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Abstract

This paper is focused on the study of singularity of planar parallel manipulators taking into account the force trans-
mission, i.e. study of singularity of planar manipulator by introducing the force transmission factor. Thus the singularity
zones in the workspace of the manipulator are defined not only by kinematic criterions from the theoretical perfect model
of the manipulator but also by the quality of force transmission. For this purpose, the pressure angle is used as an indicator
of force transmission. The optimal control of the pressure angle for a given trajectory of the manipulator is realized by
means of legs with variable structure. The suggested procedure to determination of the optimal structure of the planar par-
allel manipulator 3-RPR is illustrated by two numerical simulations.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

It is well-known that the closed-loop of parallel manipulators limits the motion of the platform and creates
special singular zones inside the workspace [1]. The workspace of the parallel manipulators which is less than
the serial manipulators becomes smaller and limits their functional performance.

One of the most evident solutions of this problem is the introduction in the initial system of complementary
actuators, which make it possible to eliminate the singular configurations of the parallel manipulator by means
of optimal control of the motion [2,3]. However, it is an expensive solution to the problem because of the addi-
tional actuators and the complicated control of the manipulator caused by actuation redundancy.
0094-114X/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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In this paper, we propose a new solution, which is carried out by using mechanisms of variable structure,
i.e. a mechanism whose structure parameters can be altered. With regard to the determination of singularity-
free zones inside the workspace we propose a kinetostatic approach taking account of the force transmission.

The physical interpretation of a singularity in kinematics refers to those configurations in which the number
of degrees of freedom of the mechanical structure changes instantaneously, either the manipulator gains some
additional, uncontrollable degrees of freedom or loses some degrees of freedom. Algebraically, a singularity
analysis is based on the properties of the Jacobian matrices of the mechanical structure, i.e. when the Jacobian
matrices relating the input speeds and the output speeds become rank deficient [4–16]. However, it is also well-
known that when the parallel manipulator is close to a singular configuration, it loses the stiffness and the
quality of motion transmission, as a result, the payload capability. Thus, the singularity zones must be avoided
and an indicator of the quality of motion transmission close to the singular configurations of parallel manip-
ulators must be defined. In the present work, we use a kinetostatic approach for the evaluation of the quality
of motion transmission by using the pressure angle, well-known in the mechanism design but not so often
applied to the parallel mechanisms. One defines the pressure angle as an angle between vectors of force
and velocity of a point at which the force is applied. Thus for best force transmission it would be desirable
if the pressure angle will be close to zero. One also knows the transmission angle, which is 90� minus pressure
angle and accordingly should be desirable if it will be close to 90�.

Balli and Chand [17] considered several examples for determination of transmission angle of planar and
spatial mechanisms, particularly, for mechanisms with two degrees of freedom. Sutherland and Roth [18]
showed that the input link of a spatial mechanism tends to move the output link when the transmission wrench
is not reciprocal to the output link twist. On the base of this consideration a general index of motion trans-
mission for spatial mechanisms is proposed. The quality of motion and force transmission was successfully
summarized in the work of Sutherland [19] and Lin and Chang [20]. The study of Sutherland and Roth
[18] was generalized for any spatial single-loop mechanism in the recent study Chen and Angeles [21].
Alba-Gomez et al. [22] have evaluated the quality of motion in the three degrees of freedom manipulators
by means of a kinetostatic indicator, which is similar to the pressure angle. Among several works may be dis-
tinguished also the study of Lee et al. [23].

The singularity determined from classical approach taking into account only kinematic aspects give infor-
mation about some singular positions in the geometrical sense. However, in this case, there is not any infor-
mation about the zones close to these positions, in which the manipulator loses the quality of motion. In this
paper, the pressure angle are used for determination of these zones close to the singular positions, which can-
not be reached by manipulator.

In the present study, we use the pressure angle as an indicator of the quality of motion transmission, and in
our opinion such a kinetostatic approach shows the nature of the inaccessibility of parallel manipulators’ sin-
gular zones better than the kinematic approach.

2. The quality of motion transmission and pressure angle

Let us consider a planar parallel manipulator (Fig. 1), which consists of the base, the output link (the
moving platform) and three kinematic chains with two revolute pairs Ai, Bi and one prismatic pair Ci

(i = 1, . . ., 3). Thus, such a manipulator with three actuators (rotating or linear) has three degrees of free-
dom. The moving platform can translate in the xy-plane and rotate (angle /) with respect to an axis per-
pendicular to the xy-plane. The workspace of the manipulator can be defined as the totality of positions
that a moving platform can reach. However, these accessible positions are limited not only by geometrical
parameters and the type of actuation of the parallel mechanism but also by force transmission. Especially in
the configurations close to the singular positions the force transmission becomes unfavorable and the trans-
mission of motion can be disrupted, as a result, leads to a breakdown of the parallel mechanism or an unde-
sirable motion. The pressure angle is an important criterion for the analysis of the inaccessible zone of
parallel manipulators.

However, when the number of links and number of degrees of freedom increase, the determination of the
pressure angles becomes more complicated. Let us examine the pressure angles of the considered manipulator.
Let us consider that the revolute pairs Ai is actuated and passive joints are located at Bi and Ci.



Fig. 1. Planar parallel manipulator 3-RPR.
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Thus, each kinematic chain includes one actuated and two passive pairs. The wrench acting to the output
link is reciprocal to the unit vectors situated along the axes of non-actuated pairs. Let Ei1, Ei2, Ei3 (Fig. 2) be
the unit vectors of the axes of kinematic pairs, where i (i = 1, 2, 3) is the number of the chain.

Here Ei1 corresponds to rotating actuated pair, Ei2 and Ei3 correspond to sliding and rotating passive pairs
accordingly (Ei1 and Ei3 directed perpendicular to the plane of the mechanism). These unit screws in any posi-
tion of the mechanism have Plücker coordinates: Ei1 0 0 1 e0

i1x e0
i1y 0

� �
, Ei2 0 0 0 e0

i2x e0
i2y 0

� �
,

Ei3 0 0 1 e0
i3x e0

i3y 0
� �

, where e0
i1x ¼ yAi, e0

i1y ¼ �xAi, e0
i2x ¼ ðxBi � xAiÞ=li, e0

i2y ¼ ðyBi � yAiÞ=li, e0
i3x ¼ yBi,

e0
i3y ¼ �xBi, xAi, xBi, yAi, yBi are the coordinates of the point Ai and Bi, li is the distance between the points

Ai and Bi (i = 1, 2, 3).
For planar mechanisms 3-entries screws can be used [24]. The Plücker coordinates of the unit screws can be

described in the matrix (E)i (i = 1, 2, 3):
ðEÞi ¼
1 e0

i1z e0
i1y

0 e0
i2z e0

i2y

1 e0
i3z e0

i3y

0
B@

1
CA
The determinant of the matrix (E) vanishes if the axes Ei1 and Ei3 coincide. It means the occurrence of singu-
larity when the actuator causes only rotation in the joint Ei3.

We can obtain the wrenches Ri (i = 1, 2, 3), which are reciprocal to the unit vectors of the axes of the pas-
sive kinematic pairs [24]. They can be written as: Ri rix riy 0 0 0 r0

iz

� �
(i = 1, 2, 3). The conditions of

reciprocity are:
e0
i2xrix þ e0

i2yriy ¼ 0; e0
i3xrix þ e0

i3yriy þ r0
iz ¼ 0 ð1Þ
Fig. 2. Representation of the planar parallel manipulator 3-RPR in 3D.
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Eq. (1) means that each connecting kinematic chain determines one wrench of zero pitch (vector). It is perpen-
dicular to the axis Ei2 and intersects the point Bi. The coordinates of wrenches in the form of the matrix (R) is
given by:
ðRÞ ¼
r1x r1y r0

1z

r2x r2y r0
2z

r3x r3y r0
3z

0
B@

1
CA
In singular configurations the system of the wrenches Ri degenerates and they intersect in the same point
or are parallel [25]. It can be shown by the representation of the components of this matrix. If all the
wrenches are parallel then the first two columns are proportional. If all the wrenches intersect in the same
point W xW yW 0ð Þ then the coordinate r0

izði ¼ 1; 2; 3Þ can be written as r0
iz ¼ r1xyW � r1yxW . In this case

in the matrix (R) the third column is a linear combination of the first and second columns.
To find the pressure angle we consider the wrenches Ri and the directions of the velocities of the points Bi

determined by the twists reciprocal to these wrenches. The velocity of the point B1 is determined by two
wrenches R2 and R3. One can find the twist W1 0 0 w1z v1x v1y 0ð Þ reciprocal to the wrenches R2

and R3 using the equations:
v1xr2x þ v1yr2y þ w1zr0
2z ¼ 0; v1xr3x þ v1yr3y þ w1zr0

3z ¼ 0 ð2Þ
It is obvious that the axis of the twist W1 is situated perpendicular to the plane of the mechanism and intersects
the center Q1 of velocities of the platform according to the wrenches R2 and R3 (Fig. 2). Without interruption
of generality the twist W1 can be expressed as 0 0 1 yQ1 �xQ1 0

� �
. The velocity VB1 has the coordi-

nates vxB1 = v1x � w1zyB1 = yQ1 � yB1, vyB1 = v1y + w1zxB1 = �xQ1 + xB1. If the wrenches R2 and R3 are par-
allel ðr2x ¼ r3x; r2y ¼ r3y ; r0

2z 6¼ r0
3zÞ then w1z = 0 and VB1 is perpendicular to these wrenches R2 and R3. Finally,

the pressure angle can be written as:
a1 ¼ j arccos VB1R1=jVB1jjR1jð Þj ð3Þ
It was noted that in the singular configurations all the pressure angles are equal to 90�. Indeed, in this case the
axis of the wrench R1 intersects the axes of the wrenches R2 and R3 and the velocity VB1 is perpendicular to the
axis of the wrench R1.

Thus, the pressure angles can be determined at the joints of each kinematic chain then the maximum value
of the pressure angles can be compared with their limit values. In this way, we have mapped whole workspace
of the parallel manipulator to detect the inaccessible zones with unfavorable values of the pressure angles.

It should be noted that the singularity analysis can be executed on the base of velocity equations. The left-
hand side of these equations represents the reciprocal screw products of wrenches acting on the moving
platform from kinematic chains and the twist of motion of the platform. The right-hand side represents the
reciprocal screw products of the same wrenches and the twists corresponding to the actuated kinematic pairs.
The singularity of type one exists if all the twists of one of the kinematic chains are linear dependent. The sin-
gularity of type two exists if the wrenches acting on the platform from the kinematic chains are linear depen-
dent. These singularities can be detected if the determinants consisting of the Plücker coordinates of
mentioned twists (the type one singularity) or of mentioned wrenches (the type two singularity) are equal
to zero [15]. But from the point of view of force transmission invalid configuration can appear even when
the determinant consisting of the Plücker coordinates of the wrenches acting on the moving platform from
the kinematic chains is not equal to zero. That is why we consider m pressure angles (where m is the degree
of freedom) and choose the worst of these angles as the criteria of closeness to singularity. Thus the standard
screw method allows the determination of singular positions only in geometrical sense. By using the pressure
angle we determine the volumes, in which the force transmission ability is invalid.

If the prescribed path of the parallel manipulator intersects any unacceptable zone in which the pressure
angle has an inadmissible value the transmission of the motion can be disrupted. In this case, it is necessary
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to change the structural parameters of the mechanism, i.e. the input motions. It will be shown in the following
section.
3. Legs with variable structure

Fig. 3 shows a schematic of the modified leg with the added articulated dyad. The rotating actuators are
mounted on the base and connected by electromagnetic clutches with the links AiDi and AiCi. These two input
links cannot actuate simultaneously and the input motion can be transmitted either by the link AiDi or AiCi

(i = 1, 2, 3). In this way, we can obtain the leg of the mechanisms with different structural parameters, which
allow increasing the singularity-free zones in the workspace of the considered parallel manipulator.

By example, one or all of the pairs Ai (Fig. 1) can be passive and the prismatic pairs (i = 1, 2, 3) can be
actuated by the chain AiDiCi. In this case, the actuator torque is transmitted to the link AiDi, which becomes
an input link and moves the prismatic pair.

It should be noted that the mobility of the modified manipulator is not changed and it is always equal to
three.

Let us consider the system of wrenches existing in this case. In the previous case by fixed actuator the link
BiCi had translation mobility along the axis of the prismatic pair. In this case, the link BiCi is constrained by
two wrenches of zero pitch Ti1 and Ti2. The wrench Ti1 is reciprocal to the unit screws of the axes of two kine-
matic pairs. One of them is rotating and its axis intersects the plane of the mechanism in the point Ai. The
second of them is prismatic and its axis is directed along the line AiBi. The Plücker coordinates of the unit
screws of the axes of these kinematic pairs are the same as the coordinates of Ei1 and Ei2 of the previous case.
Therefore, the axis of the wrench Ti1 is perpendicular to the line AiBi and intersects the point Ai.

The wrench Ti2 is reciprocal to the unit screws of the axes of two rotating kinematic pairs Ci and Di. There-
fore, the axis of the wrench Ti2 coincides with the axis of the link CiDi.

The unit screw E0i2 0 0 1 e00
i2x e00

i2y 0
� �

of the twist of the link BiCi is reciprocal to the wrenches Ti1 and
Ti2. This twist is of zero pitch and is perpendicular to the plane of the mechanism. Corresponding to this the
point of intersection of the wrenches Ti1 and Ti2 coincides with the point of intersection of the axis E

0

i2 and the
plane of mechanism. If the link CiDi is perpendicular to the link BiCi then the wrenches Ti1 and Ti2 are parallel
and the instantaneous motion of the link BiCi is translational. The wrench Ri rix riy 0 0 0 r0

iz

� �
(i = 1,

2, 3) can be determined using the equation analogous to (1). The pressure angle can be found using Eq. (3).
Thus, in each position we determine m pressure angles corresponding to all m degrees of freedom. Then we

consider the maximum value of these angles. By such a way, we can determine the pressure angles correspond-
ing to the different structures distinguished by different input links and obtain all possible workspace with sin-
gularity-free zones. It is examined in the next section.
4. Numerical plotting of singularity-free zones taking account of pressure angle

In this section, we would like to show the singularity-free zones in the workspace of 3-RPR parallel manip-
ulator with modified legs. These zones have been determined by using the maximum values of the pressure
angles.

For numerical simulation we consider 3-RPR parallel manipulator in which the basic triangle A1A2A3 is
equilateral with radius 0.35 m (Fig. 1) and the platform also represents an equilateral triangle with radius
Fig. 3. Leg with variable structure: (a) input link AiCi; (b) input link AiDi.
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0.1 m. In other words the centers of the joints mounted on the frame are disposed on the circle with radius
0.1 m. The rotation of the revolute joints Ai is limited to ±90� respect to the orientation of links AiDi with
the mechanism in the central symmetric configuration. For added dyads AiDi = CiDi = 0.25 m, the articulated
dyads are always located on the left of the prismatic pairs as it is shown in Fig. 3 and the translation of the
prismatic pairs are limited relative to the joints Ai and Ci by values (AiCi)min = (BiCi)min = 0.05 m.

Taking into account that the manipulator can be actuated either by links AiDi or by links AiBi, for given
output parameters x = (x,y,/)T of the platform, we have 8 different combinations of actuation, i.e. we have 8
different combinations of input parameters presented below (underlined letters show the input pairs, ‘‘R’’ for
input links AiBi with input angles hi and ‘‘P’’ for input links AiDi with input displacements qi):
x ¼ ðx; y;/ÞT )

RRR : RPR�RPR�RPR : qð1Þ ¼ ðh1; h2; h3ÞT

RRP : RPR�RPR�RPR : qð2Þ ¼ ðh1; h2; q3Þ
T

RPR : RPR�RPR�RPR : qð3Þ ¼ ðh1; q2; h3ÞT

RPP : RPR�RPR�RPR : qð4Þ ¼ ðh1; q2; q3Þ
T

PRR : RPR�RPR�RPR : qð5Þ ¼ ðp1; h2; h3ÞT

PRP : RPR�RPR�RPR : qð6Þ ¼ ðq1; h2; q3Þ
T

PPR : RPR�RPR�RPR : qð7Þ ¼ ðp1; q2; h3ÞT

PPP : RPR�RPR�RPR : qð8Þ ¼ ðp1; q2; q3Þ
T

Tables 1 and 2 show the workspaces of each case of actuation with 0� and 45� orientation angles (the origin of
the fixed base frame is located at the center of the equilateral triangle A1A2A3). In these figures, several zones
can be seen, which correspond to the variations of the maximum values of the pressure angle for given position
of the platform. The contrast intensity shows the variations of the pressure angle (see Fig. 4).

Thus, the black zones are the surfaces where the pressure angle has inadmissible values, and as a result,
these are the zones, which cannot be reached by the parallel mechanism.

Table 3 shows the ratio between the total value of singularity-free volumes and the total workspace for each
case of actuation (for two examined cases: / = 0� and / = 45�).

Fig. 5 shows the reachable workspace of the modified parallel mechanism with legs of variable structure.
We can see that the workspace of the modified manipulator is only composed of singularity-free zones and
the whole workspace of the manipulator is reachable (increase until 100%).
5. Trajectory planning and design procedure for determination of optimal leg structure

In order to obtain the best structural architecture of the manipulator for a given trajectory, in this section
we describe a procedure, which allows determining the optimal system of actuation. This algorithm is based on
the control of the pressure angles in the joints of the manipulator along the given trajectory (Fig. 6).

Two numerical examples are considered below in order to illustrate the application of the suggested design
procedure.

Problem No. 1. For given parallel manipulator (Fig. 1) with legs of variable structure (Fig. 3) generate the
trajectory by straight line from the initial position P1 (x1 = 0, y1 = 0, /1 = 0) to the final position P2

(x2 = �0.25m, y2 = 0, /2 = 0).
The estimation of the pressure angle along the given trajectory shows that the best structural solution for

generation of motion is the RPR–RPR–RPR mechanism, i.e. when the first actuator is connected with the link
A1C1 and two others with the links A2D2 and A3D3. In this case, the maximum values of the pressure angles in
the joints are always less than the limit value.

In order to illustrate the variations of torques for examined case we develop a model of the manipulator
with the given trajectory using the ADAMS software. A force parallel to the x-axis and equal to 100 N



Table 1
Maximum values of the pressure angles (/ = 0�)
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Table 2
Maximum values of the pressure angles (/ = 45�)
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Fig. 4. The contrast intensity corresponding to the pressure angle.

Table 3
Total value of singularity-free volumes for each case of actuation

Type of
actuation

/ = 0� (workspace surface: 0.21 m2) / = 45� (workspace surface: 0.2 m2)

Singularity-free
zones (m2)

Singularity-free zones relative to the
whole workspace (%)

Singularity-free
zones (m2)

Singularity-free zones relative to the
whole workspace (%)

RRR 0.137 65 0.147 74
PPP 0.181 86 0.152 76
PRR 0.152 72 0.158 79
RPR 0.152 72 0.158 79
RRP 0.152 72 0.158 79
RPP 0.155 74 0.165 83
PRP 0.155 74 0.165 83
PPR 0.155 74 0.165 83

Fig. 5. The reachable workspace of the parallel manipulator with modified legs.
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was applied to the platform and the friction coefficients in the prismatic pairs were equal to 0.01. The obtained
torques are shown in Fig. 7. We can note that the torques have admissible values along the trajectory.

Problem No. 2. For given parallel manipulator (Fig. 1) with legs of variable structure (Fig. 3) generate the
trajectory by straight lines from the initial position P1 (x1 = 0, y1 = 0, /1 = 0) to the second position P2

(x2 = 0.1m, y2 = �0.25m, /2 = 0) and then to the final position P3 (x3 = �0.1m, y3 = �0.25m, /3 = 0).
In this case, the estimation of pressure angle shows that it is impossible to carry out the given trajectory by

one structural system. In a first time, the trajectory from initial position P1 (x1 = 0, y1 = 0, /1 = 0) to the sec-
ond position P2 (x2 = 0.1m, y2 = �0.25m, /2 = 0) must be carried out by the RPR–RPR–RPR mechanism



YES 

Input data: the geometrical parameters of the 
parallel mechanism, the given trajectory and 
the limit value of the pressure angle  

Estimation of the pressure angles in the joints 
along the trajectory for all possible structures
of the parallel mechanism with variable 
architecture  

This parallel manipulator 
cannot carry out the given 
trajectory 

The possibility of the motion generation by one 
structure for which the maximum value of the 
pressure angle along the trajectory is always
less than the limit value   

Trajectory planning 

Decomposition of the given trajectory in 
several parts and generation of the motion by 
different structures (it would be desirable if the
trajectory can be realized by minimal structural 
changes)    

NO 

YES 

NO 

Fig. 6. Procedure to determination of the optimal structure of the parallel manipulator taking into account the limit pressure angle.

Fig. 7. Torques of the actuators.
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then from the second position P2 (x2 = 0.1m, y2 = �0.25m, /2 = 0) to the final position P3 (x3 = �0.1m,
y3 = �0.25m, /3 = 0) by the RPR–RPR–RPR mechanism. Thus the suggested solution based on these struc-
tural architectures allows obtaining the optimal actuation system of the manipulator considering the pressure
angle.

The obtained torques are shown in Fig. 8. We can note that the torques have admissible values along the
trajectory but there is a discontinuity in the point P2 caused by the structural change of the parallel
mechanism.

It should be noted that the mechanism of variable structure shown above was developed by means of the
added articulated dyads, but, it is obvious that such a mechanism can be designed on the base of the screw or
cam systems, the rhombic pantographs, etc.

In a similar way one obtains the increase of singularity-free zones in the workspace of parallel manipulators
only with revolute pares. In Fig. 9 is illustrated a 3-RRR parallel manipulator with the legs of variable
structure.

The rotating actuators are mounted on the base and connected by electromagnetic clutches with the links
AiCi and AiDi. These two input links cannot be actuated simultaneously and the input motion can be trans-
mitted either by the link AiCi or AiDi (i = 1, 2, 3). In this way, we can obtain the leg’s mechanisms with dif-



Fig. 8. Torques of the actuators.

Fig. 9. Planar parallel manipulator 3-RRR with legs of variable structure.
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ferent structural parameters and carry out the given trajectory taking into account the limit value of the pres-
sure angle. We shall not treat the procedure of resolution that it differs from the previous case only by deter-
mination of the pressure angle.

6. Conclusions

A procedure for the increase of singularity-free zones in the workspace of planar parallel manipulators has
been presented in this paper. The procedure is based on the known kinematic singularity equations and the
control of the pressure angles in the joints of the manipulator along the given trajectory of the platform.
The zones, which cannot be reached by the manipulator, were detected. For increase of the reachable work-
space of the manipulator the legs of variable structure were proposed. Such a solution allows obtaining the
best structural architecture of the manipulator for any trajectory. The design of the optimal structure of
the planar parallel manipulator 3-RPR was illustrated by two numerical simulations. We believe that the sug-
gested method is a useful tool for the improvement of the functional performance of parallel manipulators
with singular zones.

Finally, it should be noted that the same problem for spatial parallel manipulators was studied in [26].
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