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On the Dynamic Properties of
Flexible Parallel Manipulators
in the Presence of Type 2
Singularities
In the present paper, we expand information about the conditions for passing through
Type 2 singular configurations of a parallel manipulator. It is shown that any parallel
manipulator can cross the singular configurations via an optimal control permitting the
favorable force distribution, i.e., the wrench applied on the end-effector by the legs and
external efforts must be reciprocal to the twist along with the direction of the uncontrol-
lable motion. The previous studies have proposed the optimal control conditions for the
manipulators with rigid links and flexible actuated joints. The different polynomial laws
have been obtained and validated for each examined case. The present study considers
the conditions for passing through Type 2 singular configurations for the parallel manip-
ulators with flexible links. By computing the inverse dynamic model of a general flexible
parallel robot, the necessary conditions for passing through Type 2 singular configura-
tions are deduced. The suggested approach is illustrated by a 5R parallel manipulator
with flexible elements and joints. It is shown that a 16th order polynomial law is neces-
sary for the optimal force generation. The obtained results are validated by numerical
simulations carried out using the software ADAMS. [DOI: 10.1115/1.4004229]
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1 Introduction

There are many studies dealing with the singularity analysis of
parallel manipulators and an overview of all the works seems
almost impossible within the framework of this paper. Let us dis-
close the kinematic, kinetostatic, and dynamic aspects of singular-
ity through some of them. The analysis of singular configurations
has been first discussed from a kinematic point of view [1]–[12].
However, it is also known that, when parallel manipulators have
Type 2 singularities [1], they lose their stiffness and their quality
of motion transmission, and as a result, their payload capability.
Therefore, the singularity zones in the workspace of manipulators
may be analyzed not only in terms of kinematic criterions, from
the theoretically perfect model of manipulators without friction
and force transmission action, but also in terms of kinetostatic per-
formance [13]–[20]. In this vein, the paper [20] proposes the anal-
ysis and design of a Stewart platform based force–torque sensor in
a near-singular configuration. It was shown in this study that vari-
ous singular configurations can be obtained to get high sensitivity
to various combinations of the six components of force and
torque.

The further study of singularity in parallel manipulators has
revealed an interesting problem that concerns the path planning of
parallel manipulators under the presence of singular positions, i.e.,
the motion feasibility in the neighborhood of singularities. In this
case the dynamic conditions can be considered in the path plan-
ning process. One of the most evident solutions for the stable
motion generation in the neighborhood of singularities is to use
redundant sensors and actuators [21]–[25]. However, it is an ex-

pensive solution to the problem because of the additional actua-
tors and the complicated control of the manipulator caused by
actuation redundancy. Another approach concerns with motion
planning to pass through singularity [26]–[31], i.e., a parallel ma-
nipulator may track a path through singular poses if its velocity
and acceleration are properly constrained. This is a promising way
for the solution of this problem. However, the studies devoted to
this problem have addressed the path planning for obtaining a
good tracking performance, but not the physical interpretation of
dynamic aspects.

The condition of optimal force generation in rigid parallel
manipulators for passing through the singular positions has been
studied in Ref. [32]. It was shown that any parallel manipulator
can pass through the singular positions without perturbation of
motion if the wrench applied on the end-effector by the legs and
external efforts of the manipulator are reciprocal to the twist along
the direction of the uncontrollable motion. The obtained results
were validated through experimental tests carried out on the pro-
totype of 4 degree of freedom (DOF) parallel manipulator
PAMINSA [33].

This approach has been generalized in the case of rigid-link
flexible-joints parallel manipulators [34]. It was shown that the
degree of the polynomial law should be different, when the flexi-
bility of actuated joints is introduced into condition of the optimal
force generation in the presence of singularity. The numerical
simulations carried out using the software ADAMS validated the
obtained theoretical results.

The study presented in this paper is the continuation of our pre-
vious works [32,34]. The purpose of this paper is to study the
dynamic properties of parallel manipulators not only having flexi-
ble joints but also flexible links.

The paper is organized as follows. Section 2 presents theoreti-
cal aspects of the examined problem, which is analysed using the
Lagrangian formulation. The condition of force distribution is
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defined, that allows the passing of any flexible parallel manipula-
tor through the Type 2 singular positions. In Sec. 3, the suggested
solution is illustrated via a 5R planar parallel manipulator having
flexible links and joints. Conclusions are presented at the end of
the paper.

2 Optimal Dynamic Conditions for Passing Through

Type 2 Singularity

Let us consider a nonredundant parallel manipulator of m links,
n DOF and driven by n actuators. The general Lagrangian
dynamic formulation for a nonrigid manipulator can be expressed
as [35]

s ¼ d

dt

@L

@ _qa

� �
� @L

@qa

(1a)

0 ¼ d

dt

@L

@ _qe

� �
� @L

@qe

(1b)

where,

– L is the Lagrangian of the manipulator; L¼ T�V, where T is
the kinetic energy and V is the potential energy due to gravita-
tional forces, friction, and elasticity;

– qa ¼ ½qa
1; q

a
2; :::; q

a
n�

T
and _qa ¼ ½ _qa

1; _qa
2; :::; _qa

n�
T

represent the
vectors of position and velocity of the actuators, respectively;

– qe ¼ ½qe
1; q

e
2; :::; q

e
n�

T
and _qe ¼ ½ _qe

1; _qe
2; :::; _qe

n�
T

represent the
vectors of position and velocity of the elastic coordinates
(deformations of links and joints);

– s is the vector of the actuators efforts.

In general, for parallel manipulators, the potential and kinetic
energies not only explicitly depend both of the actuated variables
qa and elastic coordinates qe, but also from the positions x and
velocities v of the payload. Therefore it is preferable to rewrite
Eq. (1) using the Lagrange multipliers [35], as follows:

s ¼Wb þ BTk; Wb ¼
d

dt

@L

@ _qa

� �
� @L

@qa

(2a)

0 ¼Wc þ CTk; Wc ¼
d

dt

@L

@ _qe

� �
� @L

@qe

(2b)

where k is the Lagrange multipliers vector, which is related to the
wrench Wp applied on the platform by

ATk ¼Wp; Wp ¼
d

dt

@L

@v

� �
� @L

@x

� �
(3)

and

– x ¼ ½x; y; z;/;w; h�T and v ¼ ½ _x; _y; _z; _/; _w; _h�T are vectors con-
taining the end-effector trajectory parameters and their deriva-
tives, respectively; x, y, z represents the position of the
controlled point in the global frame and /, w, and h the rotation
of the platform about three axes au, aw, and ah. Vector x
depends on both rigid coordinates qa and elastic coordinates qe.

– A, B, and C are three matrices relating the vectors v, _qe, and
_qa according to Av ¼ B _qa þ C _qe. They can be found by
differentiating the closure equations fi(x,qa,qe)¼ 0 (taking
into account the rigid as well as the elastic coordinates [35])
with respect to time. In the hypothesis of small elastic
displacements (qe � 0), matrices A and B may be found
assuming that the robot is composed of rigid links only.

– Wp is the wrench applied on the platform by the legs and
external forces expressed along axes au, aw, and ah [36].

Expressing Wp in the base frame, one can obtain

s ¼Wb þ JT R0

qa
Wp (4a)

0 ¼Wc þ JT R0

qe
Wp (4b)

where Jqa
¼ R0 A
� ��1

B is the square Jacobian matrix between the
twist t of the platform (expressed in the base frame) and the vector
_qa of actuators velocities, Jqe

¼ R0 A
� ��1

C is the nonsquare Jaco-
bian matrix between twist t of the platform (expressed in the base
frame) and the vector _qe of deformations velocities, R0 A ¼ AD is
the expression of matrix A in the base frame, where D is a trans-
formation matrix, of which expression is given in Ref. [37].

For any prescribed trajectory x(t), the values of vector qa can
be found using the inverse kinematics and dynamics. Thus, taking
into account that the manipulator is not in a Type 1 singularity
[1], i.e., the mechanism is at a configuration where it loses one
DOF, the terms Wb, Wc, and R0 Wp can be computed [38]. How-
ever, for a trajectory passing through a Type 2 singularity, the de-
terminant of matrix R0 A vanishes. Numerically, the values of the
efforts applied by the actuators become infinite. In practice, the
manipulator either is locked in such a position of the end-effector
or it can not follow the prescribed trajectory.

As it is mentioned above, in a Type 2 singularity, the determi-
nant of matrix R0 A vanishes. In other words, at least two of its col-
umns are linearly dependant [37]. So, one may obtain such a
relationship

R0 A ts ¼ 0) tT
s

R0 AT ¼ 0T (5)

where the vector ts represents the direction of the uncontrollable
motion of the platform in a Type 2 singularity.

Then, by dot-multiplying both sides of Eq. (3) by ts and taking
into account Eq. (5), we obtain

tT
s

R0 ATk ¼ 0 (6)

which also implies that

tT
s

R0 Wp ¼ 0 (7)

Thus, Eq. (7) corresponds to the scalar product of vectors ts and
R0 Wp.

Thus, in the presence of a Type 2 singularity, it is possible to
satisfy conditions (7) if the wrench applied on the platform by the
legs and external efforts R0 Wp are reciprocal to the direction of
the uncontrollable motion ts. Otherwise, the dynamic model is not
consistent. Obviously, in the presence of a Type 2 singularity, the
displacement of the end-effector of the manipulator has to be
planned to satisfy Eq. (7). Therefore, our task will be to achieve a
trajectory which will allow the manipulator passing trough the
Type 2 singularities, i.e., which will allow the manipulator
respecting condition (7).

Section 3, an example illustrates the obtained results discussed
above. This example presents a planar 5R flexible parallel
manipulator.

3 Illustrative Example

In the planar 5R parallel manipulator, as shown in Fig. 1, the
output point is connected to the base by two legs, each of which
consists of three revolute joints and two links. In each of the two
legs, the revolute joint connected to the base is actuated. Thus,
such a manipulator is able to position its output point in a plane.

As shown in Fig. 1, the input joints are denoted as A and E. The
orientation of elements 1 and 2 are denoted qe

1 and qe
2, respec-

tively. The common joint of the two legs is denoted as C, which is
also the output axis with controlled parameters x¼ [x, y]T. A fixed
global reference system xOy is located at the middle of segment
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AE with the y-axis normal to AE and the x-axis directed along AE.
The lengths of the links (AB and DE) and (BC and CD), are
respectively, denoted as Lp and Ld.

Actuators 1 and 2 are connected to links 1 and 2, respectively,
via Harmonic DriveVR systems which are represented by a model
similar to that given in Ref. [39]. The position of actuator i is
denoted as qa

i . It is assumed that the actuator i is capable to deliver
a couple si to the motor shaft, which is elastically coupled to the
link i of the robot (i¼ 1 or 2). The flexibility of the drive system
is modeled by a torsion spring with stiffness k1. The gear ratio is
denoted n. Ia is the axial moment of inertia of the motor i plus the
Harmonic drive system.

The deformations of the robot links 3 and 4 are modeled by
adding virtual torsion springs at points Rij (i¼ 3, 4 and j¼ 1–3),
such as elements 3 and 4 are decomposed into four sub-elements,
denoted as elements iv (i¼ 3, 4 and v¼ 1–4), with identical
lengths and inertia properties. The stiffness of these springs is
denoted as k2. The displacement of the spring mounted at point Rij

will be denoted as eij.
The singularity analysis of this manipulator shows that the

Type 2 singularities appear when links 3 and 4 are parallel [40]
(Fig. 2). In both cases, the gained degree of freedom is an infini-
tesimal translation perpendicular to the links 3 and 4.

Taking into account that the gravity is directed along z axis
(perpendicular to the plane of motions), the expression of the
potential energy V may be written as

V ¼ 0:5 k1 ðqa=n� qeÞ
Tðqa=n� qeÞ þ k2 eTe

� �
(8)

where qa ¼ ½qa
1; q

a
2�

T ;qe ¼ ½qe
1; q

e
2�

T
, and e¼ [e31, e32, e33, e41,

e42, e43]T.
The expression of the kinetic energy is

T ¼ 0:5

�
Ia _qT

a _qa þ Ip _qT
e _qe þ Idð _w

T _wþ ð _wþ _e1ÞTð _wþ _e1Þ

þ ð _wþ _e1 þ _e2ÞTð _wþ _e1 þ _e2Þ þ ð _wþ _e1 þ _e2 þ _e3ÞT

� ð _wþ _e1 þ _e2 þ _e3ÞÞ þ mp

X2

i¼1

vT
SivSi þ md

X4

i¼3

X4

j¼1

vT
SijvSij

�

(9)

where

– _w ¼ ½ _w1;
_w2�

T
is the vector of the angular velocities of ele-

ments 3 and 4,
– _ej ¼ ½ _e3j; _e4j�T , j¼ 1–3
– vSi is the translational velocity vector of the center of masses

of element i (i¼ 1,2); the center of masses is located at the
middle of the considered segment.

– vSij is the translational velocity vector of the center of masses
of element ij (i¼ 3,4 and j¼ 1–3); the center of masses is
located at the middle of the considered segment.

– mp is the mass of the proximal links (elements 1 and 2), md is
the mass of each sub-elements of the distal links (elements ij,
(i¼ 3,4 and j¼ 1–4));

– Ip is the axial moment of inertia of the proximal links (ele-
ments 1 and 2), Id is the axial moment of inertia of each sub-
elements of the distal links;

The expressions of vectors vSi are

vSi ¼ 0:5 Lp _qe
i

� sin qe
i

cos qe
i

� 	
; for i ¼ 1; 2 (10a)

vSij ¼ Lp _qe
i

� sin qe
i

cos qe
i

� 	
þ Ld

8
_wi

� sin wi

cos wi

� 	
for i ¼ 1; 2 and j ¼ 1 (10b)

vSij ¼ vSiðj�1Þ þ
Ld

8
_wi

� sin wi

cos wi

� 	
þ Ld

8
ð _wi þ _eiðj�1ÞÞ

�
� sinðwi þ eiðj�1ÞÞ
cosðwi þ eiðj�1ÞÞ

" #
; for i ¼ 1; 2 and j ¼ 2 (10c)

vSij ¼ vSiðj�1Þ þ
Ld

8
ð _wi þ _eiðj�2ÞÞ

� sinðwi þ eiðj�2ÞÞ
cosðwi þ eiðj�2ÞÞ

" #

þ Ld

8
ð _wi þ _eiðj�2Þ þ _eiðj�1ÞÞ

� sinðwi þ eiðj�2Þ þ eiðj�1ÞÞ
cosðwi þ eiðj�2Þ þ eiðj�1ÞÞ

" #

for i ¼ 1; 2 and j ¼ 3 (10d)

vSij ¼ vSiðj�1Þ þ
Ld

8
ð _wi þ _eiðj�3Þ þ _eiðj�2ÞÞ

�
� sinðwi þ eiðj�3Þ þ eiðj�2ÞÞ
cosðwi þ eiðj�3Þ þ eiðj�2ÞÞ

" #
þ Ld

8
ð _wi þ _eiðj�3Þ

þ _eiðj�2Þ þ _eiðj�1ÞÞ
� sinðwi þ eiðj�3Þ þ eiðj�2Þ þ eiðj�1ÞÞ
cosðwi þ eiðj�3Þ þ eiðj�2Þ þ eiðj�1ÞÞ

" #

for i ¼ 1; 2 and j ¼ 4 (10e)

Introducing Eqs. (10a)–(10e) into Eq. (9), the dynamic model can
be obtained from Eqs. (2) and (3)

We þ JT
e Wp þ k2e ¼ 0 (11)

Wqe
þ JT

qe
Wp � k1 qa=n� qeð Þ ¼ 0 (12)

and

s ¼ Ia€qa � k1ðqe � qa=nÞ=n (13)

Fig. 1 Kinematic chain of the planar 5R parallel manipulator

Fig. 2 Type 2 singular configurations of the planar 5R parallel
manipulator
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The terms that appear in this model are described in the appendix.
For given trajectory x(t), the deformations e(t) may de deduced

from Eq. (11). However, this equations is difficult to solve analyti-
cally, therefore an iterative resolution of the system is used [38].
Once e(t) is known, the displacements, velocities, accelerations
and other time derivatives of the passive and active variables qe

and w may be found using the dynamic model equations and the
loop closure equations, which are given in the appendix. Then,
from Eq. (12), the values of qa are found

qa ¼ n ðWqe
þ JT

qe
WpÞ=k1 þ nqe (14)

Finally, the input torques s can be computed using Eq. (13).

From Eq. (11), it appears that the deformations e depends on
the position x, velocity _x and acceleration €x of the end-effector.
As a result, €e depends on the end-effector position x, velocity _x,
acceleration €x, jerk x

…
and its first derivative xð4Þ. Thus, qa also

depends on the same parameters. As a result, from Eq. (13), it can
be shown that the input torques depends on the end-effector posi-
tion, velocity, acceleration, jerk and its first, second and third
derivatives with respect to time. Therefore, a 13 deg polynomial
has to be applied as a control law when the end-effector is not in
the singular configuration.

In order to avoid infinite values of the input torques when cross-
ing a Type 2 singularity, Eq. (7) has to be satisfied. From matrix
A (see appendix), one can find that the twist of the infinitesimal
displacement in the singularity can be written under the form

ts ¼ ½� sin w1; cos w1�
T

(15)

Thus, the examined manipulator can pass through the given sin-
gular positions if the wrench Wp determined by Eq. (14) is recip-
rocal to the direction of the uncontrollable motion ts described by
Eq. (15). However, the difficulty remains into the fact that, intro-
ducing Wp (see appendix) into Eq. (7) leads to a condition, which
depends not only on the end-effector position, velocity and accel-
eration but also of variables e, _e, and €e, which at any computation
step can only be iteratively found. Therefore, contrary to our pre-
vious papers [32,34] in which the polynomial laws able to achieve
condition (7) were defined analytically, in this case, this law can
only be found by using numerical simulation algorithms. An
example of the use of such algorithm is given below.

Fig. 3 Initial, singular and final positions of the planar 5R par-
allel manipulator

Fig. 4 Torques values for the actuator 1
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Let us now determine the trajectory, which makes it possible
to satisfy condition (7) for the manipulator with following
parameters of links: a¼ 0.2 m, Lp¼ Ld¼ 0.25 m, mp¼ 1.75 kg,
md¼ 1.8 kg, Ip¼ 1.18� 10�2 kg m2, Id¼ 1.5� 10�4 kg m2,
Ia¼ 0.064� 10�4 kg m2, k1¼ k2¼ 800 Nm=rad, and n¼ 50.

With regard to the prescribed trajectory generation, the point C
should reproduce a motion along a straight line between the initial
position C0(x0,y0)¼C0(0.1,0.345) and the final point Cf (xf, yf)
¼Cf (–0.1,0.145) in tf ¼ 1 s (Fig. 3). However, the manipulator
will pass by a Type 2 singular position at point Cs(xs,ys)¼
Cs(0,0.245) (Fig. 3).

The trajectory can be expressed as follows

x ¼ xðtÞ
yðtÞ

� 	
¼ x0 þ sðtÞðxf � x0Þ

y0 þ sðtÞðyf � y0Þ

� 	
(16)

where s(t) is a polynomial, which should respect the following
conditions:

sðt0Þ ¼ 0 (17)

sðtf Þ ¼ 1 (18)

_sðt0Þ ¼ _sðtf Þ ¼ 0 (19)

€sðt0Þ ¼ €sðtf Þ ¼ 0 (20)

s
…ðt0Þ ¼ ðtf Þ ¼ 0 (21)

dð s…ðt0ÞÞ=dt ¼ dð s…ðtf ÞÞ=dt ¼ 0 (22)

d2ð s…ðt0ÞÞ=dt2 ¼ d2ð s…ðtf ÞÞ=dt2 ¼ 0 (23)

d3ð s…ðt0ÞÞ=dt3 ¼ d3ð s…ðtf ÞÞ=dt3 ¼ 0 (24)

sðts ¼ 0:5 sÞ ¼ 0:5 (25)

_sðtsÞ > 0 (26)

and

tT
s Wp ¼ 0 (27)

There are 17 conditions, therefore s(t) should be at least a 16
deg polynomial.

Boundary conditions (17)–(26) are directly linked to the expres-
sion of the polynomial, whereas Eq. (27) involve the computation
of the entire dynamic model, therefore, one way to find the poly-
nomial is to express conditions (17)–(27) as the following optimi-
zation problem

f ðaÞ ¼ tT
s Wp



 

! min
a

(28)

subject to constraints (17)–(26), where a is a vector regrouping
the coefficients of the polynomial s(t). It is obvious that such for-
mulation does not imply a 100% guaranty that the function f(a)
will be null at the end of the optimization step. However, in gen-
eral, the simulations have shown that, even if the minimization
problem Eq. (28) may not yield a zero result, it was possible to
obtain a value close to zero.

A way to solve this problem is to use the goal attainment pro-
gramming (function “fgoalattain” in MATLAB). The goal attainment
optimization allows generating specific Pareto-optimal solutions.

Fig. 5 Torques values for the actuator 2
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Let us apply the goal-attainment technique that yields the follow-
ing nonlinear programming formulation:

k! min
k;a

(29)

subject to

f ðaÞ � wik � f 0
i ; hiðaÞ � h0

i ; 8i (30)

where hiðaÞ � h0
i represents the constraints (17)–(26). Here, k is

unrestricted scalar variable, wi � 0 are designer selected weight-
ing coefficients, and f 0

i are the goal to be realized for each design
objective. In this formulation, minimization of k tends to force the
specifications to meet their goal. If at the solution point, k is nega-
tive, the goals have been over-attained; if k is positive, then the
goals have been under-attained. The method is appealing since it
is possible for the user to specify unrealizable objectives and still
obtain a solution which represents a compromise. More detailed
information about the goal-attainment optimization can be found
in Ref. [41].

Using the “fgoalattain” function in MATLAB, with specified con-
straints (17)–(26) and objective (28), the following polynomial
has been found:

s tð Þ ¼ 7099:0 t7 � 52152:8 t8 þ 160698:1 t9 � 252912:5 t10

þ 173271:6 t11 þ 60944:0t12 � 217870:6 t13 þ 179095:5 t14

� 68776:9 t15 þ 10605:7 t16 (31)

This polynomial will be implemented into the dynamic model
of the manipulator in order to verify that it allows the passing
through the Type 2 singularity. The simulations have been carried
out using the software ADAMS.

In order to compare the different cases of trajectory planning,
in Figs. 4 and 5 are given the values of the input torques obtained
using the software ADAMS for the following numerical
simulations:

A: a trajectory between points C0 and C0f (x0f, y0f)¼C0f
(�0.1,345) (Fig. 3) without meeting any singularity. For
such a case, a thirteenth order polynomial law has been
defined from conditions (17)–(24). The obtained
s tð Þ ¼ 1716 t7 � 9009 t8þ20020 t9�24024 t10þ16380t11

�6006 t12 þ 924 t13 polynomial law is used for the trajectory
planning out of the singular zone of the manipulator. In this
case the values of the input torques are finite.

B: the same thirteenth order polynomial law s tð Þ ¼ 1716 t7�
9009 t8þ20020 t9�24024 t10þ16380t11�6006 t12 þ 924 t13

is used for the trajectory planning between C0 and Cf inside
the singular zone of the manipulator. In this case the values
of the input torques close to the singular positions tend to
infinity.

C: the sixteenth order polynomial law of Eq. (31) for the tra-
jectory planning of the manipulator inside the singular zone.
The obtained results show that the values of the input tor-
ques are finite.

It is interesting to observe the manipulator’s behavior for the
simulated cases. The first law, which is a thirteenth order polyno-
mial, assumes the prescribed motion without perturbation of tor-
ques outside of the singular zone. The same law does not provide
the stable motion in the presence of singularity. The sixteenth
order polynomial law reestablishes the stable motion for passing
through the singular position.

4 Conclusion

In our previous work, we have shown that any parallel manipu-
lator can pass through the singular positions without perturbation
of motion if the wrench applied on the end-effector by the legs

and external efforts is reciprocal to the twist along the direction of
the uncontrollable motion [32]. This condition was applied to the
rigid-link manipulators. The obtained results showed that the
planning of motion for assuming the optimal force generation can
be carried out by an eight order polynomial law. In Ref. [34] the
rigid-link flexible-joint manipulators have been studied. It was
shown that the degree of the polynomial law should be different,
when the flexibility of actuated joints is introduced. The obtained
results disclosed that the planning of motion for assuming the
optimal force generation in the rigid-link flexible-joint manipula-
tors must be carried out by a twelfth order polynomial law.

In this paper, we have expanded the information about the
dynamic properties of parallel manipulators in the presence of
Type 2 singularity by including in the studied problem the link
flexibility. The obtained results have shown that the planning of
motion for assuming the optimal force generation in the manipula-
tors with flexible links must be now carried out by a sixteenth
order polynomial law.

The suggested technique was illustrated by a 5R planar parallel
manipulator. The obtained results have been validated by numeri-
cal simulations carried out using the software ADAMS.

Appendix

From Eqs. (2) and (3), vectors We, Wqe, and Wp can be found

Wp ¼
d

dt

@L

@v

� �
� @L

@x
¼ JT

xw þ J�T
e JT

ew þ J�T
qe

JT
qew

� �
Ww (A1)

Wqe
¼ d

dt

@L

@ _qe

� �
� @L

@qe

¼ Ip þ mpl2
p

� �
€qe þ mdFqe

(A2)

We ¼
d

dt

@L

@ _e

� �
� @L

@e
¼ IdEþ mdFe (A3)

with

Ww ¼ Id 4€wþ €e1þ€e2þ €e3þ €e4

� �
þ mdFw (A4)

E ¼ ½e11; e12; e13; e21; e22; e23�T (A5)

where for i¼ 3, 4

ei1 ¼ 3 €wi þ 3€ei1 þ 2€ei2 þ €ei3 (A6a)

ei2 ¼ 2 €wi þ 2€ei2 þ €ei3 (A6b)

ei3 ¼ €wi þ €ei3 (A6c)

Fw ¼
d

dt

@f

@ _w

� �
� @f

@w
; f ¼

X4

i¼3

X4

j¼1

vT
SijvSij (A7)

Fqe
¼ d

dt

@f

@ _qe

� �
� @f

@qe

(A8)

Fe ¼
d

dt

@f

@ _e

� �
� @f

@e
(A9)

Matrices Je and Jqe, of Eqs. (11)–(13) may be found from the loop
closure equations between x, e, and qe:

f1 ¼ ðxþ a� Lp cos qe
1Þ

2 þ ðy� Lp sin qe
1Þ

2 � L2
dð2þ cos e11

þ cos e11 þ e12ð Þ þ cos e11 þ e12 þ e13ð Þ þ cos 2e11 þ e12ð Þ
þ cos 2e11 þ e12 þ e13ð Þ þ cos 2e11 þ 2e12 þ e13ð ÞÞ=8 ¼ 0

(A10a)

f2 ¼ ðx� a� Lp cos qe
2Þ

2 þ ðy� Lp sin qe
2Þ

2 � L2
dð2þ cos e21

þ cos e21 þ e22ð Þ þ cos e21 þ e22 þ e23ð Þ þ cos 2e21 þ e22ð Þ
þ cos 2e21 þ e22 þ e23ð Þ þ cos 2e21 þ 2e22 þ e23ð ÞÞ=8 ¼ 0

(A10b)
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from which it comes

A ¼ @fi
@x

� 	
¼

a11 a12

a21 a22

� 	
¼ 2

x� Lp cos qe
1 þ a y� Lp sin qe

1

x� Lp cos qe
2 � a y� Lp sin qe

2

� 	
(A11)

B ¼ @fi
@qe

� 	
¼ �Lp

a12 cos qe
1 � a11 sin qe

1 0

0 a22 cos qe
2 � a21 sin qe

2

� 	
(A12)

C ¼ @fi

@e

� 	
¼ Ld

8

c11 c12 c13 0 0 0

0 0 0 c24 c25 c26

� 	
� 0 (A13)

with, for i¼ 1, 2

ci1¼ sinei1þ sin ei1þ ei2ð Þþ sin ei1þ ei2þ ei3ð Þþ2sin 2ei1þ ei2ð Þ
þ2sin 2ei1þ ei2þ ei3ð Þþ2sin 2ei1þ2ei2þ ei3ð Þ

(A14a)

ci2 ¼ sin ei1 þ ei2ð Þ þ sin ei1 þ ei2 þ ei3ð Þ þ sin 2ei1 þ ei2ð Þ
þ sin 2ei1 þ ei2 þ ei3ð Þ þ 2 sin 2ei1 þ 2ei2 þ ei3ð Þ

(A14b)

ci3 ¼ sin ei1 þ ei2 þ ei3ð Þ þ sin 2ei1 þ ei2 þ ei3ð Þ
þ sin 2ei1 þ 2ei2 þ ei3ð Þ (A14c)

As a result, it can be found that

v ¼ �A�1ðB _qe þ C _eÞ ¼ Jqe _qe þ Je _e (A15)

and also that
_qe ¼ �B�1ðAvþ C€eÞ;
€qe ¼ �B�1ðA _vþ _Avþ C€eþ _C_eþ _B _qeÞ (A16)

Matrices JT
xw, JT

ew, and JT
qew

of Eq. (A1) may be found from loop
closure equations between x, qe, e, and w:

g1 ¼ xþ a� Lp cos qe
1 � Ld cos w1 þ cosðw1 þ e11Þð

þ cosðw1 þ e11 þ e12Þ þ cosðw1 þ e11 þ e12 þ e13ÞÞ=4 ¼ 0

(A17a)

g2 ¼ x� a� Lp cos qe
2 � Ld cos w2 þ cosðw2 þ e21Þð

þ cosðw2 þ e21 þ e22Þ þ cosðw2 þ e21 þ e22 þ e23ÞÞ=4 ¼ 0

(A17b)

g3 ¼ y� Lp sin qe
1 � Ld sin w1 þ sinðw1 þ e11Þð

þ sinðw1 þ e11 þ e12Þ þ sinðw1 þ e11 þ e12 þ e13ÞÞ=4 ¼ 0

(A17c)

g4 ¼ y� Lp sin qe
2 � Ld sin w2 þ sinðw2 þ e21Þð

þ sinðw2 þ e21 þ e22Þ þ sinðw2 þ e21 þ e22 þ e23ÞÞ=4 ¼ 0

(A17d)

from which it comes

Aw ¼
@gi

@x

� 	
¼

1 0

1 0

0 1

0 1

2
664

3
775 (A18)

Bw ¼ �
@gi

@qe

� 	
¼ �Lp

� sin qe
1 0

0 � sin qe
2

cos qe
1 0

0 cos qe
2

2
664

3
775 (A19)

Cw ¼
@gi

@e

� 	
¼ � Ld

4

�3 sin w1 �2 sin w1 � sin w1 0 0 0

0 0 0 �3 sin w2 �2 sin w2 � sin w2

3 cos w1 2 cos w1 cos w1 0 0 0

0 0 0 3 cos w2 2 cos w2 cos w2

2
664

3
775 (A20)

Dw ¼
@gi

@e

� 	
¼ �Ld

� sin w1 0

0 � sin w2

cos w1 0

0 cos w2

2
664

3
775 (A21)

As a result, it can be found that

_w ¼ �ðDT
wDwÞ�1

DT
wðAwvþ Bw _qe þ Cw _eÞ

¼ Jxwvþ Jqew
_qe þ Jew _e (A22)

and

€w ¼ �ðDT
wDwÞ�1

DT
wðAw _vþ Bw€qe þ Cw€eþ _Awvþ _Bw _qe

þ _Cw _eþ _Dw
_wÞ (A23)
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