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Manipulators in the Presence of
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In our previous work (2008, “Optimal Force Generation in Parallel Manipulators for
Passing through the Singular Positions,” Int. J. Robot. Res., 27(8), pp. 967–983), the
dynamic properties of rigid-link parallel manipulators, in the presence of type 2 singu-
larities, have been studied. It was shown that any parallel manipulator can pass through
the singular positions without perturbation of motion if the wrench applied on the end-
effector by the legs and external efforts of the manipulator are orthogonal to the twist
along the direction of the uncontrollable motion. This condition was obtained using the
symbolic approach based on the inverse dynamics and the study of the Lagrangian of a
general rigid-link parallel manipulator. It was validated by experimental tests carried out
on the prototype of a four-degrees-of-freedom parallel manipulator. However, it is known
that the flexibility of the mechanism may not always be neglected. Indeed, joint flexibility
is the main source contributing to the overall manipulator flexibility and it leads to the
trajectory distortion. Therefore, in this paper, the condition for passing through a type 2
singularity of parallel manipulators with flexible joints is studied. The suggested tech-
nique is illustrated by the example of a 5R parallel manipulator with flexible joints. It is
shown that passing through singularity is possible if the 12th-order polynomial trajectory
planning is applied. The obtained results are validated by the numerical simulations
carried out using the ADAMS software. �DOI: 10.1115/1.4001121�

Keywords: parallel manipulators, elasticity, singularity, dynamics, force management,
trajectory planning
Introduction
Over the past decades, with the large development of parallel
anipulators, more attention have been paid to their kinematic,

inetostatic, and dynamic properties, and in particular, to their
ingularities. Several papers deal with singularity analysis of par-
llel manipulators �1–13�. Most of them present the analysis of
ingular configurations from a kinematic point of view �1–7�. Al-
ebraically, a singularity analysis is based on the degeneracy of
acobian matrices of the mechanical structure, or of the system of
eciprocal screws �wrenches� applied to the platform by the legs.
owever, it is also known that, when parallel manipulators have

ype 2 singularities �1�, they lose their stiffness and their quality of
otion transmission, and thus, their payload capability. Therefore,

he singularity zones in the workspace of manipulators may be
nalyzed not only in terms of kinematic criterions, from the theo-
etically perfect model of manipulators, but also in terms of kine-
ostatic approaches �8–13�.

Moreover, while it is demonstrated using the kinetostatic ap-
roach that, when subjected to type 2 singularities parallel ma-
ipulators lock up, it has been shown experimentally that, via
ptimal dynamic control of manipulators, it is possible to pass
hrough these singular zones. Thus, it is evident that singular con-
gurations should also be examined in terms of the dynamic as-
ects.

The further study of singularity in parallel manipulators has
evealed an interesting problem that concerns the path planning of
arallel manipulators under the presence of singular positions, i.e.,
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the motion feasibility in the neighborhood of singularities. In this
case the dynamic conditions can be considered in the design pro-
cess. One of the most evident solutions for the stable motion
generation in the neighborhood of singularities is to use redundant
sensors and actuators �14–17�. However, it is an expensive solu-
tion to the problem because of the additional actuators and the
complicated control of the manipulator caused by actuation redun-
dancy. Another approach concerns with motion planning to pass
through singularity �18–24�, i.e., a parallel manipulator may track
a path through singular poses if its velocity and acceleration are
properly constrained. This is a promising way for the solution of
this problem. However, only a few research papers on this ap-
proach have addressed the path planning for obtaining a good
tracking performance. But they have not adequately addressed the
physical interpretation of the dynamic aspects.

In our recent work �25�, optimal force generation in parallel
manipulators for passing through the singular positions has been
studied. It was shown that any parallel manipulator can pass
through the singular positions without perturbation of motion if
the wrench applied on the end-effector by the legs and external
efforts of the manipulator are orthogonal to the twist along the
direction of the uncontrollable motion. This paper was concerned
with the study of rigid-link parallel manipulators without any flex-
ibility. However, it should be noted that several factors may bring
a loss of rigidity in parallel manipulators �elasticity of links, clear-
ance in joints, etc.�. But their contributions can be considerably
reduced for a properly designed and constrained mechanical sys-
tem. However, even for the most optimum design of manipulator
one main source of flexibility remains and it cannot be easily
reduced: it is the flexibility in the actuated joints, due to the use of

®
Harmonic Drive systems.
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Therefore, in the present work the dynamic condition for pass-
ng through the singular positions is defined in general for parallel

anipulators, taking into account the elasticity in the actuated
oints.

This paper is organized as follows: Sec. 2 presents theoretical
spects of the examined problem. As in our previous work, using
he Lagrangian formulation, the condition of force distribution is
efined, which allows the passing of any parallel manipulator
hrough the type 2 singular positions. In Sec. 3, the suggested
olution is illustrated via a 5R planar parallel manipulator. In Sec.
, the conclusions are given.

Optimal Dynamic Conditions for Passing Through
ype 2 Singularity
Let us consider a parallel manipulator of m links, n degrees-of-

reedom, and driven by n actuators.
The general Lagrangian dynamic formulation for a manipulator

ith elasticity in actuated joints can be expressed as �26�

0 =
d

dt
� �L

�q̇d
� −

�L

�qd
�1a�

� =
d

dt
� �L

�q̇a
� −

�L

�qa
�1b�

here L is the Lagrangian of the manipulator �L=T−V, where T is
he kinetic energy and V is the potential energy due to gravita-
ional forces, friction, and elasticity�, qa= �q1

a ,q2
a , . . . ,qn

a�T and
˙ a= �q̇1

a , q̇2
a , . . . , q̇n

a�T represent the vectors of position and velocity
f the actuators, respectively, qd= �q1

d ,q2
d , . . . ,qn

d�T and q̇d

�q̇1
d , q̇2

d , . . . , q̇n
d�T represent the vectors of position and velocity of

he controlled links, respectively, i.e., the position and velocity of
he links that are controlled by the displacement of the actuators in
hich there are elasticity, and � is the vector of the actuators

fforts.
However, for a parallel mechanism, the position �velocity,

esp.� of the end-effector is a nontrivial function of the position
velocity, resp.� of the controlled links; therefore, it is preferable
o rewrite Eq. �1� using the Lagrange multipliers, as follows:

0 = Wb + BT�, Wb =
d

dt
� �L

�q̇d
� −

�L

�qd
�2a�

� =
d

dt
� �L

�q̇a
� −

�L

�qa
�2b�

here � is the Lagrange multipliers vector, which is related to the
rench applied on the platform by

� = A−TWp, Wp = � d

dt
� �L

�v
� −

�L

�x
� �3�

here A and B are the two matrices relating the vectors v and q̇
ccording to Av=Bq̇d �they can be found by differentiating the
losure equations with respect to time�, x= �x ,y ,z ,� ,� ,��T and

= �ẋ , ẏ , ż , �̇ , �̇ , �̇�T are the trajectory parameters and their deriva-
ives, respectively �x, y, z represent the position of the controlled
oint, and �, �, and � represent the rotation of the platform about
hree axes a�, a�, and a��, and Wp is the wrench applied on the
latform by the legs and external forces �27� expressed along axes
�, a�, and a�.
Expressing Wp in the base frame, one can obtain:

T R0
0 = Wb + J Wp �4a�

21004-2 / Vol. 2, MAY 2010
� =
d

dt
� �L

�q̇a
� −

�L

�qa
�4b�

where J= �R0A�−1B is the Jacobian matrix between twist t of the
platform �expressed in the base frame� and q̇d, R0A=AD is the
expression of matrix A in the base frame, where D is a transfor-
mation matrix, of which expression is given in Ref. �28�.

For any prescribed trajectory x�t�, the values of vectors q̈d, q̇d,
and qd can be found using the inverse kinematics. Thus, taking
into account that the manipulator is not in a type 1 singularity �1�,
the terms Wb and R0Wp can be computed. However, for a trajec-
tory passing through a type 2 singularity, the determinant of ma-
trix J is indefinite. Numerically, the values of the efforts applied
by the actuators become infinite. In practice, the manipulator is
either locked in such a position of the end-effector or it cannot
follow the prescribed trajectory.

It is known that a type 2 singularity appears when the determi-
nant of matrix R0A vanishes, in other words, when at least two of
its columns are linearly dependant �28�. So, one may obtain such
a relationship

�
j=1

6

� jA j = 0 �5�

where A j represents the jth column of the matrix R0A and � j are
the coefficients, which, in general, can be functions of qp

d �p
=1, . . . ,n�. It should be noted that the vector ts
= ��1 ,�2 , . . . ,�6�T represents the direction of the uncontrollable
motion of the platform in a type 2 singularity.

By substituting Eq. �5� into Eq. �3�, we obtain

A j
T� = Wj, j = 1, . . . ,6 �6�

where Wj is the jth row of vector R0Wp.
Then, from Eqs. �5� and �6�, the following conditions are de-

rived:

�
j=1

6

�� jA j
T�� = �

j=1

6

�� jWj� = 0 �7�

The right term of Eq. �7� corresponds to the scalar product of
vectors ts and R0Wp.

Thus, in the presence of a type 2 singularity, it is possible to
satisfy condition �7� if the wrench applied on the platform by the
legs and external efforts R0Wp are orthogonal to the direction of
the uncontrollable motion ts. Otherwise, the dynamic model is not
consistent. Obviously, in the presence of a type 2 singularity, the
displacement of the end-effector of the manipulator has to be
planned to satisfy Eq. �7�. Therefore, our task will be to achieve a
trajectory, which will allow the manipulator to pass trough the
type 2 singularities, i.e., which will allow the manipulator respect-
ing condition �7�.

In the dynamic model of the rigid-link flexible-joint manipula-
tor �26�, the efforts � applied on the actuators may be expressed as
follows:

� =
d

dt
� �L

�q̇d
� −

�L

�qd
= M�qd�q̈d + C�qd,q̇d�q̇d + D�qd� �8�

This equation only depends on the acceleration, velocity, and po-
sition of the actuators of the manipulator. Therefore, in order to
avoid some discontinuity on the efforts �, the polynomial used for
the trajectory planning should be at least of the fifth degree �be-
cause the initial and final positions are known, and the velocities
and accelerations at the beginning and end of the trajectory should
be equal to 0�. In our previous work �25�, it was shown that the
condition for passing through the type 2 singular configurations
added three supplementary conditions, and therefore, the polyno-

mial used for the trajectory planning should be at least of the
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ighth degree �the position, velocity, and acceleration when pass-
ng through the singularity should be constrained�.

In the present study, it will be shown that the degree of the
olynomial law should be different when taking into account the
exibility on the actuating system. Indeed, it will be presented
urther that the efforts � applied on the actuators depend not only
n the position, velocity, and acceleration of the actuators, but
lso on the jerk and its first derivative. So, due to the addition of
lasticity in the actuated joints, the polynomial used for the tra-
ectory planning should be at least of the 12th degree.

In Sec. 3, an example illustrates the obtained results discussed
bove. This example presents a planar 5R parallel manipulator,
hich allows obtaining relatively simple symbolic model for dem-
nstrating the expected results by numerical simulations. The re-
ults are validated using the ADAMS software.

Illustrative Example
In the planar 5R parallel manipulator, as shown in Fig. 1, the

utput axis is connected to the base by two legs, each of which
onsists of three revolute joints and two links. In each of the two
egs, the revolute joint connected to the base is actuated. Thus,
uch a manipulator is able to position its output axis in a plane.

As shown in Fig. 1, the input joints are denoted as A and E with
he input parameters q1

d and q2
d. The common joint of the two legs

s denoted as C, which is also the output point with the controlled
arameters x and y. A fixed global reference system xOy is located
t the center of AE with the y-axis normal to AE and the x-axis
irected along AE. The lengths of the links AB, BC, CD, and DE
re denoted as L1, L2, L3, and L4, respectively. The positions of
he centers of masses Si of links from joint centers A, B, D, and E
re denoted by the dimensionless lengths r1, r2, r3, and r4, respec-
ively, i.e., AS1=r1L1, BS2=r2L2, DS3=r3L3, and ES4=r4L4.

Actuators 1 and 2 are connected to links 1 and 4, respectively,
ia harmonic drive systems, which are presented by a model simi-
ar to that given in Ref. �26�. The position of actuator i is denoted
s qi

a. It is assumed that the actuator i is capable to deliver a
ouple �i to the motor shaft, which is elastically coupled to the
ink j of the robot �i=1 or 2, j=1 or 4�. The flexibility is modeled
y a torsion spring with stiffness ki. The gear ratio is denoted as

i. In the following parts of this paper, n1=n2=n and k1=k2=k. Ii
a

s the axial moment of inertia of the motor i plus the Harmonic
rive system.

The singularity analysis of this manipulator �29� shows that the
ype 2 singularities appear when legs 2 and 3 are parallel �see also
ig. 2 in Ref. �25��.
In both cases, the gained degree-of-freedom is an infinitesimal

ranslation perpendicular to legs 2 and 3. However, if L2=L3, the
ained degree-of-freedom may become a finite rotary motion.

In order to simplify the analytic expressions, we consider that
he gravity effects are along the z-axis, and consequently, the input

Fig. 1 Kinematic chain of the planar 5R parallel manipulator
orques are only due to the inertia effects. We also admit that there

ournal of Mechanisms and Robotics
is no friction in the system. To simplify the computation, it is also
preferable to replace the masses of the moving links by the con-
centrated masses �30,31�. For a link i with mass mi and its axial
moment of inertia Ii, we have

� 1 1 1

ri 0 1 − ri

ri
2Li

2 0 �1 − ri�2Li
2 	�

mi1

mi2

mi3
	 = �mi

0

Ii
	 �i = 1,2,3,4� �9�

where mij �j=1,2 ,3� are the values of the three point masses
placed at the centers of the revolute joints and at the center of
masses of the link i.

In this case, the potential energy V can be written as

V =
k

2
�qd + qa/n�T�qd + qa/n� �10�

where qd= �q1
d ,q2

d�T and qa= �q1
a ,q2

a�T, and the kinetic energy T can
be written as

T =
1

2
�mS1VS1

2 + mS2VS2
2 + mS3VS3

2 + mS4VS4
2 + mBVB

2 + mCVC
2

+ mDVD
2 � +

1

2
Iaq̇a

Tq̇a �11�

where mS1=m12, mS2=m22, mS3=m32, mS4=m42, mB=m13+m21,
mC=m23+m21, and mD=m33+m41. The terms mij �i=1,2 ,3 ,4� are
deduced from the relation �9�, VSi is the vector of the linear ve-
locities of the center of masses Si, and VB, VC, and VD are the
vectors of the linear velocities of the corresponding axes.

Thus the dynamic model can be obtained from Eq. �2�

0 = Wb + J5R
T Wp �12a�

� = Iaq̈a +
k

n
�qd + qa/n� �12b�

taking into account that for the examined manipulator

Wb = Wb
� + k�qd + qa/n�, Wb

� = JB
TFB + JD

T FD �13�

where

JB = 
− L1 sin q1 0

L1 cos q1 0
�, JD = 
0 − L4 sin q2

0 L4 cos q2
� �14�

FB = mB1�B + mC1�C, FD = mD2�D + mC3�C �15�

�B = L1�q̈1
− sin q1

cos q1
� − q̇1

2
cos q1

sin q1
��, �D = L4�q̈2
− sin q2

cos q2
�

− q̇2
2
cos q2

sin q2
��, �C = 
 ẍ

ÿ
� �16�

mB1 = mS1r1
2 + mB + mS2�1 − r2�2, mC1 = mS2r2�1 − r2� �17�

mC3 = mS3r3�1 − r3�, mD2 = mS4r4
2 + mD + mS3�1 − r3�2 �18�

The term Wp is given by

Wp = mC1�B + mC2�C + mC3�D �19�

mC2 = mS2r2
2 + mC + mS3r3

2 �20�

and the Jacobian matrix J5R is given by

J5R = A5R
−1B5R �21�

where

A5R = 
a11 a12

a21 a22
� = 2
x − L1 cos q1 + a y − L1 sin q1

x − L4 cos q2 − a y − L4 sin q2
�

�22�

MAY 2010, Vol. 2 / 021004-3
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B5R = − 
L1�a11 sin q1 − a12 cos q1� 0

0 L4�a21 sin q2 − a22 cos q2� �
�23�

or a given trajectory qd, the vector of the positions of the actua-
ors qa can be deduced from Eq. �12a�, as well as the acceleration
f the actuators q̈a

qa = −
n

k
�Wb

� + J5R
T Wp� − nqd �24a�

q̈a = −
n

k

d2

dt2 �Wb
� + J5R

T Wp� − nq̈d �24b�

ntroducing Eq. �24� into Eq. �12b�, one can deduce the vector of
ctuator torques �

� = − Ia�n

k

d2

dt2 �Wb
� + J5R

T Wp� + nq̈d� −
1

n
�Wb

� + J5R
T Wp� �25�

nalyzing this expression, it could be observed that, as terms Wb
�

nd Wp depend on the position, velocity, and acceleration of the
nput links, the input torques depend not only on these parameters,
ut also on the jerk and its first derivative. Therefore, on the
ontrary to rigid manipulators for which, in order to avoid discon-
inuities in the input torques, a fifth-degree polynomial is suffi-
ient as a control law when the end-effector is not in singular
onfiguration, for nonrigid robots, the degree of the polynomial
hould be increased �indeed, it should be at least a ninth-degree
olynomial�.

In order to avoid infinite values of the input torques when
rossing a type 2 singularity, Eq. �7� has to be satisfied. From
atrix A5R, one can find that the twist of the infinitesimal dis-

lacement in the singularity can be written under the form

ts = �− sin �1,cos �1�T �26�

hus, the examined manipulator can pass through the given sin-
ular positions if the wrench Wp determined by Eq. �19� is or-
hogonal to the direction of the uncontrollable motion ts described
y Eq. �26�.

Let us now consider the motion planning, which makes it pos-
ible to satisfy this condition. For this purpose the following pa-
ameters of the manipulator’s links are specified: L1=L2=L3=L4
0.25 m; r1=r2=r3=r4=0.5; a=0.2 m; m1=m4=2.81 kg; I1
I4=0.02 kg m2; m2=m3=1.41 kg; I2= I3=0.01 kg m2; Ia
0.067 kg /m2; k=250 N m / rad; and n=50.
With regard to the prescribed trajectory generation, point C

hould reproduce a motion along a straight line between the initial
osition C0 ��x0 ,y0�=C0� �0.1,0.345� and the final point Cf

�xf ,yf�=Cf� ��0.1, 0.145� in tf =2 s �Fig. 2�.

ig. 2 Initial, singular, and final positions of the planar 5R par-
llel manipulator
Thus, the given trajectory can be expressed as follows:

21004-4 / Vol. 2, MAY 2010
x = 
x�t�
y�t� � = 
x0 + s�t��xf − x0�

y0 + s�t��yf − y0� � �27�

However, the manipulator will pass by a type 2 singular position
at point Cs ��xs ,ys�=Cs� �0,0.245� �Fig. 2�.

Developing the condition for passing through the singular po-
sition �7� for the planar 5r parallel manipulator at point Cs, we
obtain

mC1L1�248ẋ2 − 48ẏ2� − 3�6mC2ÿ = 0 �28�

Then, taking into account that the velocity and the acceleration of
the end-effector in the initial and final positions are equal to zero,
the following 13 boundary conditions are found:

s�t0� = 0 �29�

s�tf� = 1 �30�

s�ts = 1 s� = 0.5 �31�

ṡ�t0� = 0 �32�

ṡ�tf� = 0 �33�

ṡ�ts� = ẏs/�yf − y0� = ẋs/�xf − x0� = 1 �34�

s̈�t0� = s̈0 = 0 �35�

s̈�tf� = s̈ f = 0 �36�

s̈�ts� = s̈s = mC1L1�248ẋs
2 − 48ẏs

2�/�3�yf − y0��6mC2� �37�

s��t0� = s�0 = 0 �38�

s��tf� = s�f = 0 �39�

d

dt
s��t0� = s0

�4� = 0 �40�

d

dt
s��tf� = sf

�4� = 0 �41�

From Eqs. �28�–�41�, the following 12th-order polynomial trajec-
tory planning is found

s�t� = 7.28t5 − 14.22t6 + 6.80t7 + 6.41t8 − 9.77t9 + 5.15t10 − 1.28t11

+ 0.13t12 �42�

Thus the generation of the motion by the obtained 12th-order
polynomial makes it possible to pass through the singularity with-
out perturbation, and the input torques remain in the limits of
finite values.

In order to compare the different cases of trajectory planning, in
Table 1 are given the values of the input torques obtained using
the software ADAMS for the following numerical simulations:

�1� Case A1: A trajectory between points C0 and Cf��xf� ,yf��
=Cf� ��0.1,0.345� �Fig. 2� without meeting any singularity.
For such a case, the following fifth-order polynomial law is
used s�t�=1.25t3−0.9375t4+0.1875t5 for the trajectory
planning out of the singular zone of the rigid-link manipu-
lator without taking into account the flexibility in the actu-
ated joints. In this case the values of the input torques are
finite.

�2� Case A2: The fifth-order polynomial law s�t�=1.25t3

−0.9375t4+0.1875t5 for the trajectory planning between C0
and Cf inside the singular zone for the rigid-link manipu-
lator without taking into account the flexibility in the actu-
ated joints. In this case the values of the input torques close

to the singular positions tend to infinity.

Transactions of the ASME
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�3� Case B: The eight order polynomial law s�t�=−0.25851t3

+3.84228t4−5.72792t5+3.58909t6−1.07101t7+0.12606t8

for the trajectory planning of the rigid-link manipulator
without flexibility in the actuated joints inside the singular
zone. The obtained results show that the values of the input
torques are finite.

�4� Case C: The ninth-order polynomial law s�t�=3.94t5

−6.56t6+4.22t7−1.23t8+0.14t9 for the trajectory planning
of the rigid-link flexible-joint manipulator inside the singu-
lar zone. The numerical simulation shows that the values of
the input torques close to the singular positions tend to
infinity.

�5� Case D: The 12th-order polynomial law �Eq. �42�� for the

Table 1 Variation in the input torques as a fun

Actuator 1
Case (A1)

Case (A2)

Case (B)

Case (C)

Case (D)
trajectory planning of the rigid-link flexible-joint manipu-

ournal of Mechanisms and Robotics
lator inside of the singular zone. The values of the input
torques are finite and there are no discontinuities.

Thus, the numerical simulations show that the obtained optimal
dynamic conditions assume the passing of the rigid-link flexible-
joint manipulator through the singular position.

4 Conclusion
At a singular configuration, in the case of an arbitrary genera-

tion of forces, a manipulator may not reproduce stable motion
with the prescribed trajectory. Nevertheless it is approved that
there are several motion planning techniques, which allow passing
through these singular zones. These approaches are simulated by

n of the polynomial law used for the trajectory

Actuator 2

ctio
numerical examples and illustrated on several parallel structures.

MAY 2010, Vol. 2 / 021004-5
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owever, in these studies, much more attention was focused only
n the control aspects of this problem, and little attention has been
aid to the dynamic interpretation, which is a crucial factor for
overning the behavior of parallel manipulators at the singular
ones.

In our previous work �25�, the dynamic properties of parallel
anipulators in the presence of type 2 singularity have been stud-

ed. It was shown that any parallel manipulator can pass through
he singular positions without perturbation of motion if the
rench applied on the end-effector by the legs and external efforts
f the manipulator are orthogonal to the twist along the direction
f the uncontrollable motion. This condition was applied to the
igid-link manipulators without clearance or flexibility in the
oints. The obtained results showed that the planning of motion for
ssuming the optimal force generation can be carried out by an
ight-order polynomial law.

In the present paper the rigid-link flexible-joint manipulators
ave been studied. It was shown that the degree of the polynomial
aw should be different, when the flexibility of actuated joints is
ntroduced into conditions of the optimal force generation in the
resence of singularity. The obtained results disclosed that the
lanning of motion for assuming the optimal force generation in
he rigid-link flexible-joint manipulators must be carried out by a
2th-order polynomial law. The suggested technique was illus-
rated by an example, which presents a 5R planar parallel manipu-
ator with flexible joints. The numerical simulations carried out
sing the software ADAMS validated the obtained theoretical re-
ults.
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