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Abstract

This paper proposes a new solution to the problem of complete shaking force and shaking moment
balancing of linkages. The method involves connecting to the mechanism to be balanced a two-link
group forming a pantograph with the crank and coupler. Three versions of sub-linkages are considered:
(1) the articulation dyad; (2) the asymmetric link with three rotational pairs; (3) the crank-slider
mechanism. The mathematical basis for the realisation of this method is the well-known method of
static and dynamic substitution of distributed masses by concentrated point masses. The method is
illustrated by new balancing schemes for the Stephenson and Watt linkages. # 1998 Elsevier
Science Ltd. All rights reserved.

ReÂ sumeÂ

Dans cet article est proposeÂ e une nouvelle meÂ thode d'eÂ quilibrage dynamique complet des mecanismes.
La meÂ thode proposeÂ e est reÂ aliseÂ e par l'addition au meÂ canisme aÁ eÂ quilibrer de groupe articuleÂ e aÁ deux
barres formant avec la manivelle et la bielle du meÂ canisme initial un pantographe. On considere trois
versions des sub-meÂ canismes: (1) la groupe articuleÂ e aÁ deux barres; (2) l'eÂ leÂ ment asymeÂ trique aÁ trois
couples de rotation; (3) le meÂ canisme aÁ manivelle et tiroir. Le moyen matheÂ matique pour la reÂ alisation
de cette meÂ thode est baseÂ sur les meÂ thodes connues de substitution statique et dynamique de masses des
eÂ leÂ ments du meÂ canisme par les masses-points concentreÂ es. La meÂ thode proposeÂ e est illustreÂ e par les
nouveaux scheÂ mas d'eÂ quilibrage des meÂ canismes de Stephenson et de Watt. # 1998 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

In high-speed machines, mass balancing of the moving links brings about a reduction of vibration
that considerably improves their performance. However, complete shaking force and shaking
moment balancing of linkages is a complicated problem. The need to satisfy the necessary conditions
of balancing brings about a great increase of the masses of the movable links of the linkages. This
results in a rise of the forces in the kinematic pairs and an increase of the input moment.
The ®rst study of complete shaking force and shaking moment balancing of planar crank±

rocker mechanism was the method of ``mass redistribution'' presented by Berkof [1]. However,
the full mass balancing problem is very complicated especially for such a widespread mechanism
as the crank±slider mechanism. The most e�cient method for solving this problem is considered
to be the ``duplicating mechanism'' method [2, 3] by adding to the initial mechanism an identical
mechanism which is a revolved mirror re¯ection of the initial mechanism. The disadvantages of
such an approach are a partial balancing due to the shaking moment of inertia forces of the
slider, as well as the greater friction losses due to the additional sliding (prismatic) pair.
Other workers [4±6] have proposed methods for the full balancing of mass of linkages by

counterweights with planetary gear trains. The disadvantage of these balancing schemes is the
fact that the gear inertia counterweights needed for balancing the shaking moment are
mounted on the movable links that are not connected directly to the frame.
Another approach is applied by Kochev [7]. In his study it is proposed to balance shaking

moment (in the force balanced mechanism) by a prescribed input speed ¯uctuation. However,
in practice, the approximation of the motion of the input link is very di�cult and needs a
special type of drive generator.
In a study by Bagci [8], a method of full balancing is presented involving the addition of

``balancing idler loops'' which form a parallelogram with the initial links of the mechanism.
The method is based on the well-known principle of the ``independence of the mechanism
balanced state from parallel transfer of counterweight rotation axis''. The balancing is realised
by using the general balancing conditions elaborated by Lowen and Berkof [9] known as the
``method of linearly independent vectors''.
Hilpert [10] has successfully used the pantograph mechanism for complete shaking force

balancing of four-bar linkages. This idea has been developed by Arakelian [11] for complete
shaking force and shaking moment balancing of the in-line crank±slider mechanism.
The object of the study presented here is to provide the conditions for a complete shaking

force and shaking moment balancing of linkages with a relatively small increase of the total
mass of movable links by mounting the gear inertia counterweights on the base of the
mechanism, in addition to further developing the work in Ref. [11] for the balancing of o�-set
crank±slider mechanisms.
This has been achieved by the addition of a supplementary link. Such a solution provides an

improvement in the known methods of balancing, rendering them more suitable for practical
application.
A quite di�erent approach and solution are applied to the balancing of the crank±slider

mechanism. In this case, the added articulation dyad forms a pantograph with the crank and
coupler of the initial linkage. The solution permits the balancing of the linkage with a
relatively small increase in the total mass of the movable links.
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Finally, by application of this new approach together with the principle of dynamic
substitution of mass, new schemes for the complete balancing of both the Stephenson and
Watt six-bar linkages are presented. In these cases, the mass of the coupler is replaced by three
dynamically equivalent point masses located at the pin joints. This method, ®rst applied by
Berkof [1] for the full balancing of the four-bar linkage, has the advantage that the dynamic
characteristics of the initial mechanism are unchanged and the point masses may be considered
part of the mass of the adjacent links which are then balanced in turn.

2. Complete shaking force and shaking moment balancing of sub-linkages

Let us consider three versions of sub-linkages.

2.1. Articulation dyad

The well-known scheme of complete shaking force and shaking moment balancing of an
articulation dyad [5] is shown in Fig.1(a).
The principle of such an approach is as follows. To link 2 is added a counterweight which

permits the displacement of the centre of mass of link 2 to joint A. Then, by means of a
counterweight with mass m cw1

[see Fig. 1(a)] a complete balancing of shaking force is achieved.
A complete shaking moment balance is realised through four gear inertia counterweights 3±6,
one of them being of the planetary type and mounted on link 2 [5].
The scheme suggested here [Fig. 1(b)] is distinguished from the earlier scheme by the fact

that gear 3 is mounted on the base and is linked kinematically with link 2 through link 1 0.
To have a more illustrative representation of the advantages of such a balancing, let us

consider application of the new system with the mass of link 1 0 not taken into account.
In this case (compared to the usual method Fig. 1(a), the mass of the counterweight of link

1 will be reduced by an amount

DmCW1
� m3lOA=rCWt

; �1�
where m3 is the mass of the gear 3; lOA is the distance between the centres of hinges O and A;
rCW1

is the rotation radius of the centre of mass of the counterweight.
It is obvious that the moment of inertia of the links is correspondingly reduced. If the gear

inertias are made in the form of heavy rims in order to obtain a large moment of inertia, the
moments of inertia of the gear inertia counterweights may be presented [2] as I i=miD

2
i /4

(i=3, . . . , 6). Consequently, the mass of gear 6 will be reduced by an amount

Dm6 � 4�m3l
2
OA � DmCW1

r2CW1
�Z6=D

2
6Z5; �2�

where Z5 and Z6 are the numbers of teeth of the corresponding gears. Thus, the total mass of
the system will be reduced by an amount

Dm � DmCW1
� Dm6 �3�

Let us now consider the complete shaking force and shaking moment balancing of the
articulation dyad with the mass and inertia of link 1 0 taken into account. For this purpose,
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initially, we shall statically replace mass m 01 of link 1 0 by two point masses mB and mC at the

centres of the hinges B and C:

mB �m 01lCS0
1
=lBC; �4�

mc �m 01lBS0
1
=lBC; �5�

where lBC is the length of link 1; lCS0
1
and lBS0

1
are the distances between the centres of the

joints C and B and the centre of mass S 01 of link 1 0, respectively.

Fig. 1. (a) Complete shaking force and shaking moment balancing of articulation dyad. (b) Complete shaking force
and shaking moment balancing of articulation dyad by gear inertia counterweights mounted on the base.
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After such an arrangement of masses the moment of inertia of link 1 0 will be equal to 1.

I�S 0
1
� IS1 0 ÿm 01lBS 01 lCS 01; �6�

where I S 01 is the moment of inertia of link 1 0 about the centre of mass S 01 of the link.
Thus, we obtain a new dynamic model of the system where the link 1 0 is represented by two

point masses mB, mC and has a moment of inertia I *
S 01.

This fact allows for an easy determination of the parameters of the balancing elements as
follows:

m�CW2
� �m2lAS2 �mBlAB�=rCW2

; �7�
where m2 is the mass of link 2; lAB is the distance between the centres of hinges A and B; lAS2

is the distance of the centre of hinge A from the centre of mass S2 of link 2; rCW2
is the

rotation radius of the centre of mass of the counterweight with respect to A, and

m�CW1
� ��m2 �m�CW2

�mB�lOA �m1lOS1 �=rCW1
; �8�

where m1 is the mass of link 1; lOS1
is the distance of the joint centre 0 from the centre of mass

S1 of link 1.
Also,

mCW3
� mClOC=rCW3

; �9�
where lOC= lAB; rCW3

is the rotation radius of the centre of mass of the counterweight.
Taking into account the mass of link 1 0 brings about the correction in Eq. (3). In this case,

Dm=DmCW1
+Dm6ÿDm 01, where Dm 01 is the value characterising the change in the

distribution of the masses of the system links resulting from the addition of link 1 0.

2.2. Asymmetric link with three rotational pairs (Fig. 2)

In previous work [12, 13] relating to balancing of linkages with a dynamic substitution of the
masses of the link by three rotational pairs (see Fig. 2) two replacement points A and B are
considered. This results in the need to increase the mass of the counterweight. However, such a
solution may be avoided by considering the problem of dynamic substitution of link masses by
three points. Usually, the centre of mass of such an asymmetric link is located inside a triangle
formed by these points. The conditions for dynamic substitution of masses are the following:

1 1 1
lAe

iyA lBe
iyB lCe

iyC

l2A l 2B l 2C

24 35 mA

mB

mC

24 35 � mi

0
ISi

24 35 �10�

where mA, mB and mC are point masses; lA, lB and lC are the moduli of radius-vectors of
corresponding points; yA, yB and yC are angular positions of radius-vectors; m i is the mass of

1 After the static substitution of the masses of the link by point masses, it is necessary to take into account the
change of the moment of inertia of the link.
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link; I Si
is the moment of inertia of the link about an axis through Si (axial moment of inertia

of link).
From these we determine

mA � DA=Di; ; mB � DB=Di; mC � DC=Di; �11�
where DA, DB, DC and D i are determinants of the third order obtained from the above system
of equations.

2.3. Crank±slider mechanism (Fig. 3)

Complete shaking force and shaking moment balancing of the o�-set crank±slider
mechanism is shown in Fig. 3(a). The principle of such an approach resides in the
following. On coupler 2 is added a counterweight which transfers the centre of mass of
coupler 2 and slider 3 into the centre of joint A. Then, by means of a counterweight of mass
mCW1

, the general centre of mechanism mass is brought to the centre of pivot 0. Complete
balancing of the shaking moment is realised by means of the four gear inertia counterweights
4±7.

Fig. 2. Dynamic substitution of the masses of the link by three rotational pairs.
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Three possible solutions are examined here.

2.3.1. Complete shaking force and shaking moment balancing of the mechanism by mounting the
gear inertia counterweights on the links connected directly to the frame
The balancing scheme illustrated in Fig. 3(b) di�ers from the traditional scheme by the fact

that gear 4 is mounted on the base and linked kinematically with link 2 through an additional
link 1 0 and gear 5.
The complete balancing conditions for the shaking force and shaking moment of the

mechanism are similar to those in the previous case when the scheme shown in Fig. 1(b) was
considered.

Fig. 3. (a) Complete shaking force and shaking moment balancing of crank±slider mechanism. (b) The suggested
scheme for complete shaking force and shaking moment balancing of crank±slider mechanism. (c) Complete shaking
force and shaking moment balancing of crank±slider mechanism based on the copying properties of the pantograph.

(d) Optimum balancing of the crank±slider mechanism based on the properties of the parallelogram.

V.H. Arakelian, M.R. Smith /Mechanism and Machine Theory 34 (1999) 1141±1153 1147



2.3.2. Complete shaking force and shaking moment balancing of the mechanism based on the
copying properties of the pantograph

Fig. 3(c) shows an o�-set crank±slider mechanism with an articulation dyad CDE connected

to it which forms a pantograph, with the initial mechanism OAB. By selecting, for

constructional reasons, the similarity factor of the formed pantograph, k= lOB/lOA, we

determine the length of the articulation dyad: lCD= lOA+ lOE, lDF=klAB+ lAC.

By substituting dynamically the mass m2 of the coupler by point masses at the centres A, B

and C and using the following condition

1 1 1
lAS2 ÿlBS2 lCS2
l2AS2

l2BS2 l2CS2

24 35 mA

mB

mC

24 35 � m2

0
IS2

24 35; �12�

where lAS2
, lBS2

and lCS2
are the distances of joint centres A, B and C from the centre of

masses S2 of the coupler; I S2
is the axial moment of inertia of the coupler; we determine the

value of the point masses

mA � DA=D2; mB � DB=D2; mC � DC=D2; �13�

Fig. 3 (continued)
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where DA, DB, DC and D2 are determinants of the third order obtained from the system of

equations.

We now require link 1 to be balanced about point O, link 4 (masses mC , mD and m4) about

point G and ®nally masses mB, m3, mG and mF about point O. The necessary conditions are as
follows:

mAlOA �m1lOS1 ÿmElOE � 0;
mDlDG ÿm4�lCG ÿ lCS4� ÿmClCG � 0;
mF � �mB �m3 � �mC �mD �m4�lAC=lAB�=k;

8<: �14�

mD �mE �mF � m5;
mDlDS5 �mE�lDS5 ÿ lDE� ÿmF�lDF ÿ lDS5� � 0;
mDl

2
DS5
�mE�lDS5 ÿ lDE�2 ÿmF�lDF ÿ lDS5�2 � lS5;

8<: �15�

where lOA, lOE and lOS1
are the distances of joint centres A, E and of the centre of mass S1 of

the crank from the pivot centre 0; lDG, lCG are the distances of the centres of the joints D,C
from the working point G of the pantograph; lCS4

is the distance of the centre of the joint C

from the centre of mass S4 of link 4; lAB, lAC are the distances of the centres of the joints B, C
from the centre of joint A; lDE, lDF are the distances of the centres of the joints E, F from the

centre of joint D; m4 is the mass of link 4; mD, mE, mF are point masses obtained after
dynamic substitution; m5 is the mass of link 5; lDS5

is the distance of the centre of the joint D

from the centre of mass S5 of link 5; I S5
is the axial moment of inertia of link 5.

We now have the desired parameters

m5 �mD �mE �mF;

lDS5 � �mElDE �mFlDF�=m5;

IS5 �mDl
2
DS5
�mE�lDS5 ÿ lDE�2 ÿmF�lDF ÿ lDS5�2;

�16�

where

mD ��mClCG �m4�lCG ÿ lCS4��=lDG; �17�
mE ��mAlOA �m1lOS1�=lOE: �18�

Thus, we obtain a dynamic model of the mechanism [see Fig. 3(c)] fully equivalent to the

real mechanism involving the rotating links 1,42 and four point masses m3+mB, mD, mF and
mG, three of which perform a translational rectilinear motion in the horizontal sense. As may

be seen from this equivalent model, a complete shaking force balancing of the movable links of

2 The parameters of link 5 are selected so that the centre of mass of link 4, with the point masses mC and mD

taken into account, coincides with the working point G of the pantograph, due to which the motion of this link is
represented as a translational rectilinear motion of its centre of mass and a rotary motion relative to point G.
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the mechanism has been achieved: F int
F =F int

B +F int
3 +F int

G , (F int
G =F int

C +F int
D +F int

4 , where
F int

i (i=B, C, D, F, G, 3, 4) -inertia forces from corresponding masses).
The shaking moment of the mechanism is determined by the sum:

Mint �M int
1 �M int

4 �MO�F int
i �; �19�

where M int
1 and M int

4 are the shaking moments of the rotating links 1 and 4 with the inertia of
the replaced point masses taken into account:

M int
1 ��IS1 �m1l

2
OS1
�mAl

2
OA �mEl

2
OE�a;

M int
4 ��IS4 �m4l

2
GS4
�mCl

2
CG �mDl

2
DG�a;

�20�

where I S1
and I S4

are the axial moments of inertia of links 1 and 4; a= a1= a4 is the angular
acceleration of links 1 and 4; MO(F

int
i ) is the moment resulting from the force of inertia of the

masses m3+mB, mG and m F performing a translational rectilinear motion relative to pivot 0.
The moments of the rotating links may be balanced by means of the gears [1, 4±6] mounted

on the base of the mechanism. The moment of inertia of such a gear is given by the following
equation:

Igear � IS1 � IS4 �m1l
2
OS1
�m4l

2
GS4
�mAl

2
OA �mCl

2
CG �mEl

2
OE �mDl

2
DG: �21�

Regarding the moment MO(F
int
i ), it is necessary to redistribute the masses performing a

translational motion, using counterweights mounted on slider 3 (mCW3
) and on link 5 (m 0F).

The necessary conditions for balancing this moment are the following:

mF �m 0F � �mB �m3 �mCW3
� �mC �mD �m4�lAC=lAB�k;

xk�mF �m 0F� � x�mC �mD �m4�lAC=lAB � �mB �m3 �mCW3
�w;

�
�22�

from which we determine mCW3
and m 0F.

It should be noted that in most constructions of such mechanisms, the eccentricity of slider
guides is not signi®cant and the moment MO(F

int
i ) is relatively small, so that in many

mechanism balancing problems this moment may be neglected.

2.3.3. Improvement on previous methods [4±6] by mounting the gear inertia counterweight on the
mechanism frame.
In Fig. 3(d) is illustrated an o�-set mechanism OAB and an articulation dyad CDE

connected to it. This dyad forms a parallelogram with the initial mechanism.
The conditions for balancing the system are determined from the following considerations.

With the static substitution of mass m4 of link 4 by the masses mC and mD situated in the
centres of corresponding hinges and with the substitution of mass m2 of the coupler (with the
point mass mC taken into account) by masses mA and mB, we obtain a system of point masses
performing either a rotational or a translational motion. By adding thereafter a counterweight
with a mass mCW3

on the slider, we transfer the slider mass centre with the point mass mB into
the line OX. However, since the slider performs a translational rectilinear motion, the mass
mB+m3+mCW3

may be considered as a point mass in the centre of joint B, since the balance
of the inertia forces of the movable masses is not altered by this change. Mounting thereafter a
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counterweight of mass m *
5 on link 5, we transfer the general centre of the masses

mB+m3+mCW3
+m5 onto point S 0 [see Fig. 3(d)] which performs a rotational motion.

We now obtain a complete shaking force balance by the addition of a counterweight with
mass m *

CW1
on the input crank, displacing the centre of mass of the movable links from point

S 0 to the centre of the pivot 0.
In this case, the static moments of the counterweights relative to the pivot will be given by

m�1r
�
1 � m1lOS1 � lOA�m2 �m3 �m4lDS4=lCD�; �23�

m�5r
�
5 � m2lAS2 �m3lAB �m4lAC2m5lOS5; �24�

where mi is the mass of link i; lOS1
, lAS2

, lCS4
, lOS5

are the distances of the centres of mass of
links 1, 2, 4, 5 from the centres of joints O, A, C; lOA, lAB, lAC, lCD are the distances between
the centres of corresponding joints.
After such a redistribution of masses, the moment from inertia forces will be balanced by

gear inertia counterweights 5±8 [1, 4±6].

3. Application of the methods for complete shaking force and shaking moment balancing of
multilink mechanisms

Let us consider the complete shaking force and shaking moment balancing of Stephenson
(Fig. 4) and Watt (Figs. 5 and 6) linkages.
For the complete shaking force and shaking moment balancing of the Stephenson linkage we

apply the following approach. First, we replace dynamically the mass of coupler 2 by three
point masses located at the centres of the joints A, B and C. That permits us to solve the
problem of complete shaking force and shaking moment balancing of the linkage as separate
problems of the balancing of sub-linkages (case 2.1).

Fig. 4. Complete shaking force and shaking moment balancing of Stephenson linkage.
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For the complete shaking force and shaking moment balancing of the Watt linkage, two
methods have been developed. In the ®rst method (Fig. 5), we replace dynamically the mass of
link 3 by the point masses mB , mC and mD . Then, we consider the problem of sub-linkages
OAB and DEF.
In the second method (Fig. 6), we replace dynamically the mass of link 2 by the point

masses mA and mB . Then, taking into account the point mass mB we replace dynamically the
mass of link 3 by the point masses mC and mD . That changes the problem of balancing the
linkage into problems of balancing sub-linkages: crank OA and articulation dyad DEF.

4. Conclusions

This paper presents new balancing schemes relating to three types of sub-linkages and
permitting complete shaking force and shaking moment balancing of mechanisms involving a
smaller increase of link mass compared to earlier methods. An advantage of the schemes

Fig. 6. Complete shaking force and shaking moment balancing of Watt linkage.

Fig. 5. Complete shaking force and shaking moment balancing of Watt linkage.
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outlined here is the fact that all the gear inertia counterweights needed for balancing the
shaking moment are mounted on the mechanism frame, which is constructively more e�cient.
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