43

Complete shaking force and shaking moment balancing
of planar parallel manipulators with prismatic pairs
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Abstract: This article deals with the complete shaking force and shaking moment balancing of
planar parallel manipulators with prismatic pairs. The cancellation of dynamic loads transmitted
to the ground is a challenge for these types of manipulators.

It is obvious that the classical methods based on the optimal redistribution of movable masses
and additional counter-rotations can be used to cancel shaking force and shaking moment.
However, balancing of parallel manipulators with prismatic pairs is attained via a considerably
complicated design. This article shows that it is possible to balance planar parallel mechanisms
by using Scott—Russell mechanisms. Such an approach enables counter-rotations to be divided
by 2. Numerical simulations carried out using ADAMS software validate the obtained results and
illustrate that the suggested balancing enables to create a parallel manipulator transmitting no
inertial load to its base.
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1 INTRODUCTION

Shaking force balancing is mostly obtained via an
optimal redistribution of movable masses [1-10] or
adjustment of kinematic parameters [11]. The cancel-
lation of the shaking moment is a complicated task,
and shaking moment balancing can be obtained by: (a)
using counter-rotations [12-17] (Fig. 1(a)), (b) adding
four bar linkages [18-22] (Fig. 1(b)), and (c) using
optimal trajectory planning [17, 23, 24].

Previous works focused on the study of parallel
manipulators with revolute joints, and until now, to the
best of our knowledge, no study has been carried out
on complete shaking force and shaking moment bal-
ancing of parallel manipulators with prismatic pairs.

In this article, for the first time, solutions for com-
plete shaking force and shaking moment balancing of
planar parallel manipulators with prismatic pairs are
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proposed. These are illustrated via a 3-RPR parallel
manipulator. All obtained results are validated using
ADAMS software simulations.

2 COMPLETE SHAKING MOMENT AND SHAKING
FORCE BALANCING BY ADDING AN IDLER
LOOP BETWEEN THE BASE AND THE
PLATFORM

Inertial force balancing by adding an idler loop is
known to be used for one-degree-of-freedom (DOF)
mechanisms [25-29]. With regard to planar manipula-
tors, such approach has only been used in the balanc-
ing of gravitational and inertial forces [9, 10, 30, 31].

In this section, the complete shaking force and shak-
ing moment balancing of planar manipulators are
discussed by adding an idler loop. The added bal-
ancing loop is mounted between the base and the
platform of the mechanism. The suggested balanc-
ing technique on a 3-RPR mechanism is illustrated in
Fig. 2. Note that the type of actuation of the mech-
anism is not mentioned as it has no influence on
balancing.
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Fig.1 Complete shaking force and shaking moment balanced 3-RRR planar parallel manipulators

Fig.2 Schematic of the 3-RPR robot under study

Initially, the cancellation of the dynamic reactions
of the 3-RPR planar parallel mechanism is analysed
(Fig. 2(a)). Such a mechanism has 3-DOF (two transla-
tions in the Oxy plane and one rotation of the moving
platform around an axis perpendicular to Oxy) and
is composed of three identical legs, each being com-
posed of a revolute joint attached to the base at point
A; (in the remainder of this report, i =1, 2, and 3),
one moving prismatic guide located at point B;, and
the other revolute joint attached to the platform at C;.
The base and platform triangles denoted A;A,A; and
C, G, C; are equilateral. On this manipulator, typically,
the actuated joints are the first revolute joints at A; or
the linear guide at B;.

Considering that the x-axis is directed along the line
A, Ay, the y axis being perpendicular to the x-axis, and
the origin of the base frame located at point O, the
centre of the circumcircle of triangle A;A,A;, one can
define the coordinate x, y, and ¢ of the platform as
being, respectively, the coordinates of point P along
the x and y axes and the angle between the lines C,C,
and AA,.

The length B;C; is denoted as L, and Sj; is the centre
of mass of link ij (j = 1, 2), which has a mass m; and
an axial moment of inertia /;. The centre of the mass
of the platform is located at point P. The mass of the
platform is m, and its axial moment of inertia .

To cancel the shaking forces and shaking moment
of the manipulator, an idler loop is added between
the base and the platform (Fig. 2(b)). Lengths EF and
FP are denoted as L; and Lg, respectively. The centre of
mass of elements 5 and 6 of the idler loop is denoted as
S; and S, with masses m; and mg and axial moments of
inertia I; and Is, respectively. The positions of the cen-
tre of masses are ds;s1; = rnlLiu;, deispi = (1, — 1)L u;,
drss = r5dgr, and dysg = 15drp, Where 11, 15, 15, and rg
are dimensionless coefficients and u; is a unit vector
directed along B;C;.

Thus, considering the shaking force F of leg 1, the
expression is

3 2 .. .. .. ..
F = Z mjdsj; + mpdp + msdss + medss 1
i=1 j=1
where d Sji» d P d s5, and Zis(; are the accelerations of the
centre of mass S;;, P, Ss, and Sg respectively.

From expression (1), it can be seen that the shaking

force F can be expressed as

3
F=(mn—my1—r)) Y a;i+3my+my,+ mere)a,
i=1

+ (3my + my, 4+ msrs + me)dy )
with
_ 5 | —sin 6; -, | cos 6;
a; =L (0‘ |: cos 6; :| —0 |:sin Qi:|> (3a)
_ 5 [ —sinfs| o [cCOS 65
@ =L (96 [ cos B ] % |:sin 96]> (3b)

and dj is the acceleration of point F.

At this step, only five counterweights are required
to cancel shaking force, but it could be seen after
more derivations that three others are necessary
to cancel the shaking moment. Therefore, direct
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Fig.3 Schematic of the 3-RPR mechanism with the
added RRR chain used for the cancellation of the

shaking force and shaking moment

adding of three supplementary counterweights is pro-
posed (Fig. 3). The positions of the eight masses are
dAl'Mcpli = I, dBiMcpZi = repp L, dEMcpS = rcdeEF)
and dpyicps = Tepdrp, Where Ie,1, Top, Tops, and rq,6 are
dimensionless coefficients. Their masses are denoted
by Mep1, Mo, Meps, and me,s, respectively. With the
addition of the counterweights, the shaking force
becomes

3

Fba] =F+ (mcperpl — mcpZ(l - rcpZ)) Z a;
i=1

+ mchrcp6a4 + (mcp(i + mcpS rcpS)‘“iF (4)

Thus, the shaking force is cancelled if

myr

Mepr = — (5a)
rcpl
my,(l—r
My = _md-n) (5b)
1-— Tep2
3(my + Mey) + my, + rem
Mgy = 2 C”Zr) P (50)
cpb
and
3(my + Mepz) + My, + Mg + Mepe + T5M;5
Meps = —

rcp5

(5d)

The expression of the shaking moment M, of the
modified structure (expressed at point O) can be
written as

dHp

My = ——
°7 "dr

(6)
where Hp is the angular momentum of the leg
(expressed at point O). Thus, to cancel the shaking
moment, the angular momentum is held constant
over time.

The expression of the angular momentum Hy, is

3 2
Hp = Z Z(mj(xosj'ij/os]‘i — YosjiXost) + Li6;)
i=1 j=1
3 2
+ Z Z(mcpj (XomjiYomji — YomjiXomji))
i=1 j=1
6
+ o + Z(mj(xOSijSj — YosiXosj)
=5

+ M (XomjJom — YomiXomy) + 1)) (7

where Xxog, Yoo, Xog, and yoo are the positions and
velocities of any point Q along x— and y-axes, respec-
tively; Q being either point S;, M;;(j = 1,2), S; or M;
(j=5,6).

Substituting equation (5) into equation (7) yields

3
Hp = Z(Il + L+ (myri + mcplrczpl

i=1
3

+ mp(1 = 1)) LD + Y (M (1 = 1)’ L6
i=1

+ I + 3(my + M) R + (s + (Ml

+ M6l oy + My + 3(1Mp + M) LE)0s

+ (s + (M7 + MepsTlys + M6 + Meps

+ mp)L)0s + 3(my + M) L20s (8)

After such modifications of the RRR chain, the angu-
lar momentum of the legs of the mechanism and the
RRR chain can be balanced using six counter-rotations
(Fig. 3), which have an axial moment of inertia equal to

In=hL+DL+ (mlrlz + mcplrfpl + my(1 — r2)2

+ Mepp(1 = Te2)?) L (9a)
Lz = I, + 3(m + M) R (9b)
Lers = (M6Ts + MepsTops + My

+3(my + mez))Lg + 22 + 16 (9c)
Lera = (MsT5 + MepsToys + M + Meps + My,

+3(my + mez))Lé + 23 + 15 (9d)

2.1 Numerical application

The suggested balancing approach is illustrated by
using numerical simulations carried out with ADAMS
software. For this purpose, non-balanced and bal-
anced 3-RPR parallel manipulators are compared.
The chosen trajectory for simulations is a straight
line of the controlled point of the platform, achieved
int; = 0.255s, between Py = (o, o) = (—0.05m, 0) and
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P = (x7,yr) = (—0.2m, 0) with a rotation of the plat-
form from ¢, = 0° to ¢y = 30°. For the displacement of
the mechanism, fifth-order polynomial laws are used
and therefore the trajectory is defined by the following
expression

£\? £\*
X(t) = Xo + (Xr — Xo) (10 (—) —15 <—>
Iy Iy

l' 5
+6 (—) ) (10a)
Iy
¥y =0 (10b)
l' 3 t 4
¢ (t) = ¢o + (b — Po) (10 <t—> —15 <—)
2 Iy
l' 5
+6 <—> ) (10c)
ly

The parameters used for the simulations are:

(a) radii of the circumcircles of the base triangle
A1A>A; and the platform triangle C,C,C; — R, =
0.35mand R, = 0.1 m;

(b) L, =0.05m, L; = 0.15m, and Lg = 0.1581 m;

() n=rs=rs=05andr =2;

(d) m; =0.75kg, m, =0.37kg, ms =0.42kg, mg =
0.47kg, and m;, = 1kg;

(e) [ =0.00344kgm?, L =0.00025kgm?, I[5=
0.001 22 kgmz, I = 0.00146 kgmz, I, =0.004 36
kg m?;

(f) point E is located at point O.

For such parameters and such a trajectory, the shak-
ing force and shaking moment are computed using
ADAMS software, and they are presented in Fig. 4 (solid
line). Then, the counterweights and the idler loop EFP
are added to the mechanism. The position coefficients
of the counterweights are all equal to r.,; = 0.5 (j =1,
2, 5, and 6). Therefore, the added masses are equal
to me, = 0.75kg, mey, = 0.37kg, meys = 6.92kg, and
meps = 21.66 kg. The new values of the shaking force
and moment are presented in Fig. 4 (dashed line).
It is seen that with the added counterweights, the
shaking efforts are cancelled, whereas the maximal
value of shaking moment is increased by a factor 17.
Finally, the counter-rotations are added. Their values
are equal to I,;; = 0.019 17kgm?, I,, = 0.026 65 kg m?,
I3 =0.18169kgm?, and I, = 0.72781kgm?. With
such counter-rotations, the shaking moment is bal-
anced (in grey line in Fig. 4(c)).

3 COMPLETE SHAKING FORCE AND SHAKING
MOMENT BALANCING VIA SCOTT-RUSSELL
MECHANISM

In this section, another approach for complete shak-
ing force and shaking moment balancing is developed,

35
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Fig.4 Shaking force and shaking moment before (solid
line) and after (dashed line) the addition of the
counterweights and after the addition of the
counter-rotations (grey line)

which consists of adding Scott-Russell mechanisms
to the initial architecture of a manipulator. This
approach enables a reduction in the number of
counter-rotations.

3.1 Properties of the Scott-Russell mechanism

Initially, a simple slider—crank mechanism is observed
(Fig. 5). Lengths AB and BC are denoted by L, and
L,, respectively, and the centre of masses of link i
(i=1, 2, and 3) as S;, which has a mass m; and an
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Fig.5 A general slider-crank mechanism

axial moment of inertia I;. The positions of the cen-
tres of mass are das; = rdag, dasy = dg + rdpc, and
dps3 = dac + dcs3, where r; and r, are dimensionless
coefficients and ds3; = L3r;x (L3 is a constant).

It is known that the complete shaking force and
shaking moment balancing of a general slider—crank
mechanism can be obtained by adding two coun-
terweights mounted on the links and two pairs
of counter-rotation inertia-counterweights. However,
it is possible to balance this mechanism without
counter-rotation inertia-counterweights if it has spe-
cific geometrical parameters, as in Scott-Russell
mechanisms (a =0, L, = L,).

The balancing of this mechanism is considered here.
The expression of the shaking force F of a slider—crank
mechanism can be written as

3
F =Y mds (11)
i=1

where iiSi is the acceleration of the centre of mass S;.
Developing equation (11), the expression of F
becomes

F = (miry + my)dp + (mor, + my)a (12)
with
_ 5 | —sindy| .y |COSO,
a=1L, <92 [ c0s 6, } % |:Sin92:|) (13)

where dj; is the acceleration of point B.

The constant terms of equation (12) can be can-
celled by the addition of two counterweights M; (j = 1,
2) (Fig. 5), the masses of which are m,,;. Their posi-
tions are dayicp1 = Iepndas and dpvepe = I'gpdpc, where
rem and 1, are dimensionless coefficients. With the
addition of the counterweights, the shaking force
becomes

Fbal =F+ (mcpl Tep1 + mcpz)dB + Mep2Tep2@ (14)

Thus, the shaking force vanishes if

Myt + Mg
Mg = ——— and
rcpz

myr + My + My + M3

”lcpl -
rcpl

(15)

The expression of the angular momentum H,
(expressed at point A) is

3
Hy = Z(mj (XasiVasi — XasiVasi)
=1
2
+ Z(Ijej + M (XpasiVnmsj — Xmsiymsi)) (16)
=1

where Xaq, Y, Xa0, and yaq are the positions and veloc-

ities of any point Q along x and y axes, respectively; Q

being either point S; or M; (j = 1, 2, and 3).
Substituting equation (15) into equation (16)

Hy = (I + (17 + mcplrczpl + My + Mg + ms3)L3)6,

+ (L + (MaT5 + Mepr?, + ms) L), (17)
with

: VaB(Xac — Xap) + (@ — Jac — X
4, = _ VaB(Xac — Xas) (L2 VaB) (Xac — Xap) (18)
2

where x4c, Xap, and ysp are the coordinates of points
C and B, respectively, and Xac, Xap, and yap are their
velocities.

To cancel the shaking moment M,, the angular
momentum has to be constant or null. Developing
equation (18), one notices that this can be obtained if

a=0 and Li=1L, (19)

In such case, 6; = —6,. Therefore, the shaking moment
is cancelled if

L+ (a1} + Mo 1l,y + My 4 Mep) L — I

— (MaT5 + Mgt )L; =0 (20)

3.2 Balancing of a manipulator’s leg using a
Scott—Russell mechanism

Now a manipulator’s leg with an added Scott-Russell
mechanism is considered (Fig. 6). The centre of mass of
link 4 is denoted as S;, which has a mass m, and an axial
moment of inertia I,. The position of S, isdcsy = Lsrsut;
r, being a dimensionless coefficient and u# a unit vector
along dcsg .

JMBD161 © IMechE 2009
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Fig.6 A manipulator leg with added Scott-Russell
mechanisms

Now the shaking force becomes

F = (myry + Mgy Tepy + Mo + Mepp + mz)dp

+ (M3r3 + myry) @y + (Mal + MepTepn + M)A

(21)
with
_ .. | —sin Oy ;2 | €08 Bos
a =L <9°3 [ c0s Oo3 ] %03 [sin 903D 22)
and

a, =L, ((503 — ) [_ sin (s — 941)i|

€086z — O41)

(s — 6us)? [COS(9°3 - 9‘“)}) 23)

sin(ps — Oa1)

At this step, only one counterweight is required to
cancel shaking force; but it could be seen after more
derivations that another counterweight is necessary
for the cancellation of the shaking moment. Therefore,
direct adding of this supplementary counterweight is
proposed. The positions of the two masses are d apps =
IepsLsu and deyieps = Teopalsu, where 13 and 1y, are
dimensionless coefficients. Their masses are denoted
Meps and mey, Tespectively. With the addition of the
counterweights, the shaking force becomes

bal .
F*=F + mcdeB + Mepz @ + (mcpSGCS + mcp4rcp4)a2

(24)
Thus, the shaking force is cancelled if
My,
Meps = — ks (25a)
rcp4
msr:
My = ——— (25b)
rcp3
Myt +ms +m
mcpz - _ 212 3 cp3 (25C)
rcpz
and
nmyr + my + Mgy, + ms + mg
My = — 1n 2 p2 3 p3 25d)

rcpl

Simplifying the expression of the angular momentum
yields

Hy = ILq 603 + Ieq2 O (26)
with
qul = (mlrlz + mcpli‘fpl + my(1 — r2)2

+ mcpZ(l - rcpZ)Z)Lf + Il + IZ + I3 + 14
+ (M315 + Mol og + Maly + Moo, )L (27)
qu2 = Il + (ml r12 + mcpl rfpl + my + mcpZ)L%

- 12 - (m2r22 + mcerczpz)Lf (28)

From equation (20), I.q» = 0. Therefore, the shaking
moment of the slider—crank can be cancelled using a
simple counter-rotation I, with an axial moment of
inertia equal to Ioq;.

3.3 Shaking moment and shaking force balancing
of the 3-RPR manipulator

Now, such an approach is applied to the 3-RPR mech-
anism. First, the platform mass is substituted by three
points masses located at C;, C,, and Cs, with mass val-
ues equal to my,;, My, and my; respectively [13, 32, 33].
Such a condition can be obtained if

My = % and Ip = Smp,-Rf, (29)

where R, is the radius of the circumcircle of C,C,C;.
Such a decomposition of the platform enables to con-
sider the shaking force and shaking moment balancing
of each leg of the mechanism. Then, for modifying
each leg to obtain a mechanism similar to a slider-
crank linkage (i.e. by adding an idler loop to each leg),
the shaking force and shaking moment are cancelled if

mary

Meps = — (30a)
rcp4
msrs + my;
Mgy = ———— 2 (30b)
rcp3
Myly + M3 + Mgz + My
mcpz - _ 212 3 cp3 pi (30C)
rcpZ
myry + My + Mepp + M3 + Meps + My,
Mepy = —
rcpl
(30d)
0=1+ (myri + me, rfpl + My + M) L
— L — (Mar5 + Mgy rfpz)Lf (30e)
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Fig.7 Schematic of a shaking force and shaking
moment balanced 3-RPR mechanism

and

2 2
Icr = (mlrl + mcplrcpl

+ my(1 — 1) + My (1 — rcpz)z)Lf +hL+L
+ I+ Iy + (M375 + Ml + Mty

+ MapaToyy + Mpi) L (30f)
taking into account that I, is the axial moment of
inertia of the counter-rotations (Fig. 7).

Thus, with this approach it is possible to create
a fully balanced shaking force and shaking moment
3-RPR mechanism with only three counter-rotations
(Fig. 7), i.e. this method enables a reduction in the
number of counter-rotations by a factor of two.

3.4 Numerical application
The parameters used for the simulations are:

(a) radii of the circumcircles of the base triangle
A1A2A; and the platform triangle C,C,C; — R, =
0.35mandR, = 0.1 m;

(b) Ly =L, =0.25mand L; = 0.025 m;

() n=r,=05r3=0andr, =4,

(d) m; =1.09kg, m, =1.1kg, m;=0.37kg,
0.75kg, m, = 1kg;

(e) I;=0.00738kgm?, I, = 0.583 89 kg m?, I;=0.003 44
kgm?, Iy = 0.000 25 kg m?, I, = 0.01 kg m?.

my =

For these new parameters and for the trajectory
used previously, taking into account that the posi-
tion coefficients of the counterweights are equal to
Iepj = —0.5(j =1, 3,and 4) and r., = —1, the new val-
ues of the counterweights are m, = 3.17kg, m,, =
11.71kg, mcys = 0.33kg, and m,, = 0.75kg. The shak-
ing force and shaking moment are then computed
(dashed line in Fig. 8). It is possible to see that,
with the counterweights, the shaking efforts are can-
celled, whereas the maximal value of the shaking
moment is increased by a factor of 28. Finally, the
counter-rotations are added. Their values are equal to
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Fig.8 Shaking force and shaking moment before (solid
line) and after (dashed line) the addition of the
counterweights and after the addition of the
counter-rotations (grey line)

I; = 1.569 07 kg m?. With such counter-rotations, the
shaking moment is balanced (grey line in Fig. 8(c)).

Finally, it should be noted that the combination of
the proposed two techniques of balancing enables the
creation of fully balanced parallel manipulators with
modified legs. As an example, different structures of
balanced manipulators are presented in Fig. 9 (3-RPR,
3-PRR, and 3-PRP), in which one leg with a prismatic
pair is replaced by a leg with only revolute joints.
Such a modification allows displacing the centre of
mass of the manipulator to C; and then to balance
the manipulator via the modified leg C; B; As.

JMBD161 © IMechE 2009
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Fig.9 Complete shaking force and shaking moment balancing of planar manipulators with
prismatic pairs via structural modification of one leg

(@)

Fig.10 Complete shaking force and shaking moment balancing of planar manipulators with
prismatic with reduced number of Scott-Russell mechanisms
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In the same way, it is possible to balance a paral-
lel manipulator with prismatic pairs by adding fewer
Scott-Russell mechanisms. The balancing schemes for
several parallel manipulators are presented in Fig. 10.

4 CONCLUSIONS

This article presents the complete shaking force and
shaking moment balancing of planar parallel manip-
ulators with prismatic pairs. Two approaches are dis-
cussed: balancing via adding an idler loop mounted
between the platform and the base of the manipula-
tor and balancing via the Scott-Russell mechanism,
which enables a reduction in the number of counter-
rotations by a factor of two. All studied balancing
techniques are validated by simulations carried out
using ADAMS software. The obtained results show that
parallel manipulators balanced by using the suggested
methods transmit no inertia loads to their bases,
i.e. the sum of all ground forces and their moments
are zero.

Finally, it is mentioned that using Scott-Russel
mechanisms remains using some modified 3-RRR
manipulator. Thus, if the type of actuation is not con-
sidered, the prismatic guides could be suppressed and
the work could be of no interest. In contrast, the
goal of the study is to propose the complete shak-
ing force and shaking moment balancing of manip-
ulators for applications, in which actuation via a
prismatic motor is required, such as in high load
carrying (by using hydraulic devices). Therefore, the
proposed solutions are of great interest to the scientific
community.

REFERENCES

1 Lowen, G. G., Tepper, E R., and Berkof, R. S. Balancing
oflinkages — an update. Mech. Mach. Theory, 1983, 18(3),
213-230.

2 Arakelian, V. and Smith, M. Shaking force and shaking
moment balancing of mechanisms: an historical review
with new examples. J. Mech. Des., 2005, 127(2), 334-339
(see also ERRATUM, 2005, 127(5), 1034-1035).

3 Arakelian, V., Dahan, M., and Smith, M. R. A histori-
cal review of the evolution of the theory on balancing
of mechanisms. In Proceedings of the International
Symposium on History of Machines and Mechanisms,
HMM2000, 2000, pp. 291-300 (Kluwer Academic Publish-
ers, Dordrecht/Boston/London).

4 Agrawal, S. K. and Fattah, A. Reactionless space and
ground robots: novel designs and concept studies. Mech.
Mach. Theory, 2004, 39(1), 25-40.

5 Wang, J. and Gosselin, C. M. Static balancing of spatial
three-degree-of-freedom parallel mechanisms. Mech.
Mach. Theory, 1999, 34(3), 437-452.

6 Newman,W. S. and Hogan, N. The optimal control of bal-
anced manipulators. In Proceedings of theWinter Annual
Meeting of the ASME, Anaheim, California, 1986.

7 Laliberté, T., Gosselin, C. M., and Jean, M. Static balanc-
ing of 3-DOF planar parallel mechanisms. IEEE/ASME
Trans. Mechatronics, 1999, 4(4), 363-377.

8 Fujikoshi, K. Balancing apparatus for jointed robot.
Japanese Pat. JP51-122254, 26 October 1976.

9 Wang, J. and Gosselin, C. M. Static balancing of spa-
tial four-degree-of-freedom parallel mechanisms. Mech.
Mach. Theory, 2000, 35(4), 563-592.

10 Russo, A., Sinatra, R., and Xi, E Static balancing
of parallel robots. Mech. Mach. Theory, 2005, 40(2),
191-202.

11 Ouyang, P. and Zhang, W. ]. Force balancing of robotic
mechanisms based on adjustment of kinematic param-
eters. ASME J. Mech. Des., 2005, 127(3), 433-440.

12 Berkof, R. S. Complete fore and moment balancing of
inline four-bar linkages. Mech. Mach. Theory, 1973, 8(3),
397-410.

13 Arakelian, V. and Smith, M. R. Complete shaking force
and shaking moment balancing of linkages. Mech. Mach.
Theory, 1999, 34(8), 1141-1153.

14 Dresig, H., Naake, S., and Rockausen, L. Volistindiger
und harmonischer Ausgleich ebener Mechanismen, 1994
(VDI Verlag, Diisseldorf).

15 Herder, J. L. and Gosselin, C. M. A counter-rotary coun-
terweight for light-weight dynamic balancing. In Pro-
ceedings of the ASME 2004 DETC/CIEC Conference, Salt
Lake City, UT, USA, 28 September-2 October 2004, pp.
659-667.

16 Kochev, I. S. General theory of complete shaking
moment balancing of planar linkages: a critical review.
Mech. Mach. Theory, 2000, 35(11), 1501-1514.

17 Fattah, A. and Agrawal, S. K. On the design of reac-
tionless 3-DOF planar parallel mechanisms. Mech. Mach.
Theory, 2006, 41(1), 70-82.

18 Ricard, R. and Gosselin, C. M. On the development of
reactionless parallel manipulators. In Proceedings of the
ASME 2000 DETC, Baltimore, MD, USA, 10-13 September
2000.

19 Wu, Y. and Gosselin, C. M. On the synthesis of a reaction-
less 6-DOF parallel mechanism using planar four-bar
linkages. In Proceedings of the Workshop on Fundamen-
tal Issues and Future Research Directions for Parallel
Mechanisms and Manipulators, Quebec City, Quebec,
Canada, 3-4 October 2002.

20 Gosselin, C. M., C6té, G., and Wu, Y. Synthesis and
design of reactionless three-degree-of-freedom parallel
mechanisms. IEEE Trans. Robot. Autom., 2004, 20(2),
191-199.

21 Foucault, S. and Gosselin, C. M. Synthesis, design, and
prototyping of a planar three degrees-of-freedom reac-
tionless parallel mechanism. J. Mech. Des., 2004, 126(6),
992-999.

22 Wu, Y. and Gosselin, C. M. Design of reactionless 3-DOF
and 6-DOF parallel manipulators using parallelepiped
mechanisms. IEEE Trans. Robot. Autom., 2005, 21(5),
821-833.

23 Papadopoulos, E. and Abu-Abed, A. Design and motion
planning for a zero-reaction manipulator. In Proceed-
ings of the IEEE International Conference on Robotics
and Automation (ICRA), San Diego, CA, USA, 1994,
pp. 1554-1559.

24 Arakelian, V. and Briot, S. Dynamic balancing of the
SCARA robot. In Proceedings of the 17th CISM-IFToMM

JMBD161 © IMechE 2009

Proc. IMechE Vol. 223 Part K: J. Multi-body Dynamics



52 S Briot, I A Bonev, C M Gosselin, and V Arakelian

Symposium on Robot Design, Dynamics, and Control
(RoManSy 2008), Tokyo, Japan, 5-9 July 2008.

25 Bagci, C. Complete shaking force and shaking moment
balancing of link mechanisms using balancing idler
loops. ASME J. Mech. Des., 1982, 104, 482-493.

26 Frolov, K. V. Theory of mechanisms and machines (Ed. V.
Shkola), 1987.

27 Doronin, V. I. and Pospelov, A. 1. Balanced slider-crank
mechanism. Pat. SU1627769, 15 February 1991.

28 Hilpert, H. Weight balancing of precision mechanical
instruments. Mechanisms, 1968, 3(4), 289-302.

29 Arakelian, V. Equilibrage dynamique complet des
mécanismes. Mech. Mach. Theory, 1998, 33(4), 425-436.

30 Leblond, M. and Gosselin, C. M. Static balancing of
spatial and planar parallel manipulators with prismatic
actuators. In Proceedings of the ASME 1998 DETC Con-
ference, Atlanta, GA, USA, 1998, pp. 1-12.

31 Baradat, C., Arakelian, V., Briot, S., and Guegan, S.
Design and prototyping of a new balancing mechanism
for spatial parallel manipulators. ASME J. Mech. Des.,
2008, 130(7), 072305, 13 pp.

32 Seyferth, W. Massenersatz duch punktmassen in rium-
lichen getrieben. Mech. Mach. Theory, 1974, 9(1), 49-59.

33 Wy, Y. and Gosselin, C. M. On the dynamic balancing
of multi-DOF parallel mechanisms with multiple legs.
Trans. ASME, ]. Mech. Des., 2007, 129(2), 234-238.

Proc. IMechE Vol. 223 Part K: J. Multi-body Dynamics

JMBD161 © IMechE 2009



