Semantic Embedding of Petri Nets into Event-B

J. Christian Attiogbé

LINA - UMR CNRS 6241
2, rue de la Houssiniére, B.P.92208, F-44322 Nantes Cedex 3;éFran
Christian. Atti ogbe@niv-nantes. fr

Abstract. We present an embedding of Petri nets into B abstract systems. The
embedding is achieved by translating both the static structure (modellingtaspe
and the evolution semantics of Petri nets. The static structure of a Pafiaagt-

tured within a B abstract system through a graph structure. This absystein

is then included in another abstract system which captures the evoluti@msem
tics of Petri nets. The evolution semantics results in some B events degendin
on the chosen policies: either basic nets or high level Petri nets. Trentem-
bedding enables one to use conjointly Petri nets and Event-B in the satemsys
development, but at different steps and for various analysis.

Keywords: B System, Petri Nets, Embedding Techniques, Method andifitegration

1 Introduction

Reliable system development requires the use of concapigyuages, tools and meth-
ods which are provided by formal approaches. Several mestbai$t but are mono-
paradigms. However, real size systems often overwhelmadbpescovered by mono-
paradigm specification techniques and their complexityireg an adequate integration
of appropriate techniques and methods for both the devedapand the formal analy-
sis. Current research efforts focus on the combination nbua approaches and their
specific tools in order to strengthen their impact on indaksystem treatment. There-
fore, there are some requirements to make formal methods practical and efficient
in their usagei) they should be linked witlengineering practiceand techniquesi)
their mechanizatiorby providing powerful andperational development tool$hese
points are still challenges for the formal method commuaitg therefore they motivate
our work.

The integration of various formal methods may be motivatgdiifferent kind of
combinations: the complementarity of methods so as to dheefacets of the appli-
cation at hand, the need of specific techniques such as citiopand refinement, or
specific reasoning techniques such as theorem proving adeélmbecking, or some
pragmatic considerations such as the pragmatical aspegaphical formalisms and
the interoperability of tool supports.

In the current work we study the integration of Petri nets Brid order to use con-
jointly both approaches in the same development. The ntativis to benefit from the
complementarity of both approaches. Petri nets formalisag be used as a graphical

front-end of a B development project. The B framework mayofelto complement
formal analysis of the system modelled using Petri nets.l@nohe hand, Petri nets
formalism are widely used [17,19,18,14] by engineers asd il academic or research
projects. Petri nets also have graphical facilities, satiah and liveness property ver-
ification facilities via powerful model checking techniguén the other hand, B is a
model-based approach which permits correct developmetht nefinement from ab-
stract specifications to executable codes; it is based amdhreproving technique and
it offers (mainly) safety properties verification facis.

The contribution of this article residesinthe definition of a (B) generic structure
to capture Petri nets models and semantigshe means to systematically embed Petri
nets structure and their evolution rules into Event-B. Té&ls to the development of
a bridge between Petri nets and B.

The article is organised as follows: in Section 2 we intradtlee Petri nets for-
malism and the B Systems approach. Section 3 is devoted tdpavise embedding
of Petri nets into B: basic nets are first considered and tlemermglized to high level
nets. Section 4 gives some issues related to analysis anectio® 5 we give some
concluding remarks.

2 Petri Nets and B Systems

2.1 An Overview of Petri Nets (P-nets)

Formally, a P-net is a 4-tuplg®, T', Pre, Post) where :

P is afinite set of places , (withP | = m, the cardinal ofP);

T is a finite set of transitions, (withT |= n, the cardinal ofT’);

P andT aredisjoint setsR N T = {});

— Pre : P x T — Nis an input functionPre(p, t) denotes the number of arcs
from the placep to the transitiort;

— Post : P x T — Nisan output functionPost(p, t) denotes the number of arcs

from the transitiort to the placep.

Practically, a P-net is a bipartite directed graph whose epanect nodes from two
distinct sets; the set of places and the set of transitioetsi fets are equipped with a
graphical formalism where the places are connected todhsitions using the directed
arcs.

Graph associated to a P-néthe graph associated to a métis described by:

— I, the transitions reachable from each place:
Vp e P.I,(p) ={t € T | Pre(p, t) > 0}

— I, the places reachable from each transition:
Vt e T.I(t) = {p € P | Post(p, t) > 0}

— Wi, the weight of each inputareip € P,V¢ € T.W;,(p,t) = Pre(p,t)
and

— Wou: the weight of each outputare:p € P, Vit € T. Wou(p, t) = Post(p,t)

The graph associated to a P-net is the abstract representétich is used to manip-
ulate the net. The places connected to a transition with afram each place to the
transition are thénput placeof the transition. The places connected to a transition with
an arc from the transition to each place aredbgput placeof the transition.

P-net marking.A marked netMy = (N, p) is made of a netvV and a mapping
w: P — N

u(p) is the number of tokens withip; it is called themarkingof the placep. The initial
marking M, of a net is the n-tuple made of the initial marking of all thaqesp; of the
net: My = (u(p1), - -, u(pm)) Wherem is the number of places.

Behaviour of a P-netA P-net evolves by firing somenabledtransitions. A transition
is enabledif all its input places contain at least so many tokens asdsabight of the
arcs from the place to the transition. An enabled transitiay be fired and enable all
the actions in the output places of the transition. Therensmdeterministic choice
between the enabled transitions. Firing a transition meslifie markings of both input
and output places. This may enable or disable other transitiAll enabled transitions
may be fired. Therefore the evolution of the net describesasking netwhich can
be infinite. When a transition is fired, one token is removednfevery input place
of the transition and one token is added to every output pdédbe transitions. This
is generalized by removing (resp. adding) the number ofrtsl@mrresponding to the
weight of the arcs from the input place to the transitiongres the weight of the arcs
from the transition to the output place).

2.2 An Overview of B Abstract Systems

An abstract systerfil,3] describes a mathematical model of a system behavitils
mainly made of a state description (constants, variabldsraariant) and severalvent
descriptions. Whilabstract machineare the basic structures of the earlier operation-
driven approach of the B methodbstract systemare the basic structures of the so-
calledevent-driverB, and replace abstract machines. Abstract systems areacahie
to Action Systems [4]; they describe a nondeterministidgian of a system through
guarded actions. Dynamic constraints can be expressemhwaliktract systems to spec-
ify various liveness properties [3,8]. The state of an austsystem is described by
variables and constants linked by an invariant. Variabheb @onstants represent the
data space of the system being formalized. Abstract systeaysbe refined like ab-
stract machines [8,2].

Data of an Abstract System At a higher level an abstract system models and contains
the data of an entire model, be it distributed or not. Abstsgstems have been used
to formalize the behaviour of various (including distried} systems [1,7,8,2]. Con-
sidering a global vision, the data that are formalized witthie abstract system may
correspond to all the elements of the distributed system.
1 A system behaviour is the set of its possible transitions from state to stateimegfrom an
initial state.

Events of an Abstract SystemWithin B, an event is considered (like in the approach
of Action Systems) as the observation of a system transiieents are spontaneous
and show the way a system evolves. An event hggaad and anaction It may occur

or may be observed only when its guard holds. The action ofvantalescribes with
generalized substitutions how the system state evolves tiie event occurs. Several
events can have their guards held simultaneously; in tisis,@mly one of them occurs.
The system makes internally a nondeterministic choiceo Imard is true the abstract
system is blocking (deadlock). An event has one of the géfiemas (Fig. 1) where

nanme = /* event name */ nane = /* event name */
SELECT ANY bv WHERE
P(gm’) P(bv,gm})
THEN THEN
GS(!/C’U) GS(b'u,gcv)
END END
(SELECT Form) (ANY Form)

Fig. 1. General Forms of Events

gcv denotes the global constants and variables of the absiysiging containing the
event; bv denotes the bound variables (variables boundN®). P4, .., denotes a
predicateP’ expressed with the variablés and gcv; in the same wayS(,,,gcv) IS @
generalized substitutio§ which models the event action using the variablesand
gcv. The SELECT form is just a particular case of theny form. The guard of an
event with theseLECT form is P(,.,). The guard of an event with theny form is
3<bv>-P(bv,gcv)-

Semantics and ConsistencyAn abstract system describes a mathematical model that
simulates the behaviour of a system. Its semantics is basttednvariant and is guar-
anteed by proof obligations (POs). Tbensistencyf the model is established by such
proof obligations:) the initialisation should establish the invarigrit) each event of
the given abstract system should preserve the invariarttefiodeone must prove
these POs). The proof obligation of an event with sAlner form is:

I(gcv) A P(lw,gcv) A term(GS(bv,gcv)) = [GS(bU,gcv)]I(gcv)

where [(,.,) stands for the invariant of the abstract system. The pregiteam(S)
expresses that the substitutiSrierminates.

3 Embedding Petri Nets into Event-B

3.1 Embedding techniques

Embedding techniques are introduced in [5] and provide dattiogy to reuse exist-
ing logical frameworks for formal analysis. Embedding teiclues are intensively used

for method integration and mechanization of notations(d,8]. There are two main
embedding techniqueshallow embeddingndsemantic embeddin@lso calleddeep
embeddiny The first technique deals with the translation of spedifice (objects of a
formalism) to semantically equivalent objects in the tafgemalism. Nevertheless, the
mapping from the language constructs to their semantieseptations is part of the
metalanguage (support of the source language). In the £asenantic embedding, the
complete semantics of a source formalism is translatedti@darget formalism: both
syntax and semantics of the source language are formahsatkithe target language
logic. That means, the mapping from language constructseio semantic represen-
tations is part of the target language logic. Consequeunsiyyg semantic embedding,
we do not need only the (semantic preserving) syntactiska#ion of the constructs
but also the semantics to be translated into the target.lddfie choice of one of the
techniques depends on the envisaged goal.

3.2 Embedding the Structure of Petri Nets within B

Embedding the structure of a P-net into B (Fig. 2) consistdaacribing the graph
associated to the P-net. The 4-tuple which describes anstencoded with the set
of places places), the set of transitionstfansitions), and the two relations between
places and transitionglacesBefore, placesAfter). Additionally we have the marking
functions for the placesnu. We also consider the weights of the arcs; they are natural
number greater or equal to the unit. The input arc weightslaseribed by the func-
tion weightBefore. The output arc weights are described by the functieiyhtAfter.
Therefore some invariant properties may be added. Thidtsdsuan event-less B ab-
stract system (Fig. 2) which captures only the graph straaifia marked netV, mu).

It remains to deal with the behavioural semantics of the i@ is based on the mark-
ing of the net and its transitions.

3.3 Embedding Petri Nets Evolution Semantics into B

A P-net evolves by firing the enabled transitions. From argiverking, firing one of
the enabled transitions, leads to a new marking of the nesarwh. This is embedded
in event-B by an abstract system whose events correspohé teansition firing.

A P-net transition may be formalized (at first approximalias a B event (see
Fig. 3) with a guard which expresses that all the input pladéke transition have the
required number of tokens and a body (a generalized sutitifwhich expresses the
update of input places (by removing the necessary tokerssten update of output
places (by adding the appropriate number of tokens). B svem instantaneous and
their effect can cause the occurrence of other events. tpisscwell with the semantics
of P-net: the firing of a transitioty is instantaneous and thus can lead to the firing of
other transitions which have the output places;among their input places.

Basic Petri net HerebasicPetri net means that actions (data+operations) are not at-
tached to the places nor to the transitions. The arc weightaareater or equal to the
unit. The guard for firing a transitiof) is that all its input placegp have the required

SYSTEM PetriNet
SETS
PLACE; TRANSITION
VARIABLES
places, transitions, placesBefore, placesAfter, weightBefore, weightAfter, mu
INVARIANT
places C PLACE
transitions C TRANSITION
placesBefore € transitions « places I* placesBefore ™ = I, */
placesAfter € transitions < places [* placesAfter = I} */
placesBefore = dom(weightBefore)
placesAfter = dom(weightAfter)
weightBefore € transitions X places - N
dom(weightBefore) = placesBefore
weightAfter € transitions x places +~ N
dom(weightAfter) = placesAfter
mu : places — N

>>>>>>>>> >

Fig. 2. A Partial B system encoding a P-net

number of tokens:

ti € transitions N\
Y pp.(pp € placesBefore[{ti}]) = p(pp) > weightBefore(ti, pp)

The basic effect of firing a transition is the update, viaghfeinction, of the input and
output places according to the input and output arcspbet = placesBefore[{ti}] be
the inout places ofi andpaft = placesAfter[{ti}] the output places ofi. The update
of the places after the transitions is:

p =y <+{pp,vv | pp € pbef A vv = mu(pp) — weightBefore(ti, pp)}
<+{pp, vu | pp € paft A uu = mu(pp) + weightAfter(ti, pp)}

Note that in the P-nets some places may be both input placewdpdt place; those
place need a cumulative update. Therefore we have a moreagjempelate performed
as follows; letpbef = placesBeforel{ti}] — placesAfter[{ti}] be the places at input
only,
paft = placesAfter[{ti}] — placesBefore[{ti}] be the places at output only and
pcom = placesBefore[{ti}] N placesAfter[{ti}] the places being in input and output.

The update of: is rigorously captured by:

= p <+{pp,vv | pp € pbef N vv = mu(pp) — weightBefore(ti, pp)}
<+{pp, vu | pp € paft A uu = mu(pp) + weightAfter(ti, pp)}
<t+{pp, mm | pp € pcom A\ mm = mu(pp) — weightBefore(ti, pp)
+weightAfter(ti, pp)}

Therefrom, the firing of a transitiof; is translated with a single B eveavent _t r
(Fig. 3) which works for every transitioty in a non-deterministic way. The variables
mupbef andmupaft model with B generalized substitutions the update oftfinction
as described above. The notatigad; <+ rely denotes the overriding of a relation by
another one.

event _tr = /* firing of any transition t; */
ANY t; WHERE
t; € transitions AV pp.(pp € placesBefore[{ti}] = u(pp) > weightBefore(t;, pp))
THEN
LET pbef, paft, pcom BE
pbef = placesBefore[{t;}] — placesAfter[{t;}]
A paft = placesAfter[{t;}] — placesBefore[{t;}]
A pcom = placesAfter[{t;}] N placesBefore[{t;}]
IN
[* update of places after_i */
mu = mu <{pp, vv |
pp € pbef A vv € NAT A vv = mu(pp) — weightBefore(ti, pp)}
<+{pp, uu | pp € paft A uu € NAT A uu = mu(pp) + weightAfter(ti, pp)}
<+{pp, mm | pp € pcom AN mm € NAT N mm = mu(pp) — weightBefore(ti, pp)
~+weightAfter(ti, pp)}
END
END

Fig. 3. A shape of a B event capturing the evolution of a basic P-net

We captured the behavioral semantics of basic P-nets withlasBact system with
asingle eventepresenting the transitions of the net. This abstraceaysimulates the
evolution of the P-net. Using a single event for all tramsis instead of one event per
transition simplifies the generalisation and the reasooimiiie embedding; indeed only
the structure of a parameter P-net needs to be translateddébrnew project.

Generic Structure of the Embedding We show in Figure 4 the B generic structure
which holds all P-net model; it is the abstract system namwadedded PN . We separate
the encoding of the semanticBiubedded PN') which works for any P-net and the static
structure part PetrilNet) which is specific to a problem and should be included for
a given problem. The static part (in th&etriNet abstract system) is completed with
some variablespl_actions is the set of actions attached to the places. The injective
(total) functior? pl_treatment € places — pl_actions records the action located in
each place; a specific elememtllaction is used for the initialisation and for action-
less places. Technically, the use of thélaction avoids a blocking of the system at the
initialisation, were all the actions should be disabled. {ineir guards are false).

The systemEmbedded PN has two variables: the relatianans_places records, for the

2 |tis injective because we need the reverse function.

currently fired transition(s), the output places which aseyet processed; the function
guard_P_actions is used to get the guard of each place action.

The single evene¢vent _t r manages the firing of transition and thus the evolution of
the considered net. This event is improved and is replac#tkifollowing sections by
two (or several events according to the considered polatg}ed eventsact i on_ak,
fire_transition).

SYSTEMEmbeddedPN
INCLUDES
PetriNet /* any described P-net; this is a parameter */
VARIABLES
guard_P_actions, trans_places
INVARIANT

guard_P_actions € pl_actions — BOOL
A trans_places € transitions < places
INITIALISATION
guard_P_actions := ((pl_actions — {nullaction}) x {FALSE})
U{(nullaction, TRUE)}
| trans_places := {}
EVENTS
event _tr = ... /*for any transition ti */
END

Fig. 4. Generic Structure of the Embedding

Therefrom we extend the embedding to cover more complicaees: action man-
agement. Indeed, according to their types (place/tramsiticonditions/event, resources,
etc), P-nets may deal with data and actions (or treatmant&rious manners.

In some P-nets the places with tokens may model availaluifigata; in this case
an action may be associated to the transitions related foldices.

In other models, some places may contain action which is gfa@anded by one or
several transitions. It is for instance the case in a net ifingea process writing some
data in exclusion with other writer processes; a specificepigioften used in such a case
in order to handle the exclusion between processes. Therdfere is not a single way
to embed the P-nets. We investigated both cases of actiane@ment) attachments:
attachment of treatments to the places and to the transition

3.4 Treatement of Non-Basic Nets

In the previous section, we considered the evolution ofdasiets; no specific policies
or treatments are considered.

High Level Petri Nets High Level Petri Nets (HLPN) were introduced to overcome the
problem of the explosion of the number of elements needeldfge computer systems.
HLPN usei) structured data to model the tokens, and algebraic exprest annotate

the net elementsi) transition modes to describe more elaborated operaticticia.
Within HLPN the enabling of a transition depends not only be &availability of the
tokens but also on their nature. There are several achiewsraEHLPN [13];
Predicate/Transition-Nets [9] and Colored Petri NetsI&Pare two forms of HLPN.
In this article, we consider an abstraction of the ideas oPNLActions (treatments or
operations) may be associated to places and transitioffeeafdts. This corresponds
to the idea of structured tokens, typed places and typeditiams, and more generally
the execution of some operations associated to the pladesiue transitions of a net.
Accordingly, we propose a generic treatment of the whole.

The study is achieved step by step; first we examine the fisatan in the case
where actions are attached to places only. Then we studyabesovhere they are
associated to transitions. Finally we consider the gewas® where actions are attached
to both the places and the transitions.

Embedding into B of Petri Nets with Actions Attached to Placs The action attached

to a place should be achieved when the input transition &gedcto the place (the
guard) is fired. Therebgach action in a place of a P-net is translated as a (guarded)
event of the B abstract system

In practice, actions need some time to be completed. Theréifing a transition may

be achieved in two step: enabling the guard of all the actions attached to the output
places of the transitioni) launching non-deterministically theg®/olved actionsAll

of them should be performed in any order.

pl?@\ p
——tl C—t2

——t3

p3 p2 PS5 p6

t4

Fig. 5. Interdependent Actions

This raises some questions: what should be the duratiorecddtions and the en-
abling of other transitions? Should we wait for the completf an action before con-
sidering another action? What is the scheduling of the edatdmsitions and enabled
actions? Considering these questions with respect to theré-b5, one has an idea of
the complexity of the scheduling of actions; the transitibenables the actions {A2,
A3}; t2 enables the actions {A4, Al}; t3 enables the action6At4 enables the action
{A5}.

These actions are interdependent because the places tit@incdbem are either an in-
put place or an output place of the fired transitions. Thezewpcles; for example, firing
repeatedly the transitions t3 and t4.

To deal with the current situation, we use the previouslyngefi(see Section 3.3) vari-
ablespl_treatment, pl_actions and guard_P_actions. The firing of a transitiort: is

10

handled with two events which correspond to the two stefidisished above.

Step. 1The first step of the transition firing is captured with the Brifire _transition _tr
given in Figure 6. The output places of a transitipare specified agiaft = placesAfter[{ti}].
The involved actions associated to these placesavelved_actions = paft < pl_treatment.
The guards of the involved actions attached to the outputeglaf the fired tran-
sition are enabled¥(Ai € placesAfter[{ti}]. guard(Ai) := TRUE). The func-
tion guard_P_actions is updated in order to enable the guards. This is done with
a Cartesian productian (involved_actions) x { TRUE}. The marking of the input
places is updated. The fired transition and its output placesecorded in the rela-
tion trans_places; this is necessary for the scheduling of involved actiondekdall
the actions of the output places should be performed befi@adttions of the possible
transitions they can enahle

fire _transition _tr = [* for any transition ti */
ANY t; WHERE
t; € transitions
A YV pp.(pp € placesBefore[{ti}] = u(pp) > weightBefore(t;, pp))
THEN
LET pbef, paft, involved_actions BE
pbef = placesBefore[{t;}] A paft = placesAfter[{t:}]
A involved_actions = paft < pl_treatment
IN
/* enabling the guards of involved actions */
guard_P_actions := ran(involved_actions) x { TRUE}
/* udpate of input places of, */
/* output places of; will be updated after the actions */
I mu:=mu < {pp,vv | pp € pbef A vv € NAT A vvo = mu(pp)
—weightBefore(ti, pp)}
/* update of places to be treated after the fired transition */
|| trans_places := trans_places U ({¢;} X paft)
END

Fig. 6. Piece of the dynamic part of the generic structure (a)

Since the B events are atomic we cannot update the markingtpfioplaces during
the first step; they will eventually enable other transiierhich will take place. More-
over, to cope with practical application of P-nets, one lmasdnsider the "run until
completion” of the various actions during their scheduling

Step. 2The second step of the firing is captured with the ewariti on_Ak (see Fig.
7). One B event is described for each action associated tace pThis enables us to
handle the high level aspect of the net; indeed the treaswgend on the tokens and
on the transitions. The guard of each action is maintaire@RUE) until the action is

11

started and performed. The actions attached to the outpceplwhich are still enabled,
are non-deterministically performed; they are recordedha range offrans_places.
But, the actions in the places containediinns_places can be performed at any time
(due to the non-determinism of event occurrence). When @oraid completed its
guard is disabled and the number of tokens of the relatee dagpdated: the function
trans_places is updated, thenu function is updated to set the marking of output places.

acti on_Ak = /* for an action Ak (attached to a place pp) */
ANY Ak WHERE
Ak € actions
A guard_P_actions(Ak) = TRUE [* one of the enabled actionst/
THEN
LET pp, tr, weiga, - - - BE
A pp = pl_treatment ' (Ak) [* the place associated to Ak */
A tr = trans_places ' (pp) I* the transition before pp */
A weiga = weightAfter(tr, pp) I* weight of the edge */
A e [* unused parts, cut */
IN
guard_P_actions(Ak) := FALSE
|| mu(pp) := mu(pp) + weiga
|| trans_places := trans_places — {(tr, pp)}
|| --- [*location of an effective Ak */
END
END

Fig. 7. Piece of the dynamic part of the generic structure (b)

However, there are some shortcomings with the currenttgitualhere is a kind
of loss of priority between actions: if the effect of one of tturrently enabled actions
contributes to fire another transition, the actions whigherabled by this latter tran-
sition can be performed before the actions already enathiesiqgomes fatally from the
substitutiontrans_places := trans_places U ({t;} x paft)).

Another shortcoming is the following: when there are cyclsenabled guard (of an
action) can be overwritten; that is, the enabling conditian be observed again whereas
the already enabled action is not yet performed.

We solve these problems in the general case presented fatey asing priorities.

Embedding into B of Petri Nets with Actions Attached to Transtions In the same
way as for the previous case with places, a total fundtiareatment € transitions —
tr_actions records the action associated to each transition.

tr_actions is used for the set of actions attached to all the transitiis defined in

the static structureHetriNet). When an enabled transition is fired, its associated action
should be performed before the update of the marking of tiubyplaces, otherwise
another transition may take the priority over the currerd.on

Several transitions may share the same input place(s)wBety the latter has the nec-

12

essary number of tokens to enable the transitions whicheghar place, only one of
the enabled transitions is fired. Therefore two steps aressacy to handle the firing
of a transition. In a first step, one of the enabled transitismon-deterministically se-
lected; the guard of the action associated to this tramsii@nabled. The marking of
all the input places is updated. This is quite similar to thengfire _transition_tr. In

a second step, the transition action is performed; its gisadisabled and, the marking
of the output places is updated. These places may enabletathsitions and so forth.
We get two B events corresponding to the described sig@sfiring event which is
used to select a transition and to update the input plades\tbnt deals with all the en-
abled transitionsj) each transition action has an event with its associatediguaich
depends on the marks of input places.

Embedding into B of Petri Nets with Actions Attached to both Haces and Tran-
sitions In the current case, when a transition is fired, the attacleidrais enabled
and the marking of the output places of the transition is tgaiahese output places
have actions which should be enabled. After that, the ttiansaction is performed, it
enables the actions attached to the output places. Moreineeactions linked to the
places should be performed before enabling the transitioked to them. In order to
embed this semantics, we use two functions additionalli thie preceding variables:
enabled_P_actions for the currently enabled place actions anthbled_T _actions
for the currently enabled transition actions. Remind that.s_places records which
output places are not yet processed for the currently figatsition.

The embedding is achieved according to priority rules. Tty between actions
are handled as follows. A transition is firedijfthe input places have the required
number of tokensj) there is no previous enabled place action not yet performiésl;
is checked with(trans_places = {}). Indeed when a transition is fired, its action is
enabled and it enables some (output) place actions. Thiteedaould be performed
before firing another transition. This policy solves thelpeo of guard overwriting.

Therefrom the everfire _transition _tr is modified as described in Figure 8.

The remaining events (not detailed here) are the following:
enable_transition _action_guard; it sets the guard of an enabled transition action to
true, then it disables the transition guard.
enable_place_action_guard; it sets the guard of an enabled place actiomrtg, up-
dates thenu function and updatesans_places by removing the treated place;
launch_transition _action_aj; it launches one of the transition action whose guard is
true and then it sets the guard faise;
launch_place_action_ak; this one launches a place action whose guard is enabled,
then the guard is disabled.

All these five events (of the abstract systé&mbedded PN) simulate an interleaving
run of the firing of transition actions and place actions,gdrigrity is employed to avoid
wrong behaviour of the actions. The entire system is cheféedonsistency using
Atelier B and analysis issues are experimented with vamage (small-size) studies.

13

fire _transition _tr = /* for any transition ti */
ANY t; WHERE
t; € transitions AV pp.(pp € placesBefore[{ti}] = u(pp) = weightBefore(t;, pp))
A trans_places = {} A (enabled_P_actionst> { TRUE }) ={}
/* and there is no action to be treated (this is priority handling) */
THEN
LET pbef, paft, involved_actions BE
pbef = placesBefore[{t;}] A paft = placesAfter[{ti}]
A involved_actions = paft < pl_treatment
A ---[*unused here, cut */
IN
enabled_T_actions(t;) := TRUE
/* enable the action guards of the involved places */
|| enabled_P_actions := ran(involved_actions) x { TRUE}
| mu:=mu <+ {pp,vv | pp € pbef A vv € NAT A vvo = mu(pp)
—weightBefore(ti, pp)}
|| trans_places := {t;} x paft
END
END

Fig. 8. Piece of the dynamic part of a Petri Net with Place and Transition Actions

4 Analysis Issues
4.1 Analysis of Petri Nets

Very often, two classes of properties are studied on P-oatsis about the boundedness
of the nets. For example the accumulation of tokens in a ptasgmptomatic of a bad
functioning of a model. The second class is about the livepnéthe nets. By studying
the reachability of certain marking, one can detect de&diamedom for example. In
all these cases, the marking graph (the set of reachableéngajlshould be computed.
This aspect of the analysis may raise some problems. Theokittee graph may be
too large for an analysis in a reasonable time; the graph rsaykee infinite. When
the graph is infinite, a covering graph is used instead; iblesato check a part of the
desired properties.

Three main classes of analysis techniques [17,19] for P-aret
Reachability analysidt is based on state space exploration/reduction teclesigsing
model checking. The main idea is to construct an occurrermehg(a directed graph)
which has a node for each reachable system state (a markidgdraedge for each
possible state transition. The analysis is then based dngsaph.
Reachability is like a simulation of the modelled systemcexion. It allows for a rapid
analysis of the system to check for its functionalities.
Structural analysisalgebraic analysis are applied here.
Invariant analysisit consists to check that some properties associated folélces are
satisfied for all reachable states (a net marking) of the trexisystem.

The advantages of the first analysis techniques are: a gsaygmstructed and anal-
ysed systematically; the constructed graph may be vergjdmgt there are techniques

14

which work with minimized graphs. The main disadvantagé&,tsuch a graph may
become very large, even for very small systems, making thbysis unpractical due to
state explosion problem.

One of the aspects on which this work contributes in is thendigfn of the basis
for the combined use of analysis techniques and tools. Taéahle B platforms may
be used to analyze the safety properties of systems whiahadelled with P-nets.

4.2 An lllustration: Producer-Consumer with Semaphore

P_ready

C_consumes

P_produces

Empty_buf

P_start_writing

P_writing
@

P_finish_writing

@C_waits_D

Fig. 9. A producer-consumer example

We described and checked the producer-consumer systeotatkipi Figure 9 using
our approach. Only the description of the abstract systemiNet is given, and here
it encodes the specific Producer-Consumer net. This engadithe Petri Net is then
included in the systemmbedded PN which is not changed (it already gathers all P-nets
semantics). The specifications are given in the appendix.

Additionally to the properties that may be analysed in addash Petri net platform,

some safety properties that may be analysed using the Baoals
— Boundedness of some places: the places Enfpifyand D.in_buf (see Fig. 9)
are bounded. This is formalized as the following predicaléctvis added to the

invariant:

mu(Empty_buf) < 2 A mu(D_in_buf) < 2 (propl)
— There is not a wrong usage of the resources (here the buffer):

mu(Empty_buf) + mu(D_in_buf) = 2 (prop2)

— The system idive; that means there is always at least one transition whictbean
fired; this is formalized with:
placesBefore~[dom(nmu t> {ii | it € N A ii > 0})] # {}

15

The properties described above are integrated in the avaof the our B specification
(see appendix A) of the producer-consumer and proved.Tih@&rates how we may
manage the modelling and analysis work through Petri net8an

5 Conclusion and Further Work

We presented an embedding of Petri nets formalisms into taedract system for-
malism. The embedding is systematic and it covers basic$asewell as high level
nets. The current work fills a gap between the widely pradtieenets formalism and
the proof-based development technologies especially theeod which is based on
abstract machines, refinement and theorem proving. Thistepatowards a multi-facet
analysis framework for relating discrete system modelleahniques.

ResultsWe have provided a two-level embedding infrastructure nafce generic B
abstract system that may be used to describe any Petri nedamadstract system that
includes (genericity) the first one and whose events capreemantics of Petri nets
evolution. Various policies concerning high level P-neéwénbeen considered. Con-
cretely we may combine the use of P-nets and B method in the pamject; for exam-
ple we may begin the modelling with an existing graphical ttedicated to the P-nets
and then follow with the B method for the related aspectss Wirk is generally re-
lated to works on embedding techniques but it is specificalgited to the work by
Sekerinski and Zurob [20] on Statecharts and B. In this wonkike our approach, the
abstract structure of Statecharts is translated into thes#cally equivalent one in B.
In or work the the translation is performed by considerirggdtobal semantics instead.
Further work.Ongoing effort focuses on the automation of all the chaiomfa P-Net
tool to the B tools. We investigated the transformation ef ¥ML outputs of the tools
such as the PEP todlinto a B machine (see append?®). The result is to be passed
as the included machine. But, many experiments of variaesasie still needed for the
scalability of our translation process. Meanwhile, usaridly tools to facilitate the
combination of the techniques are to be developed.

References

1. J-R. Abrial. Extending B without Changing it (for developping distribusgstems).Proc.
of the 1st Conf. on the B method, H. Habrias (editor), Franzges 169-190, 1996.

2. J-R. Abrial, D. Cansell, and D. Mery. Formal Derivation of Spagrinees Algorithms. In
D. Bert et al., editorZB’2003 — Formal Specification and Development in Z anddume
2651 ofLNCS pages 457-476. Springer-Verlag, 2003.

3. J-R. Abrial and L. Mussat. Introducing Dynamic Constraints in B.Pfoc. of the 2nd
Conference on the B method, D. Bert (editadlume 1393 ol ecture Notes in Computer
Sciencepages 83-128. Springer-Verlag, 1998.

4. R.J. Back and R. Kurki-Suonio. Decentralisation of Process NetsGutitralised Control.
In Proc. of the 2nd ACM SIGACT-SIGOPS Symp. on Principles of DistritDtedputing
pages 131-142, 1983.

5. R. Boulton, A. Gorgon, M.J.C. Gordon, J. Hebert, and J. vasélagxperience with Em-
bedding Hardware Description Language in HOL Plroc. of the International Conference
on Theorem Provers in Circuit Design: Theory, Practice and Expegepages 129-156,
North-Holland, 1992. IFIP TC10/WG 10.2.

8 sour cef orge. net/ proj ect s/ pept ool

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. J. P. Bowen and M. J. C. Gordon. A Shallow Embedding of Z in H@Qiformation and
Software Technology7(5-6):269—-276, 1995.

M. Butler and M. Walden. Distributed System Development iPB.c. of the 1st Conference
on the B method, H. Habrias (editor), Franqeages 155-168, 1996.

D. Cansell, G. Gopalakrishnan, M. Jones, and D. Mery. Incréah&noof of the Produc-
er/Consumer Property for the PCI Protocol. In D. Bert, J. P. BowenCMHenson, and
K. Robinson, editorsZB’2002 — Formal Specification and Development in Z angdddume
2272 ofLNCS pages 22-41. Springer-Verlag, 2002.

. H.J. Genrich. Predicate/Transition Nets. In W. Brauer, W. ReisijGrRozenber, editors,
Petri Nets: Central Models and their Properties, Advances in Petri N888) volume 254

of Lecture Notes in Computer Scienpages 207-247. Springer-Verlag, 1987.

A. W. Gravell and C. H. Pratten. Embedding a Formal Notation: Espees of Automating
the Embedding of Z in the Higher Order Logic of PVS and HOL.[14], pages 73-84,
1998.

J. Grundy and M. Newey, edit@upplementary Proceedings of the 11th International Con-
ference on Theorem Proving in Higher Order Logics: Emerging Tre(HBHOL'98) Aus-
tralian National University, 1998.

K. Jensen. Coloured Petri Nets and the Invariant Metfi@$§ 14:317-336, 1986.

K. Jensen. Coloured Petri Nets Vol. I-lll. BEATCS Monographs on Theoretical Computer
ScienceEATCS. Springer-Verlag, 1992-1996.

L. M. Kristensen and K. Jensen. Specification and Validation of @@ BRbuter Discovery
Protocol for Mobile Ad-hoc Networks. IRroceedings of INT'04volume 3147 oLLNCS
pages 248-269. Springer-Verlag, 2004.

Lars Michael Kristensen, Jens Baek Jagrgensen, and KurtnJeAgplication of Coloured
Petri Nets in System Development. volume 3098 NS pages 626—685. Springer-Verlag,
Jan 2004.

C. Mufioz and J. Rushby. Structural Embeddings: Mechanizaitbriviethod. In J. Wing
and J. Woodcock, editoRroc. of the World Congress in Formal Methods (FM9&)Ilume
1708 ofLecture Notes in Computer Scienpages 452—-471, France, 1999. Springer-Verlag.
T. Murata. Petri-Nets: Properties, Analysis and ApplicationsPrbt. IEEE volume 77,
pages 541-580. IEEE, 1989.

W. Reisig. Elements of Distributed Algorithms: Modeling and Analysis with Petri Nets
Springer, 1998.

W. Reisig and G. Rozenberg, editotsctures on Petri nets |: Basic models and II: Appli-
cations volume 1491/1492 dfecture Notes in Computer Scien&pringer-Verlag, 1998.

E. Sekerenski and R. Zurob. Translating Statecharts to Brda of the Integrated Formal
Methods (IFM'2002) volume 2335 otf_ecture Notes in Computer Scient#K, May 2002.
Springer-Verlag.

17

A The B machine of the Petri Net

/x Encoding of the ProducerConsumer PetrNet:/

MACHINE
ProdCons
SETS
/x————fillin the two sets PLACE and TRANSITION-————x/

PLACE = {P_ready, D_ready, P_writing, Empty_buf, semaphore,
D_in_buf,D_read, C_reading, C_wait_D}

; TRANSITION = {P_produces, P_start_writing, P_finish_writing ,
C_consumes, C_finish_reading, C_start_reading}

; ACTION ={aj, ak, tai, taj, nullaction}/+ actions associated x/
; NET_Type = {pure, unspecified, colored}

; NET_Mode = {edition, analysis} /x edition Vv analysis mode/
VARIABLES

net_type I+ PN type */
, net_mode /x* PN mode */

CONSTANTS /x parameter of the maching

places I« the places in the PN */
, transitions [+ the transitions in the PN x/
, placesBefore I+ places before a transition x/
, placesAfter I« places after a transition x/
, weightBefore /x weight of an edge before a transition/
, weightAfter I+ weight of an edge after a transition/
, pl_actions /x all actions attached to the places/
, tr_actions I+ all actions attached to the transitions/
, pl_treatment [+ treatment (or actions) associated to each plage
, tr_treatment I« treatment (or actions) associated to each transiticn
, mu /x marking of each place */
PROPERTIES

places C PLACE
A transitions C TRANSITION
A placesBefore € transitions < places
A placesAfter € transitions < places
A weightBefore € transitions x places — NAT
A dom(weightBefore) = placesBefore
A weightAfter € transitions x places - NAT
A dom(weightAfter)C placesAfter
A dom(placesBeforelC transitions

I* every transition has at least one place after it

A dom(placesAfter)C transitions
Jx————— Fill in description of the Petri-Netto be studiedx/
A places ={ P_ready, D_ready, P_writing, Empty_buf, semaphoré&)_buf,
D_read, C_reading, C_wait D }
A transitions = {P_produces, P_start writing , P_finish_writing ,

C_consumes, C_finish_reading, C_start_reading }

[————— Fill in, using maplet«/
A placesBefore = {
P_produces— P_ready,
P_start_writing —P_ready,
P_start_writing —Empty_buf,
P_start_writing —semaphore,
P_finish_writing—P_writing,
C_consumes-~D _read,
C_finish_reading—C_reading,
C_start_reading—C_wait_D,
C_start_reading—D_in_buf,
C_start_reading—semaphore }
A placesAfter = {
P_produces— D_ready,
P_start_writing— P_writing,
P_finish_writing—P_ready,
P_finish_writing—D_in_buf,
P_finish_writing—semaphore,
C_consumes~C_wait_D,
C_finish_reading- D_read,
C_start_reading—C_reading }

ff—— - !
A weightAfter = placesAftex{1} /x weight of edge after a transition«/
A weightBefore = placesBefosfl}
A pl_actions C ACTION
/x the actions controlled by the PNet
A tr_actions C ACTION
I+ all the transition actions controlled by the PN
A nullaction € pl_actions N tr_actions
A pl_treatmente places + pl_actions /x which place has what action*/
A tr_treatment € transitions + tr_actions /x which transitions has what actionx/
A pl_actions = { nullaction }/« actions sur les places/
A tr_actions = {nullaction}/x actions sur les transitionsx*/
A pl_treatment = placespl_actions /[« «/
A tr_treatment = transitions tr_actions /x x*/
A mu € places — NAT
[—————— Fill in the markings/
Amu={

(P_ready—1), (Empty_buf-~2), (semaphore> 1), (D_ready-0),
(P_writing—0), (D_in_buf-0), (D_read-0), (C_reading-0), (C_wait_D— 0)}

frfr——— - !
DEFINITIONS

GUARD =B
INVARIANT

net_type e NET_Type

[* no cycle € place_i < trans—i — place_i «/

A ((net_type = pure)= (placesBeforen placesAfter =2))
A net_modec NET_Mode/x in analysis mode after the edition/
/+*———— Include here desired safety properties /

[+ Shapes (mode = analysis)=> the properties x/

19

[*
A ((mu(Empty_buf 2) A (mu(D_in_buf)< 2)) I« (propl) =/
A (mu(Empty_buf) + mu(D_in_buf) = 2) /% (prop2) =/
- *
INITIALISATION
net_type:= unspecified
I net_mode= analysis
OPERATIONS
set_edition_mode #+ set the mode to edition/
SELECT
net_mode = analysis
THEN
net_mode= edition
END

res «—— which_mode 7 what is the current mode/
BEGIN
res := net_mode
END
END

B The B Structure of the Embedding Machine

/% Globale Machine Embeddeding A Petri Encoditig
MACHINE
EmbeddedPN_PT
INCLUDES
ProdCongx+ Parameter ; the embedded Machiske
VARIABLES
enabled_P_actions [+ currently enabled place actionsx/
, enabled_T_actions I+ currently enabled transition actions/
, guard_P_actions/« for all actions x/
, guard_T_actions
, trans_places /x which transition currently activates some places
, nmu /% a replacement of mu so as to update murhodifiable) easilyx/

DEFINITIONS
GUARD =B

INVARIANT
enabled_P_actions pl_actions + GUARD
/% the currently enabled place actions/
A enabled_T_actiong tr_actions -~ GUARD
/% the currently enabled transition actiong/
A guard_P_actiong pl_actions — GUARD /x the guard of each place action/
A guard_T_actionss tr_actions — GUARD /« the guard of each transition actios/

END

20

C The Experimental Toolchain Architecture

JI_net/.hl_net -pnmi .mch

ia XK
pnml_linegen pnmi2B

Fig. 10.Overview of the Experimental Toolchain

module

We have undertaken the development of a toolchain to meohanir bridging pro-
cess. Currently the encoding of a working Petri net is syatenbut still manual; for
this purpose the generic machine (PetriNet) is used as arpatinly a few part of it
is filled; that is the values of the sets PLACE and TRANSITIONhe SETS clause
and, the values of the variables places, transitions andHassariables placesBefore,
placesAfter. In addition, we also have a pattern to intredihe desired properties.

The modulgonml2b in the architecture (Fig. 10) is devoted to the mechanipaifo
this process.

