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The Lanchester balancer consists of equal counter rotating weights sized and aligned to eliminate the
frequency terms of the frame shaking force. This approach of harmonic balancing is well known in engine
design. It is one of the more preferment balancing techniques, which allows the reduction of vibrations
in high-speed mechanical systems with reciprocating motion. However, the Lanchester balancer is only
used for the balancing of axial slider–crank mechanisms (i.e. mechanism without eccentricity, when
the sliding axis passes through the fixed pivot of the input crank). The same problem concerning off-
haking force
armonic balancing
ff-set crank–slider mechanism

set crank–slider mechanisms has not been considered. In this paper, for the first time, the generalized
Lanchester balancer is proposed, which allows the shaking force balancing of crank–slider mechanisms
of large eccentricity. As in the case of classical Lanchester device, the balancing is carried out by counter
rotating weights. However, in this case, the dispositions of weights are determined by taking into account
the eccentricity of slider guide. Numerical simulations carried out using the software ADAMS illustrate
the proposed balancer.
. Introduction

The majority of linkage balancing works devoted to the
rank–slider mechanisms in the past have been concentrated on
xial mechanisms balancing (Arakelian et al., 2000; Arakelian and
mith, 2005a,b; Lowen et al., 1983; Dresig, 1999). They can be
rranged in the following groups: (i) Balancing by counterweights
ttached to the links (Artobolevskii, 1968; Berkof and Lowen, 1969;
erkof, 1979; Campbell, 1979). The balancing based on the redis-
ribution of mass of the mechanism by adding counterweights
o moving links allows the immobility of the center of moving

asses and the cancelling the shaking forces. It should be noted
hat such a balancing can only be attained by a considerable
ncrease of the total moving mass of the mechanism; (ii) balanc-
ng using opposite movements (Arakelian, 1998, 2006; Arakelian
nd Smith, 1999; Artobolevskii, 1968; Davies, 1968; Dresig and
olzweißig, 2004; Filonov and Petrikovetz, 1987; Kamenski, 1968;
oropetz, 1979; Turbin et al., 1978). The addition of an axially
ymmetric duplicate mechanism to any given mechanism will
llow the new combined center of mass to remain stationary and

hus balances the shaking force. This approach involves building
elf-balanced mechanical systems, in which two identical mecha-
isms execute similar but opposite movements. For example, in
he in-line 4-cylinder engine the first harmonic of the shaking
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forces is balanced and the mechanical system can be consid-
ered partially self-balanced. Different schemes of self-balanced
crank–slider systems have been developed. However, almost all
solutions are devoted to the axial mechanisms; (iii) balancing by
means of added dyads (Arakelian, 1998; Arakelian and Smith, 1999;
Doronin and Pospelov, 1991; Frolov, 1987). The parallelogram
loop consisting of the initial links of the crank–slider mechanism
and the added dyad transfer the motion of the coupler link to
a shaft on the frame, where it is connected to a counterweight
of considerably reduced mass (Arakelian, 1998). Partial shaking
force balancing may be achieved by generating an approximate
straight-line movement of a counterweight mounted on the added
dyad (Doronin and Pospelov, 1991; Frolov, 1987). The crank–slider
mechanisms can also be balanced by using the copying properties
of the pantograph formed from the links of the initial mechanism
and added links (Arakelian, 1998; Arakelian and Smith, 1999). The
pantograph carries a counterweight that achieves the condition
necessary for shaking force and shaking moment balancing of axial
crank–slider mechanisms. In the case of off-set crank–slider mech-
anisms, this problem has been discussed in (Arakelian and Smith,
2005a,b).

However, one of the more efficient solution is the Lanchester
balancer (Lanchester, 1914), in which the reduction of inertia

effects is primarily accomplished by the balancing of certain har-
monics of the shaking forces. Such an approach is used for balancing
of divers linkages (Artobolevskii, 1968; Crossley, 1964; Dresig et
al., 1994; Pantelic and Seculic, 1971; Shchepetilnikov, 1982; Tsai
and Walter, 1984). As it is mentioned above, this solution has been
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Fig. 1. Off-set crank–slider mechanism.

tudied and successfully applied for balancing of axial slider–crank
echanisms.
In this paper the generalized Lanchester balancer is proposed.

t allows the balancing of primary and secondary shaking forces of
ff-set slider–crank mechanisms.

. Shaking force balancing of off-set crank–slider
echanism

Fig. 1 shows an off-set crank–slider mechanism. Let us firstly
onsider the kinematic analysis of off-set slider–crank mechanism
nd the inertia forces of the reciprocating motion.

The position of the slider can be determined by the following
xpression:

B =
√

(r + l)2 − e2 − r cos ϕ − l cos  (1)

here r = lOA is the distance between the centers of joints O and A;
= lAB is the distance between the centers of joints A and B; e = yB is
he eccentricity of slider guide; ϕ is the rotating angle of the input
rank and  is the acute angle that the rod makes with the sliding
xis (Fig. 1) determined from following expression:

os  = (1 + p)q (2)

here p = − ((r sinϕ− e)/l)2 and q = 0.5.
This expression can be represented using Newton’s binomial

eries as follows:

1 + p)q = 1 + qp+ q (q− 1)
1 · 2

p2 + q (q− 1) (q− 2)
1 · 2 · 3

p3 + · · · (3)

ubstituting (3) into (2), which is then substituted into (1) and tak-
ng into account that it is sufficient to keep the two first terms of
his series, we obtain the following expression for the position of
he slider:

B =
√

(r + l)2 − e2 − r cos ϕ − l
[

1 − 0.5
(

(r sin ϕ − e)
l

)2
]

(4)

t should be noted that for off-set slider–crank mechanisms
/= 90 ◦, i.e. |p|< 1 (see Eq. (2)) and for the reasonable param-

ters of the mechanism’s links angle  is an acute angle
ith small value, i.e. |p| � 1. Therefore, we can state that
+ qp � (q(q − 1)/(1 · 2))p2 + (q(q − 1)(q − 2)/(1 · 2 · 3))p3 + · · ·

After differentiating this equation with respect to time, we
btain the following expressions for the velocity and acceleration
f the slider:

˙
B = ϕ̇ (r sin ϕ + 0.5�r sin 2ϕ − �e cos ϕ) (5)

¨
B = ϕ̇2 (r cos ϕ + �r cos 2ϕ + �e sin ϕ) (6)

here ϕ̇ is the constant velocity of the input crank and � = r/l.
Thus, the shaking force of the reciprocating motion can be
xpressed as:

sh = −md̈B = F(1) + F(1′) + F(2) (7)

here m = m3 + m2lAS2/lAB is the reciprocating moving mass, m3 is
he slider’s mass, m2 is the coupler link’s mass, lAS2 is the distance
Fig. 2. Balanced mechanism.

between the center of the joint A and the center of the mass S2 of
the coupler link 2, lAB is distance between the centers of the joints
A and B,

F(1) = −mϕ̇2r cos ϕ (8)

F(1′) = −mϕ̇2�e sin ϕ (9)

F(2) = −mϕ̇2�r cos 2ϕ (10)

Please note when e = 0, F(1′) = 0 and the terms F(1), F(2) coincide
with the classical solution of axial slider–crank mechanisms (Uicker
et al., 2003).

Eq. (7) can be rewritten as:

Fsh = k1(ϕ̇)2 cos(ϕ + ˛) − k2(2ϕ̇)2 cos 2ϕ (11)

where

˛ = tg−1
[
− e
l

]
(12)

k1 = − mr

cos ˛
= m�e

sin ˛
(13)

k2 = 0.25m�r (14)

In the obtained expression the first term is the primary shaking
force and the second is the secondary shaking force. The primary
shaking force can be balanced by counterweights that rotate at the
input speed but are out of phase with the input crank by angle ˛
(Fig. 2). The secondary shaking force can be balanced by counter-
weights that rotate at two times the input speed.

The parameters of the added counterweights are the following:

2mCW1rCW1 = k1 (15)

2mCW2rCW2 = k2 (16)

where mCW1 and mCW2 are the masses of the counterweights, rCW1
and rCW2 are the distances of the pivot centers from the centers of
mass of the counterweights.

3. Numerical simulations

The off-set crank–slider mechanism OAB shown in Fig. 1
has the following parameters: r = 0.05 m, l = 0.2 m, e = 0.025 m,
lOS1 = 0.025 m (S1 is the center of mass of the input crank 1), lAS2 = lBS2
(S2 is the center of mass of the coupler link 2), m1 = 2 kg, m2 = 2 kg,
m3 = 3 kg. Thus, for given parameters of the mechanism we obtain:
˛= − 7.125 ◦, k1 = 0.2 kg m, k2 = − 0.0125 kg m. Then, by selecting
rCW1 = 0.0336 m and rCW2 = 0.0125 m, we determine mCW1 = 3 kg and
mCW2 = 0.5 kg.

The simulation of this mechanism with obtained balancing
parameters has been carried out using the software ADAMS. The
shaking force variations of unbalanced and balanced mechanisms
for input angular velocity ϕ̇ = 20� s−1 are shown in Fig. 3.

Thus, the suggested balancing technique allows the reduction

of the maximum value of the shaking force of the studied off-set
slider–crank mechanism by 98%.

It should be noted, that the complete shaking force balancing
of off-set crank–slider mechanisms can only be reached by a con-
siderable increase of link masses of the mechanism. The harmonic
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Fig. 3. Shaking force variations for unbalanced and balanced mechanisms.

alancing has not be applied to the off-set crank–slider mecha-
isms. As show the obtained results, the quasi-complete shaking

orce balancing has been achieved by a small increase in the total
ass of mechanism.

. Conclusion

This paper presents the generalized Lanchester balancer for
haking force balancing of off-set crank–slider mechanisms. The
haking force of the off-set slider–crank mechanism is provided
y two terms: the first term is the primary shaking force and the
econd is the secondary shaking force. The primary shaking force
s balanced by counterweights that rotate at the input speed but
re out of phase with the input crank by an angle, which has been
efined taking into account the eccentricity of slider guide. The sec-
ndary shaking force is balanced by counterweights that rotate at
wo times the input speed. The efficiency of the suggested solution
s illustrated by the numerical simulations, which is carried out
sing the software ADAMS. The numerical example illustrates that
quasi perfect shaking force balancing (98%) has been achieved.

The author believe that the proposed study expand information
bout Lanchester balancer. It is based on the known constructive
pproaches consisting in the counter rotating shafts and various
elds of industrial applications are possible.
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