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This paper deals with the analytically tractable solution for input torques minimisation of two degrees of
freedom serial manipulators based on minimum energy control and optimal redistribution of movable
masses. The minimisation problem is carried out in two steps: at first, the optimal trajectory of the
manipulator is defined as a function, which leads to the minimisation of energy consumption. Then, by
introducing the obtained trajectory into dynamic equations, the torques are reduced by using the optimal
redistribution of movable masses, which is carried out via an adaptive counterweight system. For this
purpose, the torques due to the dynamic loads of the counterweights are presented as a function of
the counterweight positions. The conditions for optimal dynamic balancing are formulated by minimisa-
tion of the root-mean-square value of the input torque including the dynamic loads of the unbalanced
manipulator and counterweights. The suggested approach is illustrated by numerical simulations carried
out using ADAMS software.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The loading of manipulator actuators depends on the
distribution of mass in the links as well as the efficient motion gen-
eration. The first problem can be partially solved via gravity com-
pensation, i.e. by static balancing. This means that potential energy
is constant for all possible configurations, i.e. zero actuator torques
due to the static loads are required. Previous works on the static
balancing of robot mechanisms can be arranged in the following
groups:

(a) Balancing by counterweights mounted on the links of the
initial system [1–4]. Such balancing is very simple to realize.
However, it leads to the important increase of the moving
masses of the manipulator.

(b) Balancing by counterweights mounted on the auxiliary link-
age connected with the initial system [5–9]. Articulated
dyads [5–7] are used as the added systems for optimal dis-
placements of the counterweights. In [9] the pantograph
mechanism is used as an auxiliary linkage, which allows
the generation of a vertical force applied to the manipulator
platform. The balanced platform becomes a weightless link,
and it can be displaced by low-power actuators.
ll rights reserved.
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(c) Balancing by springs jointed directly with manipulator links
[10–15]. It was shown that complete static balancing can be
achieved when the zero free length spring is applied and
partial balancing for the non-zero free length spring. In the
work [13] it was shown that the mass of the balancing
spring increases the unbalanced moment and it cannot be
neglected. Therefore a study to gravity balance considering
the spring mass was developed.

(d) Spring balancing by using a cable and pulley arrangement
[16–20]. Such an approach allows zero free length springs
to be used, which is more favourable for realisation of com-
plete balancing.

(e) Spring balancing by using an auxiliary linkage [21–31]. In
these studies the articulated dyads, pantograph mechanism
and parallelogram structure are used as the added systems
for optimal displacements of the springs. It should be noted
that many balancing methods carried out by springs are only
applicable for planar manipulators.

(f) Spring balancing by using a cam mechanism [32–35]. In [33]
was shown a balanced technique which uses springs in addi-
tion to the cam with Archimedean spiral curve.

(g) Spring balancing by using gear train [36–39].

It is obvious that such a balancing is very useful for static mode
of operation of the manipulator. However, with the increase of the
accelerations of moving links, the inertia forces become important
and the complete static balancing in dynamic operation cannot be
optimal. In this context another problem may be formulated: to
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find such a distribution of movable masses, which allows the min-
imisation of input torques of the actuators in dynamic mode of
operation. This problem was stated and solved for the PArallel
Manipulator of the INSA (PAMINSA) [40]. It was shown via numer-
ical simulations and validated by experimental tests that in the
case of the dynamic mode of operation, the complete static balanc-
ing is not always optimal in terms of input torques.

With regard to the second problem, i.e. the efficient motion
generation, the solutions result in torque saturation. Several off-
line planning algorithms have been proposed for the minimum-
time trajectory, considering manipulator dynamics with torque
limits of the actuators [41–46].

In robot design, these two problems are considered separately,
i.e. the efficient motion generation is studied as a control problem
and the optimal mass redistributions as a balancing problem.

In this paper above mentioned problems are considered to-
gether. In a first part, the minimisation of the input torques of
the 2-DOF serial manipulator is carried out by an optimal motion
execution based on the energy minimisation. Then, by using the
obtained optimal motion laws, the minimisation of the torques
due to the inertia forces is carried out by optimal redistribution
of movable masses. The last one is achieved by optimal placement
of counterweights.

2. Minimum energy control

The dynamics of a two degrees of freedom serial manipulator
(Fig. 1), which are highly nonlinear, coupled differential equations
can be written as:

s ¼ AðhÞ€hþ Cðh; _hÞ _hþ QðhÞ ð1Þ

where s is the 2 � 1 torque vector applied to the joints of the
manipulator, h, _h and €h are 2 � 1 vectors representing the angular
positions, velocities and accelerations, respectively, A(h) is the
2 � 2 inertia matrix, Cðh; _hÞ and Q(h) are 2 � 1 vectors of Coriolis/
centripetal forces and gravity loading.

2.1. Feedback linearization

The notion of feedback linearization of nonlinear systems is a
relatively recent idea in control theory [47]. The practical realiza-
tions are implemented using digital signal processors (rapid devel-
opment of microprocessor technology). In the robotics context,
feedback linearization is known as inverse dynamics. The main
idea in joint space inverse dynamics is to exactly compensate the
highly nonlinear and highly coupled dynamics of Lagrange’s
equations (1).

The nonlinear feedback control law (feedforward-computed
torque) can be computed as:

s ¼ bAðhÞ€v þ bCðh; _hÞ _hþ bQ ðhÞ ð2Þ

where bAðhÞ; bCðh; _hÞ and bQ ðhÞ are the estimated values of the
matrixes AðhÞ;Cðh; _hÞ and Q(h).
Fig. 1. 2-DOF serial manipulator.
Now, we can implement the joint space inverse dynamics in a
so-called feedback linearization architecture as shown in Fig. 2
(the carets signify the estimated matrix).

If, bAðhÞ ¼ AðhÞ; bCðh; _hÞ ¼ Cðh; _hÞ et bQ ðhÞ ¼ Q ðhÞ, the feedback
linearization of the robot drives to the decoupled linear double
integrators and we have:
€hðtÞ ¼ vðtÞ ð3Þ

2.2. Closed-loop controller of double integrators

Given a joint space trajectory, hj(t), an obvious choice for the
controller, which produces v(t) is a proportional-derivative plus
feedforward acceleration control

vðtÞ ¼ €hj þ KPðhj � hÞ þ KDð _hj � _hÞ ð4Þ

where the proportional and derivative matrices KP and KD are pos-
itives and diagonals.

Substituting Eq. (4) into Eq. (3), we obtain:

€h ¼ €hj þ KPðhj � hÞ þ KDð _hj � _hÞ ð5Þ

Then, if we define, ~h ¼ hj � h, we have the linear and decoupled
closed-loop system

€~hþ KD
_~hþ KP

~h ¼ 0 ð6Þ

The linear and decoupled closed-loop system is presented in Fig. 3.
The separation between the feedback linearization architecture

and the closed-loop controller is important for several reasons. The
feedback linearization architecture is fixed by Lagrange’s equa-
tions. The closed-loop controller given in Eq. (5) is merely the sim-
plest choice and achieves asymptotic tracking of joint space
trajectories in the ideal case of perfect knowledge of the model gi-
ven by Eq. (1). However, we have complete freedom to modify
closed-loop controller to achieve various other goals (for example,
to enhance the robustness to parametric uncertainty, external dis-
turbances, etc.) without the need to modify the dedicated feedback
linearization architecture.

2.3. Minimum energy of a double integrator

The system of double integrator

€hðtÞ
_hðtÞ

" #
|fflfflfflffl{zfflfflfflffl}

_xðtÞ

¼
0 0
1 0

� �
|fflfflfflfflffl{zfflfflfflfflffl}

A

_hðtÞ
hðtÞ

" #
|fflfflfflffl{zfflfflfflffl}

xðtÞ

þ
1
0

� �
|ffl{zffl}

B

uðtÞ
ð7Þ

is completely controllable.
We seek u(t) that steers x(0) = [0hI]T to x(T) = [0hF]T and

minimizesZ T

0
u2ðtÞdt ¼

Z T

0

€h2ðtÞdt !min ð8Þ

where hI and hF are the initial and final positions.
The least-norm continuous input for 0 6 t 6 T gives:

uðtÞ ¼ BT eAðT�tÞ
Z T

0
eA�tBBT eAT t
� �

dt
� ��1

½xðTÞ � eA�T xð0Þ� ð9Þ
Fig. 2. Feedback linearization architecture.



Fig. 3. Linear and decoupled closed-loop system.

312 V. Arakelian et al. / Mechatronics 21 (2011) 310–314
from which we find:

uðtÞ ¼ 6
T2 ðhF � hIÞ 1� 2

t
T

� �
ð10Þ

Thus, for a 2-DOF serial manipulator, the angular accelerations,
angular velocities and angular positions determined from minimi-
sation of condition (8) are

€hjðtÞ ¼
6
T2 ðhjF � hjIÞ 1� 2

t
T

� �
; ðj ¼ 1;2Þ ð11Þ

_hjðtÞ ¼
6
T
ðhjF � hjIÞ

t
T
� t

T

� �2
" #

; ðj ¼ 1;2Þ ð12Þ

hjðtÞ ¼ hjI þ ðhjF � hjIÞ 3
t
T

� �2

� 2
t
T

� �3
" #

; ðj ¼ 1;2Þ ð13Þ

It should be noted that these relationships, which ensure the execu-
tion of the motions between the initial and final positions, provide
the minimal energy consumption.

3. Torque minimisation via an adaptive counterweight system

Taking the obtained joint angles and their derivatives (11)–(13),
the dynamic Eq. (1) of a two degrees of freedom unbalanced serial
manipulator can be rewritten as:

s1 ¼ k0
11 þ k0

12 cos h2

� �
€h1 þ k0

31 þ k0
32 cos h2

� �
€h2 � k0

12
_h1

_h2

� sin h2 � k0
32

_h2
2 þ p0

1 cos h1 þ p0
2 cosðh1 þ h2Þ ð14Þ

s2 ¼ k0
31 þ k0

32 cos h2

� �
€h1 þ 2k0

2
€h2 þ 0:5k0

12
_h2

1 sin h2 þ p0
2

� cosðh1 þ h2Þ ð15Þ

with

k0
11 ¼ IA þ IS2 þm2 l21 þ l2S2

� �
ð16Þ

k0
12 ¼ 2m2l1lS2 ð17Þ

k0
2 ¼ 0:5 IS2 þm2l2

S2

� �
ð18Þ

k0
31 ¼ IS2 þm2l2

S2 ð19Þ
k0

32 ¼ m2l1lS2 ð20Þ
p0

1 ¼ m2gl1 þm1glS1 ð21Þ
p0

2 ¼ m2glS2 ð22Þ

where m1 and m2 are the masses of links 1 and 2; l1 is the distance
between the joint centres A and B; h1 is the angular displacement of
link 1 relative to the base; h2 is the angular displacement of link 2
relative to link 1; _h1 is the angular velocity of link 1 relative to
the base; _h2 is the angular velocity of link 2 relative to link 1; IA is
the axial moment of inertia of link 1 relative to A; lS1 is the distance
between the centre of mass S1 of link 1 and joint centre A; IS2 is the
axial moment of inertia of link 2 relative to the centre of mass S2 of
link 2; lS2is the distance between the centre of mass S2 of link 2 and
joint centre B; g is the gravitational acceleration.
Let us now consider the input torques due to the
counterweights:

sCW
1 ¼ ðk11 þ k12 cos h2Þ€h1 þ ðk31 þ k32 cos h2Þ€h2 � k12

_h1
_h2

� sin h2 � k32
_h2

2 þ p1 cos h1 þ p2 cosðh1 þ h2Þ ð23Þ

sCW
2 ¼ ðk31 þ k32 cos h2Þ€h1 þ 2k2

€h2 þ 0:5k12
_h2

1 sin h2 þ p2

� cosðh1 þ h2Þ ð24Þ

with

k11 ¼ mCW1r2
CW1 þmCW2 l2

1 þ r2
CW2

� �
ð25Þ

k12 ¼ �2mCW2l1rCW2 ð26Þ
k2 ¼ 0:5mCW2r2

CW2 ð27Þ
k31 ¼ mCW2r2

CW2 ð28Þ
k32 ¼ �mCW2l1rCW2 ð29Þ
p1 ¼ �mCW1grCW1 þmCW2gl1 ð30Þ
p2 ¼ �mCW2grCW2 ð31Þ

where mCW1 and mCW2 are the masses of the counterweights; rCW1 is
the rotation radius of the centre of mass of the counterweight with
respect A; rCW2 is the rotation radius of the centre of mass of the
counterweight with respect B.

Eqs. (23) and (24) can be rewritten to show the influence of the
rotation radiuses of the centres of the counterweight masses on the
input torques:

sCW
1 ¼ c11r2

CW1 þ c12rCW1 þ c13 ð32Þ

where

c11 ¼ mCW1
€h1 ð33Þ

c12 ¼ �mCW1g cos h1 ð34Þ

c13 ¼ mCW2 l21 þ r2
CW2 � l1rCW2 cos h2

� �
€h1 þ r2

CW2 � l1rCW2 cos h2
	 


€h2

h
þ 2l1rCW2

_h1
_h2 sin h2 þ l1rCW2

_h2
2 sin h2 þ l1g cos h1

� rCW2g cosðh1 þ h2Þ� ð35Þ

and

sCW
2 ¼ c21r2

CW2 þ c22rCW2 ð36Þ

where

c21 ¼ mCW2ð€h1 þ €h2Þ ð37Þ

c22 ¼ mCW2½l1
€h1 cos h2 þ l1

_h2
1 sin h2 þ g cosðh1 þ h2Þ� ð38Þ

Thus, the problem can be formulated as follows: to find such rotation
radiuses of the centres of the counterweight masses which will allow to
minimise the root-mean-square (RMS) values of the input torques.

It should be noted that in this case the conditions of the static
balancing cannot be respected that the disposition of counter-
weights are modified but their masses are not.



Fig. 4. Torque of the first actuator (j = 1).

Fig. 5. Torque of the second actuator (j = 2).
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To obtain a minimum of the RMS values it is necessary to min-
imise the sum:

Dsj ¼
XN

i¼1

sji þ sCW
ji

� �2
!min

rCWj

; ðj ¼ 1;2Þ ð39Þ

where i and N are, respectively, the index and the number of calcu-
lated positions of the manipulator.

For this purpose, it is necessary to ensure the conditions:

@Dsj

@rCWj
¼ 0 ; ðj ¼ 1;2Þ ð40Þ

from which we obtain two cubic equations:

z3
j þ ajz2

j þ bjzj þ cj ¼ 0; ðj ¼ 1;2Þ ð41Þ

where

z1 ¼ rCW1 ð42Þ

a1 ¼ 3
XN

i¼1

c11ic12i

,
2
XN

i¼1

c2
11i ð43Þ

b1 ¼ 2
XN

i¼1

c11is1i þ 2
XN

i¼1

c11ic13i þ
XN

i¼1

c2
12i

 !,
2
XN

i¼1

c2
11i ð44Þ
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XN

i¼1
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i¼1

c12ic13i

 !,
2
XN

i¼1

c2
11i ð45Þ

z2 ¼ rCW2 ð46Þ

a2 ¼ 3
XN

i¼1

c21ic22i

,
2
XN

i¼1

c2
21i ð47Þ

b2 ¼ 2
XN

i¼1

c21is2i þ
XN

i¼1

c2
22i

 !,
2
XN

i¼1

c2
21i ð48Þ

c2 ¼
XN

i¼1

c22is2i

,
2
XN

i¼1

c2
21i ð49Þ

The solutions of cubic Eq. (41) with real coefficients can be ex-
pressed in algebraic form by means of Viette–Cordano method [48].

For determination of roots, first of all, we shall calculate:

Q j ¼ a2
j � 3bj

� �
=9 ð50Þ

Rj ¼ 2a3
j � 9ajbj þ 27cj

� �
=54 ð51Þ

When R2
j < Q3

j , cubic equation has three real roots, determined by
the following expressions:

z1j ¼ �2
ffiffiffiffiffi
Q j

q
cosðtjÞ � aj=3 ð52Þ

z2j ¼ �2
ffiffiffiffiffi
Q j

q
cosðtj þ 2p=3Þ � aj=3 ð53Þ

z3j ¼ �2
ffiffiffiffiffi
Q j

q
cosðtj � 2p=3Þ � aj=3 ð54Þ

tj ¼ cos�1 Rj

ffiffiffiffiffiffi
Q 3

j

q
=3

� �
ð55Þ

When R2
j P Q3

j , general cubic equation case has one real root and
two real roots for confluent case.

For determination of the complex roots, it is necessary to
calculate:

Aj ¼ �signðRjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jRjj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

j � Q 3
j

q
3

r
ð56Þ

Bj ¼ Q j=Ajðif Aj – 0Þ and Bj ¼ 0ðif Aj ¼ 0Þ ð57Þ

The real root is

z1j ¼ Aj þ Bj � aj=3 ð58Þ
In the case, when Aj = Bj, the complex roots become the real roots:

z2j ¼ �Aj � aj=3 ð59Þ
4. Illustrative example

For illustration of the suggested approach let us consider a
numerical example. Numerical simulations were carried out for
the 2-DOF serial manipulator with parameters: m1 = 2.5 kg;
m2 = 2 kg; l1 = 0.4 m; lAS1 = lBS2 = 0.1 m; lS1 = lS2 = 0.1 m; IS1 = 0.15
kgm2; IS2 = 0.1 kgm2.

In order to compare the manipulator’s behaviour for different
cases, in Figs. 4 and 5 are given the values of the input torques ob-
tained using the software ADAMS for the following numerical
simulations.

A. The generation of motions for an unbalanced manipulator
between the initial and final positions of links :h1I = 0;
h1F = 0.5236; h2I = 1.1526 and h2F = 1.6762, are carried out
by the following fifth order polynomial laws: hj =
5.2360t3 � 7.8540t4 + 3.1416t5, (j = 1,2), 0 6 t 6 1 s.

B. The generation of motions between the same initial and final
positions are carried out by laws hj = 0.5236 (3t2 � 2t3),
determined from Eq. (13).

C. For the same manipulator with mCW1 = 7.4 kg, mCW2 = 2 kg
and laws hj = 0.5236 (3t2 � 2t3), we obtain from (58) and
(59) the rotation radiuses of the counterweights rCW1 =
0.25 m, rCW2 = 0.147 m and compute again the torques.

The obtained results showed that after first step of minimisa-
tion the torque root-mean-square sum minimisation was reduced
up to 71% and 59%, after second step: 78% and 74%, respectively. In
more practical terms, the maximum actuator torque required after
first step of minimisation was reduced up to 63% and 50%, after
second step: 67% and 66%, respectively.

5. Conclusion

This paper deals with the analytically tractable solution for in-
put torques minimisation of two degrees of freedom serial manip-
ulators via minimum energy control and optimal redistribution of
movable masses. In the first part, the minimisation of the input tor-
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ques of the 2-DOF serial manipulator is carried out by an optimal
motion execution based on the energy minimisation. Then, the
optimal dispositions of the counterweights are obtained by mini-
misation of the root-mean-square values of the input torques
due to the dynamic and static loads. Consequently, two cubic equa-
tions are deduced, making possible the determination of the rota-
tion radiuses of the centres of the counterweight masses.

The suggested approach is illustrated by numerical simulations
carried out using ADAMS software. The obtained results showed
that for examined 2-DOF serial manipulator the significant reduc-
tion of torques was achieved.

Finally, it should be noted that the main advantage with such an
approach concerns the fact that optimal motion laws and counter-
weights dispositions are obtained in a symbolic form and they can
be implemented easily on the manipulator controllers.
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