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Design of Scotch yoke mechanisms with
improved driving dynamics
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Abstract

Input torque balancing through addition of an auxiliary mechanism is a well-known way to improve the dynamic behavior

of mechanisms. One of the more efficient methods used to solve this problem is creating a cam-spring mechanism.

However, the use of a cam mechanism is not always possible or desirable because of the wear effect due to the contact

stresses and high friction between the roller and the cam. The Scotch yoke mechanism is most commonly used in control

valve actuators in high-pressure oil and gas pipelines, as well as in various internal combustion engines, such as the

Bourke engine, SyTech engine and many hot air engines and steam engines. This mechanism does not create lateral forces

on the piston. Therefore, the main advantages of applications include reducing friction, vibration and piston wear, as well

as smaller engine dimensions. However, the input torque of the Scotch yoke mechanism is variable and can be balanced.

This paper proposes to balance the input torque of Scotch yoke mechanisms without any auxiliary linkage just by adding

linear springs to the output slider. It is shown that after cancellation of inertial effects the input torque due to friction in

joints becomes constant, which facilitates the control of the mechanism. An optimal control is considered to improve the

operation of balanced Scotch yoke mechanisms. The efficiency of the suggested technique is illustrated via simulations

carried out by using ADAMS software.
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Introduction

It is obvious that whatever the power of control, even
today, one cannot correctly operate a machine with
poor mechanics. If the input torque, that is, the torque
ensuring the constant speed, is highly variable, the
resulting drive speed fluctuation will be substantial.
Therefore, highly variable input torques might excite
torsional vibration, while input torques with frequent
sign changes present a very unfavorable loading case
for the gears that are possibly present between the
mechanism and its driving actuator.

This paper provides a simple and efficient input
torque balancing method, which can be applied to
Scotch yoke mechanisms. The Scotch yoke mechan-
ism is subject to a wide range of applications and
various publications have been devoted to its
study.1–5 This mechanism is most commonly used in
control valve actuators in high-pressure oil and gas
pipelines, as well as in various internal combustion
engines, such as the Bourke engine, SyTech engine
and many hot air engines and steam engines. It is
also used in testing machines to simulate vibrations
having simple harmonic motion.6 The Scotch yoke
mechanism does not create lateral forces on the
piston. Therefore, the main advantages of

applications include reducing friction, vibration and
piston wear, as well as smaller engine dimensions.

The analysis of a Scotch yoke mechanism shows
that its input torque is highly variable. The input
torque may be reduced by optimal redistribution of
moving masses.7–11 or by using non-circular gears.12

One of the more efficient methods used to solve the
problem of input torque balancing is creating a cam-
spring mechanism, in which the spring is used to
absorb the energy from the system when the torque
is low, and release energy to the system when the
required torque is high. It allows reducing the fluctu-
ation of the periodic torque in the high-speed mech-
anical systems.13–21

The input torque balancing technique proposed in
this paper is achieved by adding linear springs.
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Input torque of a Scotch yoke
mechanism

The Scotch yoke mechanism is a reciprocating motion
mechanism, converting the linear motion of a slider
into rotational motion of a crank or vice versa
(Figure 1). In the present study, it has been considered
that the gravitational forces are perpendicular to the
motion plane.

As is mentioned by Berkof,7 the input torque of a
single degree of freedom mechanism due to inertial
effects can be found from equation

MIN ¼
1

_’

dT

dt
ð1Þ

where T is the total kinetic energy of the mechanism
and _’ is the input angular velocity.

The relationship between the rotation of link 1 and
the translation of link 3 can be written as

s ¼ lOA sin’ ð2Þ

where ’ is the rotating angle of link 1; lOA is the length
of link 1, i.e. the distance between the joints O and A;
s is the translational displacement of slier 3.

The slider velocity can be found by differentiating
equation (2)

_s ¼ lOA _’ cos ’ ð3Þ

Considering that the input angular velocity is con-
stant and differentiating equation (3), the slider accel-
eration can be written as

€s ¼ �lOA _’ð Þ2sin ’ ð4Þ

The kinetic energy of the mechanism can be
written as

T ¼ 0:5 _’ð Þ2 IS1 þm1r
2
S1 þm2l

2
OA þm3l

2
OA cos2 ’

� �
ð5Þ

where IS1 is the axial inertia moment of link 1; mi are
the masses of the corresponding links (i¼ 1, 2, 3); rS1
is the distance between the centre of the joint O and
the centre of mass S1 of link 1.

Substituting equation (5) into equation (1), the
input torque of the mechanism is

MIN ¼ �0:5m3l
2
OA _’ð Þ2sin 2’ ð6Þ

The obtained result shows that the input
torque of a Scotch yoke mechanism varies according
to sin2u (Figure 2).

It means that the average value of the input torque
is equal to zero, and the correction moment created by
the spring system should be similar to the input torque
of the mechanism. Thus, in balancing the system for
the periods ’ 2 0;�=2½ � and ’ 2 �; 3�=2½ �, the spring
must to absorb and accumulate the energy from the
Scotch yoke mechanism because the input torque is
low. With regard to the periods ’ 2 �=2;�½ � and
’ 2 3�=2; 2�½ �, the spring should release energy to
the Scotch yoke mechanism because the required
torque is high.

It should be noted once again that in the present
paper, the input torque due to inertial effects is con-
sidered. In the case of the presence of combustion
forces, the input torque balancing will be different.
For the case of engines please see combustion-induced
torque variation in literature.22

Input torque balancing

The spring system should ensure the following
condition

FspdxþMINd’ ¼ 0 ð7Þ

where Fsp ¼ kx is the elastic force of the spring; k is
the stiffness coefficient of the spring, x is the displace-
ment of the spring.

It should be noted that Fsp has a minus sign during
the accumulation of energy and a plus sign during the
restitution of energy.

Figure 2. Input torque of a Scotch yoke mechanism.

Figure 1. Scotch yoke mechanism.
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For the period of the accumulation of potential
energy

Aaccum ¼ �

Z ’

0

MINd’

¼

Z ’

0

0:5m3l
2
OA _’ð Þ2sin 2’d’

¼ 0:5m3l
2
OA _’ð Þ2sin2 ’ ð8Þ

The maximal value of the accumulate potential
energy for both periods mentioned above is

Amax ¼ �

Z �=2

0

MINd’

¼

Z �=2

0

0:5m3l
2
OA _’ð Þ2sin 2’d’ ¼ 0:5m3l

2
OA _’ð Þ2

ð9Þ

Integrating equation (7) for the period of energy
accumulation, the following relationship can be
obtained

Aaccum ¼ �

Z ’

0

MINd’ ¼ �

Z x

0

kx dx ð10Þ

and

Aaccum ¼ 0:5kx2 ð11Þ

From which

x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

k
Aaccum

r
ð12Þ

when x ¼ xmax, the accumulation of energy becomes
maximum

Amax ¼ 0:5kx2max ð13Þ

Now, from equation (9) and equation (13) the stiff-
ness coefficient of the spring can be determined

k ¼
m3l

2
OA _’ð Þ2

x2max

ð14Þ

To determine the displacement x of the spring let
us introduce equation (8) and equation (14) into equa-
tion (12)

x ¼ xmax sin ’ ð15Þ

Let us now consider the period of energy restitution.
In this case, the following expression concerning

input torque can be written as

Arest ¼

Z ’

�=2

m3l
2
OA _’ð Þ2

sin 2’

2
d’ ¼ 0:5l2OA _’ð Þ2cos2 ’

ð16Þ

With regard to the spring it can be written

Arest ¼

Z xmax

x

kxdx ¼ 0:5kðx2max � x2Þ ð17Þ

or

x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2max �

2Arest

k

r
ð18Þ

To determine the displacement x of the spring for
the period of energy restitution, let us introduce equa-
tion (14) and equation (16) into equation (18)

x ¼ xmax sin’ ð19Þ

So for two periods, accumulation and restitution,
displacements of the spring are same, see Figure 3.
The proposed traditional solution for input torque
balancing in Scotch yoke mechanism is to add a
cam to input crank in order to execute harmonic dis-
placements of the spring. However, taking into
account particularities of the Scotch yoke mechanism,
it will be shown that a simple balancing technique of
the input torque can be found.

Let us now turn our attention to the displacements
of slider 3. The displacements of the slider vary with
the sinusoidal law. Therefore, it is possible to balance
the input torque of a Scotch yoke mechanism by
adding linear springs between the frame and output
slider 3. The added springs should ensure the condi-
tion: xmax ¼ lOA.

Thus, by adding simple linear springs the input
torque due to the inertial forces will be fully cancelled.
Although the described solution is very simple, this is
the first time it is proposed.

The input torque due to friction in joints

Let us now consider a Scotch yoke mechanism taking
into account the friction in the mechanism’s joints.

Several friction models have been proposed having
different levels of accuracy, and wide variety of con-
trol solutions have been developed for its
compensation.23–30

In Sawyer et al.,32 a nearly ideal two-dimensional
Scotch yoke mechanism was constructed to test a
model of wear depth as a function cycle number.
The model originally developed by Blanchet33 was

Figure 3. Displacements of the balancing spring.
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non dimensionalized and simplified under conditions
of large numbers of cycles. Experiments, given in lit-
erature,32 showed a linear progression of wear over
two distinct regions, suggesting a sudden transition
in wear modes just after 1.5 million cycles.

The review showed that friction must be considered
in dynamic models in order to optimally control
mechanisms.

In the present paper, the friction model developed
by Wilson and Sadler34 has been used. The choice of
this model is due to the fact that it provides analytical
results. It allows authors to keep the principal struc-
ture of the paper with only analytically tractable
solutions.

After torque balancing described above, the reac-
tion forces in prismatic joints are cancelled, i.e.
F23¼F03¼ 0, where F23 is the reaction force between
links 2 and 3; F03 is the reaction force between link 3
and the frame (denoted as ‘‘0’’).

With regard to the reactions in revolute joints, they
are constant due to the condition: F21 þ F01 þ Fint

1 ¼ 0,
where F21 is the reaction force between links 2 and 1;
F01 is the reaction force between the frame and link 1;
Fint
1 is the resultant inertia force of link 1.
Thus, for determination of the input torque of the

balanced mechanism, only the bearing friction in
revolute joints O and A should be taken into consid-
eration. It is known that the effect of the frictional
contact at the bearing surfaces is always a torque
which acts in a direction to oppose the relative rota-
tion of the two links34

M
ð frÞ
ji ¼ eji�jiFji cos �jisgnð _’j � _’iÞ ð20Þ

where eji is the nominal radius of the bearing (in
practical mechanisms the difference between the
radii of the bearing and the shaft or pin is less
than 0.2% and thus eji may be taken as the nominal
size of the bearing); �ji is the coefficient of friction;
Fji is the bearing reaction force of link j on link i;
�ji is the friction angle (�ji ¼ tan�1 �ji); _’j is the
angular velocity of link j; _’i is the angular velocity
of link i.

Therefore, the input torque of the balanced mech-
anism can be written as

MIN ¼M
ð frÞ
01 þM

ð frÞ
21 ¼ e01�01F01 cos �01sgnð _’0 � _’1Þ

þ e21�21F21 cos �21sgnð _’2 � _’1Þ ð21Þ

Thus, after balancing of the inertia forces, the input
torque of the Scotch yoke mechanism becomes con-
stant and can be determined by the some of friction
torques in joints O and A.

Let us now consider the optimal control of the
Scotch yoke mechanism to ensure the constant input
angular velocity and the given input torque due to
friction in joints.

The input torque due to friction in joints

The differential equation describing the motion of the
Scotch yoke mechanism without linear springs to the
output slider is given by

�ðtÞ ¼ IS1 þm1r
2
S1 þm2l

2
OA þm3l

2
OA cos2 ’ðtÞ

� �
€’ðtÞ

�
1

2
m3l

2
OA _’2ðtÞ sin 2’ðtÞ ð22Þ

The joint variable is ’ðtÞ and the control torque
is �ðtÞ

The parameters of the Scotch yoke mechanism are

IS1 ¼
m1l

2
OA

12
; rS1 ¼

lOA

2
; lOA ¼ 0:1m;

m1 ¼ 3kg; m2 ¼ 0:5kg; m3 ¼ 5kg

ð23Þ

In order to simplify the expression of �ðtÞ, please
note that

� ’ðtÞ½ � ¼ IS1þm1r
2
S1þm2l

2
OAþm3l

2
OA cos

2’ðtÞ
� �

40

B ’ðtÞ, _’ðtÞ½ � ¼
1

2
m3l

2
OA _’2ðtÞsin2’ðtÞ

8<
:

ð24Þ

The dynamic model is shown below

€’ðtÞ ¼
B ’ðtÞ, _’ðtÞ½ �

� ’ðtÞ½ �
þ

�ðtÞ

� ’ðtÞ½ �
ð25Þ

The steady-state for

�ðtÞ ¼ �B ’ðtÞ, _’ðtÞ½ � is : €’ðtÞ ¼ 0 ð26Þ

By adding simple linear springs, the input torque
due to the inertial forces is fully cancelled (null value
for �ðtÞ in steady-state) but €’ðtÞ ¼ 0:

Now, for the steady-state, let us consider the
Scotch yoke mechanism with friction in joints. It
should be assumed that the input torque due to fric-
tion in joints can be represented through an additional
constant disturbance d ðtÞ in the state equation as
follows

_’ðtÞ

€’ðtÞ

� �
|fflfflffl{zfflfflffl}

_xðtÞ

¼
0 1

0 0

� �
|fflfflfflffl{zfflfflfflffl}

A

’ðtÞ

_’ðtÞ

� �
|fflfflffl{zfflfflffl}

xðtÞ

þ
0

1

� �
|ffl{zffl}

B

uðtÞ þ
0

1

� �
|ffl{zffl}

E

d ðtÞ

ð27Þ

The observed variable is given by

yðtÞ ¼ 1 0
� �|fflfflfflffl{zfflfflfflffl}

C

xðtÞ ð28Þ

This double integrator is unstable but completely
controllable and observable. It is easily from equation
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(27) that the zero-steady-state error optimal control
law is given by

uðtÞ ¼ �Gx̂ðtÞ � d̂ ðtÞ ð29Þ

The gain matrix G is an appropriate steady-state
optimal feedback, x̂ðtÞ is an estimate of the state-
vector xðtÞ and d̂ ðtÞ is an estimate of the disturbance
d ðtÞ.

The function of the gain matrix G ¼ g1 g2
� �

is to
stabilize the system by moving the closed-loop poles
in the left-half complex plane.

For d̂ ðtÞ ¼ d ðtÞ ¼ 0 and x̂ðtÞ ¼ xðtÞ, we seek uðtÞ
that minimizes the cost

J ¼

Z 1
0

Ly2ðtÞ þ u2ðtÞ
� �

dt

¼

Z 1
0

xTðtÞQCxðtÞ þ u2ðtÞ
� �

dt

The matrix L is based on the controllability tran-
sient gramian defined by

GCð0,TPÞ ¼

Z TP

0

eAtBBTeA
Tt

h i
dt ð30Þ

For the matrix L ¼ TPCGCð0,TPÞC
T

� ��1
, the

matrix QC ¼ CTLC is symmetric and semi-definite
positive. The parameter Tp assume that poles of
closed-loop system may be placed, in the S plane, at
the left or near of the vertical straight with the
abscissa � 1=TP:

The output equation uðtÞ ¼ �GxðtÞ of the control-
ler is unique, optimal, full state feedback control law
with G ¼ BT�C that minimizes the cost J.

The matrix �C is the unique, symmetric, positive
definite solution to the algebraic Riccati equation
AT�C þ�C A��CB BT�C þQC ¼ 0:

For the double integrator, the matrix G is

G ¼ g1¼

ffiffiffi
3
p

T2
P

g2 ¼

ffiffiffiffiffiffiffiffiffi
2
ffiffiffi
3
pp

TP

" #
ð31Þ

Then the closed-loop characteristic polynomial is
given by

PCðsÞ ¼ s2 þ

ffiffiffiffiffiffiffiffiffi
2
ffiffiffi
3
pp

TP
sþ

ffiffiffi
3
p

T2
P

:

If PCðsÞ ¼ s2 þ 2�!nsþ !
2
n,

!n ¼

ffiffiffiffiffiffiffiffiffiffi
3
pp
TP

and � ¼

ffiffiffi
2
p

2

For obtain the observer, the constant disturbance
is the following

_d ðtÞ ¼ 0 ð32Þ

The steady-state optimal observer which allows
estimating xðtÞ and d ðtÞ has the form

_̂’ðtÞ

€̂’ðtÞ

" #
|fflfflfflffl{zfflfflfflffl}

_̂xðtÞ

¼
0 1

0 0

� �
|fflfflfflffl{zfflfflfflffl}

A

’̂ðtÞ

_̂’ðtÞ

" #
|fflfflfflffl{zfflfflfflffl}

x̂ðtÞ

þ
0

1

� �
|ffl{zffl}

B

uðtÞ þ
0

1

� �
|ffl{zffl}

E

d̂ ðtÞ

þ
k1

k2

� �
yðtÞ � 1 0

� �|fflfflfflffl{zfflfflfflffl}
C

’̂ðtÞ

_̂’ðtÞ

" #
|fflfflfflffl{zfflfflfflffl}

x̂ðtÞ

0
BBBB@

1
CCCCA

_̂
d ðtÞ ¼ k3 yðtÞ � 1 0

� �|fflfflfflffl{zfflfflfflffl}
C

’̂ðtÞ

_̂’ðtÞ

" #
|fflfflfflffl{zfflfflfflffl}

x̂ðtÞ

0
BBBB@

1
CCCCA ð33Þ

The state-equations of the observer are

_̂’ðtÞ

€̂’ðtÞ

_̂
d ðtÞ

2
664

3
775

|fflfflfflffl{zfflfflfflffl}
_xEðtÞ

¼

�k1 1 0

�k2 0 1

�k3 0 0

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
AE

’̂ðtÞ

_̂’ðtÞ

d̂ ðtÞ

2
64

3
75

|fflfflfflffl{zfflfflfflffl}
xEðtÞ

þ

0

1

0

2
64

3
75

|fflffl{zfflffl}
BE

uðtÞ

þ

k1

k2

k3

2
64

3
75

|fflfflffl{zfflfflffl}
K

yðtÞ with yðtÞ ¼ 1 0 0
� �|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

CE

xEðtÞ

ð34Þ

The function of the gain matrix K ¼ k1 k2 k3
� �T

is to stabilize asymptotically the observer. The duality
between the optimal regulator and the optimal obser-
ver (Kalman filter) enables us to transfer from the regu-
lator to the observer all important results.

The behavior of the Riccati equation can be
rephrased as follows: AE�O þ�OA

T
E� �OC

T
ECE

�O þQO ¼ 0
The matrix QO ¼ TRGOð0,TRÞ½ �

�1 is based on the
observability transient gramian defined by

GOð0,TRÞ ¼

Z TR

0

eA
T
EtCT

ECEe
AEt

h i
dt ð35Þ

The solution of the observer Riccati equation is

K ¼ �OC
T
E ¼

k1 ¼
c1
TR

k2 ¼
c2

T2
R

k3 ¼
c3

T3
R

� �T
For c21 � 2c2 ¼ 9 and c3 ¼ 12

ffiffiffi
5
p

, the numerical
values are: c1 ¼ 7:198 c2 ¼ 21:408 c3 ¼ 26:83

Then the characteristic polynomial is

POðsÞ ¼ sþ
3:0735

TR


 �
s2 þ

4:1248

TR
sþ

8:7303

T2
R


 �
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If POðsÞ ¼ sþ !1ð Þ s2 þ 2�!0sþ !
2
0

� �
!0 ¼

2:9547
TR

and � ¼ 0:698
Figure 4 shows the closed-loop control system

which accumulates information about the plant
during operation and allows a zero steady-state track-
ing error in spite of constant disturbance d ðtÞ defined
by equation (32).

Let us now consider an illustrative example with
simulations carried out by using ADAMS software.

Illustrative example and numerical
simulations

Let us carry out the torque balancing of a Scotch yoke
mechanism with parameters (Figure 4): lOA ¼ 0:1m;
m1 ¼ 3kg m2 ¼ 0:5kg m3 ¼ 5kg; _’ ¼ 10�s�1;
e01 ¼ e21 ¼ 0:01m; �01 ¼ �21 ¼ 0:2.

To balance the input torque of the Scotch yoke
mechanism shown in Figure 5, two pairs of compres-
sion springs were used. The first pair balances the
input torque for one haft of the crank rotation and
the second pair for other haft of the crank rotation.

Figure 5(a) and (b) shows the Scotch yoke mech-
anism in dead point positions when x ¼ xmax.

The stiffness coefficient k of each pair of springs is
4934:8N=m, which are determined from equation (14)

taking into account that xmax ¼ lOA ¼ 0:1m. The reac-
tion forces in joints O and A are F01j j ¼ 197:39N and
F21j j ¼ 49:35N respectively.
The variations of the reaction forces in revolute

joints O and A for balanced and unbalanced mechan-
isms are given in Figure 6.

The input torque of the initial mechanism without
balancing springs determined from equation (6) and
with them determined from equation (21) is shown in
Figure 7.

Figure 4. The closed-loop control system.

Figure 5. The Scotch yoke mechanism in dead point positions.

Figure 6. The reaction forces in the revolute joints of the

Scotch yoke mechanism before and after balancing.
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The numerical simulations showed that in compari-
son with balanced mechanism, 98% reduction in
input torque has been achieved (from 24.7 Nm to
0.48 Nm).

Let us now consider the optimal control of the
mechanism to ensure the constant input angular vel-
ocity and the given input torque.

The closed-loop control law can be written as

uðtÞ ¼ €’RðtÞ�g1 ’̂ðtÞ�’RðtÞ½ ��g2 _̂’ðtÞ� _’RðtÞ
h i

� d̂ðtÞ

’RðtÞ, _’RðtÞ and €’RðtÞ are given by the equations

’RðtÞ ¼ 10�t

_’RðtÞ ¼ 10�

€’RðtÞ ¼ 0

8><
>:
For Tp ¼ TR ¼ 1s, the following results are

obtained: g1 ¼ 1:732, g2 ¼ 1:861, k1 ¼ 7:198, k2 ¼
21:408, k3 ¼ 26:83:

The responses, with Matlab software, to disturb-
ance at t ¼ 4s are shown in Figures 8 and 9.

Figure 8 presents the angular velocity _’ tð Þ, which
approaches at t ¼ 12s, the constant reference
’R tð Þ ¼ 10�, independently of the disturbance
d ðtÞ ¼ �0:48Nm:

Figure 9 shows the control law uðtÞ ¼
�Gx̂ðtÞ � d̂ ðtÞ with integral action which allows the
disturbance rejection.

The control structure that results from combining
observer with state feedback law has the property that
the constant disturbance is always compensated so
that a zero steady-state regulation or zero tracking
error results.

Conclusion

This paper deals with the input torque balancing of
Scotch yoke mechanisms due to inertia effects. The
input torque balancing in linkages is usually carried
out by adding cam-spring mechanisms. In this study it
is disclosed that Scotch yoke mechanisms can be
balanced without any auxiliary linkage by adding
linear springs to the output slider. Although the
described solution is very simple, this is the first
time, it has been proposed. The analysis of the input
torque showed that the variation of elastic balancing
forces is a function of the slider displacement.
Therefore, the balancing of the input torque of a
Scotch yoke mechanism can be carried out by two
pairs of springs connected with the output slider.
The suggested balancing solution has been improved
for the Scotch yoke mechanism taking into account
the friction in the mechanism’s joints. Numerical
simulations showed that in comparison with balanced
mechanism, 98% reduction in input torque has been
achieved. It has been shown that after balancing the
input torque becomes constant, which facilitate the
control of the mechanism. It has also been shown
that after balancing the reaction forces in two revolute
joints become constant and far less than before bal-
ancing (for the considered mechanism about 91% in
joint A and 72% in joint O).

However, the given reduction can be reached if the
input link has a constant angular velocity. To ensure
this condition an optimal control has been developed.
It was shown that the given optimal control law ensures
a constant input angular velocity taking into account
the friction in joints, as well as the given input torque.

Figure 9. Control law uðtÞ ¼ �Gx̂ðtÞ � d̂ ðtÞ (solid line) and

disturbance �d ðtÞ ¼ 0:48 Nm.

Figure 8. Angular velocity _’ðtÞ (solid line) and _’RðtÞ ¼ 10�
(dashed line).

Figure 7. The input torque of the Scotch yoke mechanism

before and after balancing.
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