shown 8 .

4.3 Stage 2. The Actuators

At the end of the first stage we have an idealised model of the environment specifying

how physical components should be working together. We introduce some actuators,

i.e. output of the future controller, to commands the adaptation of the state of the

environment component, in such a way that the normal behavior of the environment

is coerced into the modelled behavior.

The switch actuators are used to send commands to the switches to change to

6 Combining inv3 0 and inv3 1, POS is an injective function, i.e. POS ∈ TRAIN �� BLOCK .
7 In principle, we can eliminate OCC from the model. However, we refrain from doing so, since OCC
captures an useful abstraction that we can still make use of throughout the development.
8 Note that the last two guards of MOVE IN can be rewritten as t �→ ENT ∈ POS . However, we prefer to
use two separated clauses specifying that (1) t is a monitored train in the system and (2) t is at position
ENT .
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a specific platform (ENV13). We focus on the actuator of the in-switch. Two new

variables act in sw and act in sw plf are used to model the actuator: the former

is a boolean to indicate whether there is a pending command for the device, the

latter specifies which platform the switch should change to.

Similarly, the signal actuators are used for sending commands to set the sig-

nals to GRN (ENV11). The signal actuators are modelled as one boolean each,

act ent sgn for the entry signal and act ext sgn for the exit signal, respectively.

Event TURN IN SW is refined accordingly using the command from the actua-

tor. The concrete guard specifies that there is a command from the controller for

changing the in-switch. As a result, the in-switch is set to the specific platform as

commanded. The actuator is reset after the switch changes.

(abs)TURN IN SW

when

ENT SGN = RED

then

IN SW :∈ PLFS

end

(cnr)TURN IN SW

when

act in sw = TRUE

then

IN SW := act in sw plf

act in sw := FALSE

end

Event ALLOW ENTRY is refined similarly. We now introduce invariants to make

sure that the substitution of guards is indeed a strengthening.

invariants:

inv4 0 : act in sw = TRUE⇒ ENT SGN = RED

inv4 1 : act ent sgn = TRUE⇒ IN SW /∈ OCC

Finally, we create new controller events responsible for sending commands

via the actuators to the in-switch (ctrl trigger in sw) and to the entry signal

(ctr chg ent sgn).

ctrl trigger in sw

any p where

act in sw = FALSE

ENT SGN = RED

act ent sgn = FALSE

p ∈ PLFS

then

act in sw := TRUE

act in sw plf := p

end

ctr chg ent sgn

when

act ent sgn = FALSE

IN SW /∈ OCC

act in sw = FALSE

then

act ent sgn := TRUE

end

Event ctrl trigger in sw specifies that the actuator act in sw can be set to instruct

the switch to change to any platform p, when the entry signal is RED and both ac-

tuators act in sw and act ent sgn are unset. Event ctr chg ent sgn models the fact

that the actuator act ent sgn can be set to command the entry signal to change

to GRN , when the in-switch point to unoccupied platform and both actuators

act in sw and act ent sgn are unset. Notice that the guards of these events guar-

antee that the newly introduced invariants are maintained.
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4.4 Stage 3. The Sensors and the Controller

We are now ready to introduce the sensors together with the assumption that they

reflect the status of the actual physical components. This is straightforward and

we add variables for the sensors: snsr occ, snsr ent sgn and snsr ext sgn corre-

sponding respectively to the sensors of the blocks, the entry signal and the exit

signal (ENV8, ENV9). These new variables are glued with the old variables using

invariants, such as snsr occ = OCC , corresponding to requirement ENV10.

Within the controller events such as ctrl trigger out sw references to the status

of a physical component such as OCC are replaced by the corresponding sensor, in

this case snsr occ.

Finally, since IN SW is used in the guard of ctr chg ent sgn, the controller needs
to know the status of the in-switch when sending the command for changing the

entry signal. The controller keeps a copy of status of the in-switch with its variable

ctrl in sw. Note that variable ctrl in sw does not necessarily reflect the current

value of IN SW . Indeed, we only need them to be the same when there is no

actuator command for the in-switch. ctrl in sw is updated when the controller

commands the corresponding switch to change with event ctrl trigger in sw.

4.5 Stage 4. Scheduling

At the end of Stage 3, we have a model of the signal control system including

its working environment which guarantees to satisfy our safety requirement. We

can then impose extra scheduling algorithm for our controller for optimising its

execution. In our Event-B model, it is done by merely strengthening guards of

the controller events. As an example, we show here the optimisation for event

ctrl trigger in sw so that the in-switch

• changes only to a new free platform, i.e. p /∈ snsr occ ∧ p �= ctrl in sw, and

• only when the entry block is occupied, i.e. ENT ∈ snsr occ.

For more complex scheduling algorithms, one can adopt a strategy by going

through an iteration: environment – actuators – sensors and controller.

(i) To describe the scheduling algorithm in terms of the environment.

(ii) To specify how such algorithm can be achieved in terms of actuators.

(iii) To design the sensors and controller to realise the algorithm.

5 Conclusion

We have presented our development strategy for developing control systems together

with a model of their environment. Our strategy starts with the modelling of the

environment, followed by the introduction of the actuators, before the controller

and sensors are modelled. Finally, further scheduling details are imposed on the

controller as an optimisation step for the system. Applying our development strat-

egy reduces the difficulty in modelling this type of systems, results in models which
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are easy to understand and verify. We illustrate our approach by developing a sim-

plified signal control system. Even though there are not yet any code generators

for Event-B, the controller variables and events in our final model are concrete and

clear enough, and can be used as a software low level design.

Our development strategy is initially inspired by the development of an elevator

system by Laurent Voisin, which has been used as a student project for a course

on Event-B at ETH Zurich. We have applied the approach to several systems of

this type, including a re-development of “Cars on a bridge” example from Abrial [2,

Chapter 2]. Our approach is fundamentally different from the inside-out approach

taken by Abrial. In contrast to our approach, Abrial starts by first modelling the

controller and the environment is introduced after. Even though both approaches

are possible for developing this type of systems, our outside-in approach is more

constructive: instead of defining a controller and then proving that it fits the en-

vironment, we use the requirements to deduce constraints that the controller must

fulfill and we go on to build it accordingly.

Our development strategy is similar to Butler’s [3] in that it focuses initially on

a model of the environment. The two approaches differ mainly by the order of the

introduction of the actuators and the sensors; in our approach the actuators come

before the sensors. In our opinion, this points to a correct design more clearly.

This is influenced by our backward reasoning: we want to deduce the design of our

controller and its input from constraint imposed on its output. We believe that

this approach is simpler and gives stronger guidance for the design, similar to the

reasoning using weakest-precondition [4].

The validation of control systems have been studied using other formal methods.

Hansen validated a railway interlocking model using VDM [5]. However, the paper

only establishes a model of the environment without the controller. Haxthausen and

Peleska presented an approach using RAISE for developing a distributed railway

control system [6]. Their approach consists of two stages. In their first stage, the

model of the environment and controllers are developed globally together. Their

second stage focuses on the design of a distributed controller corresponding to the

model in the first stage. Our development strategy can be seen as a guideline for

developing the model in their first stage.

One aspect that has not been captured in our example is the assumptions. Typ-

ically, they concern the speed of communication and response of the controller. It

can be shown that using our development strategy, these assumptions arise naturally

during the formal developments which otherwise will be difficult to find a priori.

Furthermore, we have focused on the development of a system with some critical

safety properties. Developing systems satisfying liveness properties, e.g. all trains

must eventually leave the station, would require additional modelling guidelines.
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