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ABSTRACT
The actuator power required to resist joint torque caused by the weight of robot l inks can be a

signif icant problem. Gravity compensation is a well-known technique in robot.design to achieve

e{ui l ibr ium throughout the range of motion and as a result to reduce the loads on the actuator.

Therefore, i t  is desirable and commonly implemented in many situations. Various design concepts

for gravity compensation are avai lable in the l i terature. This paper proposes an overview of gravity

.onip"nsâtion methods applied in robotics. The examined propert ies of the gravity compensation

are àisclosed and i l lustrated via kinematic schemes. In order to classifo the considered balancing

schemes three principal groups are dist inguished due to the nature of the compensation force:

counterweight, 'spring oiact ive force developed by an auxi l iary.actuator. Th.en, each group is

reviewed thiough su6-groups organized via structural features of balancing schemes. The author

bel ieves that sulh an arrangement of gravity compensation.methods al lows one to carry out a

systematized analysis and provides a comprehensive view on the problem.

1. Introduction
Many robotic systems are operated at low speed to ensure
the different tasks. In this situation, gravitational torques

generated by the masses of links are often rnuch greater

than dynamic torques. Thus, gravity compensation is

beneflcial by which a robotic system can be operated

with relatively small actuators generating less torque. The

potential energy of such a robotic system is constant (or

quasi-constant) for all possible configurations which lead

to the self-balancing of the mechanical system. Nature of

the forces that must compensate gravity and its emplace-

ment in the robotic systems may be diverse. In the present

paper, the typical gravity compensation solutions are sys-

tematized and their effectiveness is considered' The crite-

ria for systematization of gravity compensation methods

can be various: main applications, structural particularity,

nature of balancing force, etc. The given systematization

is not the only way and can be modified according to the

subjective preferences of each researcher. However, the

author believes that the arrangement of compensation

methods into groups, which present the nature of com-

pensation force and then into sub-groups' which present

the structural features, provides a comprehensive view on

the problem.
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It should be noted that the gravity compensation can

also be achieved by optimal control of input torques. In

this case, the control law combines terms that cancel the

gravity effects on the robot l ink dynarnics with a PD-type

error feedback on the motor variables. However, in this

survey, the mechanical solutions of the gravity compen-

sation will only be reviewed.
The given systematization can be presented as follows:

2. Gravity compensation by counterweights
2.1 . Gravity compensation by counterweighs mounted on the links of

the initial system
2.2. Gravity compensation by counterweights mounted on the auxilia-

ry l inkage connected with the initial system
3. Gravity compensation by springs
3.1.  Balancing by spr ings jo inted di rect ly  wi th manipulator  l inks

3.2.  Balancing by using the cable and pul ley arrangement
3.3.  Balancing by using auxi l iary systems
3.3.1.  Balancing by using an auxi l iary l inkage
3.3.2.  Balancing by using a cam mechanism
3.3.3.  Balancing by using a gear t ra in
4. Gravity compensation by using auxiliary actuators

The advantages and drawbacks of the compensation

methods are disclosed and the design particularities of

the gravity compensation of each section are reviewed via

various examples.
It should be noted that the given systematization is

arranged by principal groups. It is obvious that it is also

possible to combine the different balancing approaches,
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Figure 1. Gravity compensation by counterweighs mounted ori  the l inks: serial (a, b) [9,10] and paral lel (c, d) manipulators 112,141.

such as a balancing by counterweights combined with

springs or cams combined with counterweights, etc.

Finally, a conclusion summarizingthe reviewed meth-

ods and techniques of the gravity compensation, as well

as the perspectives is given.

2. Gravity compensation by counterweighs

The use of counterweights has been applied to the design
of mechanical systems for a long time.[1-3] The classical
approach consists in adding counterweights in order to
keep the total centre of mass of moving links stationary.
With regard to the several approaches employed for the
redistribution of movable masses, the developed design
concepts could be divided into two principal sub-groups
denoted as 2.1 and 2.2.

2,1. Gravity compensation by counterweighs
mounted on the links of the initial system [4-14]

It is obvious that the adding of the supplementary mass as
a counterweight is not desirable that it leads to the increase
of the total mass, overall size of the robot-manipulator and
the efforts in joints. That is why in many constructions
of industrial robots, for example KUKA R360 or PUMA
200, the masses of the motors are often used for gravity

compensation (Figure I ). [ 10]
The review slowed that the gravity compensation by

counterweights mounted on the links is more appropri-
ate for serial and planar parallel manipulators. It is much
more diff icult for spatial parallel manipulators.

Gravity compensation has been successfully applied
on hand-operated balanced manipulators (HOBM). The
balanced manipulator is a handling system with a simple
mechanical system in which the manipulated object in
any position of the workspace is balanced. [1 5] Such a state
of constant gravity cancellation allows displacements of
heavy objects manually.

The term 'balanced manipulator' shows that in the
operating procedure of these systems is very important to
achieve an accurate compensation of gravity. Many studies
and design concepts have devoted to the gravity compen-
sation of these manipulators by counterweights. I l5-25]
It was shown that for the balancing of these manipulators
it is necessary to apply to the pantograph mechanism a
sinusoidal balancing moment. The general approach for
determination of balancing conditions was proposed by
the study of the motion of the centre of mass of the pan-
tograph actuator.[20] In many HOBM, the balancing by
counterweights is combined with actuators, which car-
ried out an active balancing. This part will be discussed
in Section 4.

2.2. Grovity compensation by counterweights
mounted on the auxiliary linkoge connected with
the initiol system,[26-3 5]

At first,let us define an auxiliary linkage. We will use this
term for any mechanical system that mounted between
the balancing element and the initial structure of a robot.
The goal of these linkages is to improve the compensation
and design conditions via optimum location of balancing
elements. The examples given in Figure 2 demonstrate
the serial manipulators comprising auxiliary systems
equipped with counterweights. In [28] also proposed to
cancel the weight of the payload via a moving counter-
weight (Figure 2(b)).Such an approach has also been used
in [29-3r).

The counterweight balancing of the mine detection
vehicle with a pantograph manipulator has been studied
in [32]. It has been shown that the robot arm with Prop-
erly dimensioned balancing counterweights can efficiently
actuated with very low power and energy consumption.

The study [36] provides the methodology and index
to evaluate the influence of gravity comPensation on the
dynamic performance of manipulators. On the base of
the PUMA 560 robot, it is shown that the application of

dÛiile bd/dt'riinl



Figure 2. Gravity compensation by counterweights mounted on

the auxi l iary l inkage connected with the init ial  system .127,281
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Figure 3. Force-length characterist ics of zero-free length (a) and

non-zero-free length springs (b).

Figure 4. Gravity compensation of a rotating l ink.

the auxiliary linkages is better than the counterweights

mounted on the moving links. A similar study has been

carried out in [37]. The advantages and disadvantages of

using a counterweight or a spring for the gravity balancing

are also discussed in [38]. Their effects on the system's

natural frequencies are illustrated using numerical exam-

ples and the three-dimensional finite element analysis as

a mathematical tool for finding the natural frequencies.

In [39] was proposed the balancing of the SCARA robot

by means of a counterweight or a spring. The obtained

simulation results showed that for low-speed motions the

counterweight balancing is more efficient, while for high-

speed motions the elastic balancing is advantageous.

Many schemes illustrate the parallel manipulators com-

prising auxiliary systems equipped with counterweiglrts.

However, the industrial applications of such approaches
are often quite complicated because of limitation of the

overall size of manipulators and the possibility of collision

of extended moving links carrying counterweights.
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At the end of this section, it may be noted that there

are also studies devoted to the reactionless manipulators,

i.e. the high-speed manipulators which apply no reaction

forces or moments to the mounting base during motion.

It can be reached when the shaking force and shaking

moment of the manipulator are cancelled. This goal is

usually achieved by adding counterweights or auxiliary

linkages in order to keep the total centre mass of moving

links stationary. Jhus, it becomes evident, that the can-

cellation of the shaking force by redistribution of mova-

ble masses leads to the constant potential energy of the

manipulator and as a result to the compensation of the

gravity. However, it should be emphasized that the aim

of the shaking force balancing is the cancellation of the

variable dynamic loads on the frame of high-speed manip-

ulators and not the minimization of input torques. For this

reason, in the studies concerning the reactionless manip-

ulators, the gravity compensation is not a goal but only

a result due to the balancing of inertia forces' Moreover,

the increase of the accelerations of moving links leads to

the increase of the inertia forces and the complete grav-

ity compensation by adding counterweights in dynamic

operation brings to the increase of the input torques. So,

taking into account that the aim of this investigation is the

review of the design concepts permitting the reduction of

actuator efforts in static operation, the studies devoted to

the reactionless manipulators are not included.

3. Gravity compensation by springs

Firstly,let us disclose the properties of two types of springs

which are used for gravity compensation in robotic sys-

tems: zero-free length and non-zero-free length springs.

The author believes that it is important to provide a com-

prehensible and short background on these two types of

springs. It will be particularly useful for young scientists

and engineers.
Zero-free length spring is a term for a specially

designed coil spring that would exert zero force if it had

zero length. That is, in a line graph of the spring's force

versus its length, the line passes through the origin (Figure

3(a) )  [40 ,a1 ] .
Obviously, a coil spring cannot contract to zero length

because at some point the coils wil l touch each other and

the spring wil l not be able to shorten any more. Zero

length springs are made by manufacturing a coil spring

with built-in tension, so if it could contract further, the

equilibrium point of the spring, the point at which its

restoring force is zero, occurs at a length of zero,In prac-

tice, zero length springs are made by combining a 'neg-

ative length" spring, made with even more tension so its

equil ibrium point would be at a'negative'length, with a
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Figure 5. Gravity compensation by springs jointed direct ly with the manipulator l inks: (a) [56]; (b) tagl;  (c) [54]; (d) t551.

piece of inelastic material of the proper length so the zero
force point would occur atzero length.[42,43)

In order to better understand the difference between
the zero-free and non-zero-free length springs, let us
consider the gravity compensation of a rotating link
(Figure 4).

It is obvious that the potential energy of this system
will be constant, if the moment of the gravitational forces
will be fully balanced by the moment of the elastic force
of the spring, i.e.

where rn is the mass of the rotating link, s = /o, is the dis-
tance of gravify centre S from axis O, rp is the angle between
the vertical axis and the link axis, Fr, = Fo + k(l - lo) is
the elastic force of the spring, Fo is thê initial force of the
spring (the initial force is the internal force that holds
the coils tightly together), k is the stiffness coefficient of
the spring, /o is the initial length of the spring, a = loais the
distance of point B from axis O, , = loois the distance of
point A from axis O and / = /oo is the length of the spring
at current angle rp.

One can see from Equation (1) that a fullygravity com-
pensation can be achieved when Fo= klo, i.e. when azero-
free length spring is used. In the case of a non-zero-free
length springs with Fo = 0 or Fo+ klo, only partial gravity
compensation of a rotating link can be achieved.

It is important to emphasize that the use of a zero-free
length spring for complete gravity compensation is basi-
cally used when the spring is connected directly with the
robot links and such a necessity mainly disappears when
the spring is connected with the robot links via a cable or
an auxiliary mechanism. This property has been discussed
in Sect ion 3.2.

To preserve the structure of the systematization
adopted above, i.e. the first step of classification by the
nature of compensation forces and the second step by the
structural features,let us gather the spring compensators
in following three sub-groups: 3. I -3.3.

3.1. Balancing by springs jointed directly with
manipulator links [44-7 1 ]

Examples of the gravity compensation by springs jointed
directly with manipulator links are shown in Figure 5.
Such an approach has been also applied to the spatial
manipulators.lT2-75)

Hereinafter, it will not be considered the determina-
tion of balancing spring parameters because mathematical
approaches are usually based on the fact that the potential
energy remains invariant with configuration of the sys-
tem. Thus, author considers that it is not advantageous
to provide these conditions. However, it is useful to pres-
ent various schematic particularities of balancing meth-
ods, which can provide useful information about diverse
design concepts of balancing solutions.

In order to create springs with adjustable stiffness the
')ack spring' concept has been developed.176,77) It îs
based upon the principle of adding and subtracting coils
from a spring. Thus, with this method, by changing the
number of coils in a spring, the actual or intrinsic stiffness
of the spring is structurally changed. A simple and prac-
tical method to adjust the number of coils was proposed
in  [78 ] .

In 179) has been presented an approach for the stiff-
ness modelling of robots with the spring equilibrators,
which are located between the manipulator links. The aim
of this approach is to replace the gravity equilibrator by
an equivalent non-linear virtual spring integrated in the
corresponding actuated joint. Efficiency of the developed
approach and its industrial value has been confirmed by
an application example.

In [80] has been presented the design and analysis of
the modular gravity compensated manipulators. Modular
advantages and kinematic decoupling have been disclosed.
It has been shown that the decoupling simplifies the kin-
ematic equations reducing the order of complexity of
calculation.

The gravity balancing of the leg was solved in [81,82].
The gravity balancing mechanism, proposed in these
studies, consists of two springs with the same stiffness

mgssinv:  ( r ,oar/ l )  s inco ( t )



Figure 6. Simple scheme of the gravity compensation by a spring,
a cable and a pul ley.

coefficients: one compression and another extension con-
nected with the shank of the leg and permitting the com-
plete gravity compensation of the leg's weight. In order
to improve the gravity compensation quality, the spring
mass has been included in the balancing condition. It was
shown that the mass of the balancing spring increases
the unbalanced moment and it cannot be neglected. The
numerical simulations showed that the error caused by
neglect of the spring mass can be reached until 8%.[82]

Various design concepts have been also developed for
adjustment of gravity equilibrators. [66,8 3 - 87 ]
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3,2. Balancing by using the cable ond pulley

arrangement [87-97]

The adding of the cable and pulley allows full compensa-
tion of gravity by using non-zero-free length spring.

Let us consider a simple example in order to see the
effect of the additional cable in the gravity compensation
of a rotating link (Figure 6).

The condition of the gravity compensation (1) can be
rewritten as:

nrgs sin q -- F,ph (Z)

where 11 : (ar/lor) sin g. Thus, Expression (2) is simi-
lar to (l) when the length / of the spring is equal to /oo.
However, in this case, thanks to the cable, it is possible
to consider that lrr,o= I - /0, which leads to the condition
trgs = kar, with Fo : 0. So, the rotating link can be bal-
anced with non-zero-free length spring.

Figure 7 shows various examples of the gravity com-
pensation by using the cable and pulley arrangement.

The gravity compensation with non-circular pulleys
and springs has been examined in 192,93). After pre-
liminary verification of the design methodology for a
single pendulum system, the authors extend the weight

Outside pulley

Figure 7. Gravity compensation by using the cable and pul ley arrangement: (a) [88]; (b) t89l;  (c) t90l;  (d) t911.
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Figure 8. Gravity compensation by the auxi l iary mechanisms.

[ 1 0 5 ,  1  1 6 ]

Figure 9. Gravity compensation by using gears.[136]

compensation mechanism to the two degrees of freedom
parallel five-bar linkage arm. It has been shown that the
introduction of the weight compensation mechanism
reduces the maximum static torque up to 50-80%. The

spiral pulley with spring has been also used in [94,95].
The new modular balancing approach has been also

developed in the series of manipulators called'Float Armi

[9S- 100] The various techniques are used in order to cre-
ate weight-compensation mechanisms via combination of
the pulley wired with springs or counterweights.

As rightly mentioned in [91], the several error sources
in the pratical implementations decrease the efficiency of

the gravity compensation with springs and pulleys. Errors

are mainly caused by the non-linearity of the springs due
to the manufacturing tolerance. Often the nominal values

of the calculated springs are different to the real values.
Therefore, the values of springs'stiffness must be adjusted.
Another error source is the radius of the pulleys.

3.3. Balancing by using auxiliary mechanical
systems [10]-136]
-Ihe 

auxiliary mechanisms have the same effect that the
cables and the pulleys" In most cases, they allow the gravity

compensation by using non-zero-free length springs. Let
us consider two illustrative examples.

Figure 8(a) shows an equilibrator in which rotating link
1 is connected with coulisse 2 andslider 3. The added links
of the mechanism allows the complete compensation of
the gravity of the rotating link I by using a non-zero-free
length compression spring.

Another solution is given in Figure 8(b). In this case,
the lengths of links of the mechanism must satisfy to the
condition loo = Iou leading to the displacement of the
spring proportional to sin(cp/2), which ensure the com-
pete gravity compensation of the rotating link 1. This
condition was also applied to the design of the gravity
equilibrator by using a gear train (Figure 9).

The design solutions via adding an auxiliary mecha-
nism can be arranged into three sub-groups: 3.3.1-3.3.3.

3.3.1. Balancing by using an auxiliary linkage

[ 1 0 1 - 1  |  9 ]
The examples of the design concepts carried out by adding
auxiliary mechanisms (3.3.1) with corresponding refer-
ences are given in Figures l0-13.

The following two schems shown in Figure I t illustrate
the gravity compensation by using compression springs
mounted on the guides. The compression springs are cho-
sen to have a force-deflection characteristics to account
for the gravitational moment and the geometry of the
mechanism.

The advantages of these equilibrators consists in hight
rigidity of the system because they dont contain auxiliary
elements having the tendency to reduce the balancning
accuracy. However, as discussed earlier, the errors due to
the manufacturing tolerances of links can decrease the
quality of the gravity compensation.

Please note that the two springs of the equalibrator
shown in Figure 1l(a) have the same stifness. The com-

bined interaction of two springs provides the variation of
the compensation moment by a sine law.

In therapeutic situations, therapists often aPPly full or
partial support to a paretic limb to help reduce the effect of

gravity on the patient's motion. This is extremely difficult
to do during walking, where the weight of the leg may

create problems for the patient whose muscles are weak
or lacks normal neuromuscular control due to a neurolog-
ical insult.[137] Hence, new devices have been developed,
which can compensate the weight of the lower and upper
extremity in all confrgurations. [137- I53]

Let us consider an example of gravitycomPensation on
the patient's motion by using an auxiliary linkage.

The design concept given in Figure l2 (see l|44,l52l),
which was used for the gravity balancing of the leg, is
based on the following hybrid method: at the first, the
centre of mass of the leg is geometrically located using a



Figure 11. Gravity compensation by using auxil iary l inkages with
compressing spr ings:  (a) [ t  t  5]  and (b) t l  181.

parallelograrn mechanism, then the springs are placed at
suitable positions in order to fully compensate the effect
of gravity over the range of motion.

It should be added that the effects of the friction
on the gravity balanced orthosis was also disclosed.

[145,150,154,155] The friction torque can be compensated
by a low power motor mounted on the joint of the grav-
ity balanced orthosis. The advantage of such an approach
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consists in combination of passive gravity balancing of
the leg with the active compensation of friction torque
using a low-power motor. The numerical simulations have
showed that the error caused by neglect of the spring mass
and friction torques can be reach until 20%.

Using the auxiliarylinkages and the springs, the gravity
compensation of links having translational and vertical
motion has also been studied. Four illustrative examples
are given in Figure 13.

The primary equations of static equilibrium between
the vertical load P (Figure 13) and the elastic forces of
springs (F.o) bring to the conditions of complete gravity
compensation.

In [156], the gravity compensation of a gantry system
has been proposed (Figure 14). The arm I of the robot
carried out the horizontal motion by using a carriage 4
which is mounted on the frame 2 and equipped pulleys 5,
6, l0 and a cable. When the carriage moves in horizontal
direction the rotation of the device 3 ensure a constant
tension in cable and the link 1l keeps a stable position.

(b)

G1

m8

Figure 10. Gravity compensation by using auxi l iary l inkages: (a) and (b) t1 1 0l;  (c) [1 t  2];  (d) [102]; (e) t l  1 3l;  ( f  )  t1 1al.

(c)

(0

z'

pirotal axis
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Figure 12. Basic components of gravity balancing mechanism.
[144)

When the arm I moves in the vertical direction the device
3 locks its rotation, which brings a transmission carried
out by using links 7, 8, 9 and 1 l. As a result, the rocker I I
rotates about its axis and drives the spring equilibrator. A
similar research has been also carried out in [157].

The drawback of the systems designed for balancing of
links with vertical motion consists in relatively small ver-
tical displacements. In order to eliminate this drawback,
the supplementary transmission mechanisms can be used,
for example pantographs, polyspasts or gear trains.

3.3.2. Balancing by using a cam mechanism [117-
l 231
The advantage of the adding of an auxiliary mechanism
consist also in increase of free parameters of the system
which allows one optimize the gravity compensation by
applying the linkage synthesis methods.

In these balancing schemes, using the conservation of
energy and balance conditions, it is shown that the opti-
mal profi les of cams can be found in order to compensate

Figure 14. Gravity compensation of the robot with the vertical
and horizontal translational motions.[1 56]

the gravity of links or a payload. In [123] (Figure 15(c)), it
has been shown that a payload with vertical displacements
can be balanced by using a linear spring with constant
stiffness if a cam with Archimedes' spiral is used.

3.3.3. Balancing by using gear trains fi 27-1361
A general equation of inertia force for both a gravity bal-
ancer by counterweight and spring has been derived in

[158]. The two equations were compared and the con-
ditions that make the spring balancer superior were
investigated.

At the end of this section, it should be added that the
spring compensation has also been studied for the spatial
robotic systems 17 5,110,120, 1 59- I 66].

4.  Gravi ty compensat ion by using auxi l iary
actuators 1167-1771

In this case, a pneumatic or hydraulic cylinder is con-
nected with manipulator links IL0,167-169] or directly
with the moving platform.[170] There are also some
approaches based on counterweights, which are fluid res-
ervoirs connected with an auxiliary actuator. Continuous
gravity compensation is achieved by the pumping of the
fluid from the first reservoir-counterweight to the second

[171]  (F igure  17) .
Electromagnetic effects were also used [172].

( d )  ^  , -  A . Ar lo  ,

ffiffi
lM lMiru
Ir- | w*K

177777777772- 177777772?Tt-

^-r

Figure 13. Gravity compensation of the l ink with the vert ical translat ional motion: (a) and (b) [136], (c) [20a]; (d) t2051.
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Figure 15. Gravity compensation by using cam mechanisms: (a) [120];

The gravity compensation technique developed in

ll73-175] uses remote counterweights connected to the

robot via a hydraulic transmission. As it has been shown

rn ll74), the built prototype of the 7-DOF robot is able

to adapt its balancing counterweights to a payload of up

to 10 kg, which was a maximal payload fbr the tested

prototype.
However, it should be noted that many gravity com-

pensation methods are applicable only for planar parallel

manipulators.
The gravity compensation of spatial parallel architec-

tures is a complicated problem because it can be achieved

either by unavoidable increase of the total mass of moving

links or by a considerably complicated design of the initial

parallel mechanism.
It seems that an optimal approach is to combine an

auxiliary linkage with pneumatic or hydraulic cylinders.

An illustrative example is shown in Figure 18.
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(b)  112s l ;  (c )  [121] ;  (d)  t1231;  (e)  [12a] .

The suggested approach involves connecting an aux-

iliary mechanism to the initial structure, which gener-

ates a vertical force applied to the manipulator platform.

l t7  6, r771
The studies concerning the gravity balancing are gener-

ally devoted to gravity compensation due to the constant

weight.In Il73], a variable gravity compensation mecha-

nism has been proposed. [t uses two types of linear springs

and changes the equilibrium position of one.

It should be also noted that the complete compensation

of gravity often requires numerous complex mechanical

add-ons or unavoidable addition of mass. This is the rea-

son why methods of partial gravity compensation have

been also developed. [ 1 79, 1 B0]
The gravity compensation of the parallel cable-driven

mechanisms has been also studied. Il8l ] It has been shown

that by using non-linear springs in parallel with motors,

it is possible to maintain the minimum torsions in cabies

1 a
I L

2
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3

Nloving link Basc B^ 
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I

Onc-dof
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Figure 16. Gravity compensation by using gears: (a) [1 27]; (b) t1291; (c) t1301; (d) [131]; (s; [13a]; (f ) t1351.

Figure 17. Continuous gravity compensation accomplished by
the pumping of the f luid from the f irst reservoir-counterweight
to  the second. l l71]

and as a result to minimize the static loads over its entire

workspace.

In [182] a method for the automated movement of

a gravity-compensated payload and an automated han-

dling system for gravity compensation of the payload were

presented (Figure 19). It involves supporting a payload
by a holding unit that is connected with an end-effector
flange of the robot for automatically moving of the load
body. The similar studies were successfully carried out in

[  1  8 3 , 1  8 4 ] .
Let us also consider the gravity compensation for the

manipulators in which the vertical motion is decoupled
from other Cartesian degrees of freedom that this case has
some particularity. In the latter situation, only one degree

of freedom needs to be gravity compensated in order to
eliminate actuator torque due to the weight of the moving

parts and the payload.[185-187]
The specificity of this technique is easy to see on the

example of the PAMINSA manipulator (Figure 20).

[  186,187]
The particularity of this architecture is the decoupling

of the displacements of the platform in the horizontal
plane from its translation along the vertical axis. Such a

decoupling allows the cancellation of the gravity loads on

the actuators which displace the platform in the horizontal
plane. [186]

In the arm proposed in [16], for gravity cancellation a
modular gravity compensation technique has been used.



Rocl of the

vrty
compensatiou

mechanism

Figure 18. Gravity compensation of the Delta Robot.[1 77]

Figure 19. Automated movement of a gravity-compensated
pay load. [182]

Figure 20. PAMINSA.tl 861

In this case, a pneumatic cylinder is used for elimination
of gravity effects.

It should also be noted the active balacning of the
HOBM. Two principal ways for gravity compensation
of the HOBM exist which depend on the structural
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architecture of the manipulator and the type of actuation:
either the movements of the carrying mechanical system
are decoupled and the force of gravity of the payload is

canceled during its movement in the horizontal plane, in

this case only during vertical movements a compensation
must be provided, either the actuators provide permanent

compensation for any position of the payload. In the last

case, the load weight measurement for performing the
movement control is requisted. The general approach for

determination of gravity compensation is based on the

study of the motion of the centre of mass of the carrying
mechanical system with payload and optimal control of

the drivers.
Another promising field of gravity compensation

by using actuators is the development of walking assist
devices with bodyweight support. [ 188- 194]

MoonWalker is a lower l imb exoskeleton [188],
which is able to sustain part of a user's bodyweight.
This system can be used for rehabil itation, to help
people having weak legs, or to help those suffering
from a broken leg, to walk. The main characteristic of
MoonWalker is that a passive force balancer provides
the force to sustain bodyweight. It is controlled using an

actuator that requires very low energy to work on flat
terrains, as it is used only to shift that force the same

side as the leg in stance. That motor is able also to pro-
vide a part of the energy to climb stairs or slopes. The

authors believe that this approach can help improving
energetic autonomy of lower l imb exoskeletons.

SITU-EX [1S9] is a powered lower extremity exoskel-
eton designed to assist and protect soldiers and construc-
tion workers. It comprises a rechargeable battery as the
power supply, two pseudo-anthropomorphic legs and a
backpack-like frame to mount varieties of loads. In this

concept a parallel mechanism with two degrees of freedom
is introduced in place of the hip and knee for a better
load-support capability. Springs are mounted on both the
active and passive joints in order to eliminate the effect
of gravity.

Honda's experimental walking assist device U92-194)
helps support bodyweight to reduce the load on the user's
legs while walking. This could lead to reduced fatigue and
less physical exertion. Honda's device lightens the load on
the user's legs and helps maintain a centre of gravity via
special mechanisms developed by the company. There are
plenty of use cases for this product helping people afflicted
with mobility issues or leg problems. It can also be used
for rehabilitation.

Design concepts of passive gravity-balanced assistive
devices for sit-to stand tasks were also developed.

lres-re7l
Several types of upper arm exoskeletons and spring

assistive arm supports were also designed. The gravity
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compensation problems of these devices were also stud-
ied. [1a 1,198-202)

In [203] was developed a passive exoskeleton to min-
imize joint work during walking. The exoskeleton makes
use of passive structure, called artif icial tendons, acting
in parallel with the leg. Artificial tendons are elastic ele-
ments that are able to store and redistribute energy over
the human leg joints.

5.  Conclusion

Despite its ancient history, gravity compensation methods
continue to develop and new approaches and solutions
are constantly being reported. New physical aspects are
introduced into the problems of gravity compensation,
as the friction compensation by active driving systems or
the improvement of the compensation accuracyby taking
into account the spring's mass. It seems promising the
development of new gravity compensation solutions for
the exoskeletons, rehabilitation devices and walking assist
devices. The use of active and passive actuations allows
a significant reduction of the size and weight of walking
assist devices with bodyweight support.

However, the several error sources in the practical
implementations decrease the efficiency of the gravity
compensation in robotics systems. Errors are mainly
caused by the non-linearity of the springs due to the
manufacturing tolerance. Often the nominal values of the
calculated springs are different to the real values. Other
error sources are the manufacturing tolerances of equili-
brator's l inks, their stiffness and clearance in joints. In the
case of auxiliary linkages, the balancing is carried out for
discrete positions due to the non-linearity of transmission
characteristics, which leads to an approximate balancing.

It is hoped that this overview will be useful to the read-
ers, and provide reference on the wealth of contributions
made in the field of the gravity compensation in robotics.
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