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ABSTRACT
This paper deals with the problem of dynamic decoupling of
adjustable serial manipulators via a new mechatronic design
approach, which is based on the opposite motion of manipulator
links and the optimal command design. The goal is to simplify the
control by reducing the effects of complicated manipulator dynam-
ics. The opposite motion of links with optimal redistribution of
masses allows the cancellation of the coefficients of nonlinear terms
in the manipulator’s kinetic and potential energy equations. Then,
by using the optimal control design, the dynamic decoupling is
achieved. The proposed approach, which is a symbiosis of mechani-
cal and control solutions, improves the known design concepts per-
mitting the dynamic decoupling of serial manipulators whilst taking
into account the changing payload. It has two main advantages: at
first, the dynamic decoupling of themanipulator is achievedwithout
connection of gears to the links of themanipulator having oscillating
motions and at second, the performance of the dynamic decou-
pling is improved by the changing payload. The suggested design
methodology is illustrated by simulations carried out using ADAMS
and MATLAB software, which have confirmed the efficiency of the
developed approach.
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1. Introduction

It is known that manipulator dynamics can be highly coupled and nonlinear. The compli-
cated dynamics results from varying inertia, interactions between the different joints, and
nonlinear forces such as Coriolis and centrifugal forces. Nonlinear forces cause errors in
position response at high speed, and have been shown to be significant even at slow speed
(Brady1982). Thus, thedynamicdecouplingof robotmechanismshas attracted researchers’
attention and different solutions have been proposed:

• The linearisation of the dynamic equations and their decoupling via actuator reloca-
tion, that is, by the kinematic decoupling of motion when the rotation of any link is
due to only one actuator (Artobolevskii and Ovakimov 1976; Asada and Youcef-Toumi
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1987; Belyanin et al. 1981; Chung, Gang, and Lee 2002; Minotti 1991; Vukobratović and
Stokić 1980; Youcef-Toumi 1985, 1992; Youcef-Toumi and Asada 1985a). In other terms,
it should be assumed that the actuator displacements are a complete set of independent
generalised coordinates that are able to locate the manipulator uniquely and com-
pletely. The design concept with remote actuation is not optimal from the point of view
of the precise reproduction of the end-effector tasks because it accumulates all errors
due to the clearances and elasticity of the belt transmission mainly used. Obviously, it
is lot better to connect actuators directly with links than to use transmission mecha-
nisms. The manufacturing and assembly errors of the added transmission mechanisms
also have a negative impact to the robot precision.

• The linearisation of the dynamic equations and their decoupling via optimum inertia
redistribution (Abdel-RahmanandElbestawi 1991; Arakelian andDahan1995; Asada and
Slotine 1986; Asada and Youcef-Toumi 1984; Filaretov and Vukobratović 1993; Minotti
and Pracht 1992; Yang and Tzeng 1985, 1986; Youcef-Toumi and Asada 1985b; Youcef-
Toumi and Asada 1986), which can be achieved when the inertia tensors are diagonal
and independent of manipulator configuration. Such an approach is applied to serial
manipulators in which the axes of joints are not parallel. In the case of parallel axes, such
an approach allows linearisation of the dynamic equations but not their dynamic decou-
pling (Gompertz andYang1989). Thus, in the case of planar serialmanipulators, it cannot
be used.

• The linearisation of the dynamic equations and their decoupling via redesign of the
manipulator by adding auxiliary links (Arakelian et al. 2011; Arakelian and Sargsyan
2012; Coelho, Yong, and Alves 2004; Moradi, Nikoobin, and Azadi 2010). Also the mod-
ification of the manipulator design to achieve high-quality dynamic performance is a
promising new approach in the robotics. However, the design methodology proposed
in,which claims that it is the first time theadded linkshavebeenused fordynamicdecou-
pling, leads to the unavoidable increase of the total mass of the manipulator. This is
due to the disposition of the added elements in the end of each link. In (Arakelian and
Sargsyan 2012) a solution has been proposed permitting the dynamic decoupling of the
serial manipulators with a relatively small increase in the total mass of the moving links.
Nevertheless, it should be noted that such a technique has a major disadvantage: the
need for the connection of gears to the oscillating links. The gears added to the oscil-
lating links of the manipulator are sources of shocks between teeth that will lead to
the perturbation of the operation of the manipulator, and to noise and other negative
effects.

The above-mentioned methods provide purely mechanical solutions but it should be
noted that a number of procedures for the synthesis of control systems ensuring high-
quality control of manipulators have been elaborated based on the general form of non-
linear dynamic equations (Chen and Chang 2009; Chen and McInroy 2004; Davliakos and
Papadopoulos 2008; Duchaine, Bouchard, and Gosselin 2007; Kim, Cho, and Lee 2005;
Potkonjak 1982; Sciavicco and Siciliano 2000; Slotine et al. 1991; Ting, Chen, and Jar 2004;
Vukobratović, Stokić, and Kirćanski 1985; Yang, Huang, and Han 2012). However, regard-
less of thepermanent tendency todecrease theprice ofmicrocomputer systems, the cost of
achieving complete dynamic control is still high for high-speed andprecise dynamical tasks
of industrial practice. Therefore, in many cases, the reduction (or cancellation) of coupling



770 V. ARAKELIAN ET AL.

and of nonlinearity in themanipulators is necessary as shown in (Herman 2005, 2006, 2008;
Pons et al. 1997).

It can therefore be concluded that all known mechanical solutions can only be reached
by a considerably more complicated design of the initial structure via adding gears to the
oscillating links leading to the above-mentioned drawbacks. On the other hand, dynamic
decoupling via optimal control of a manipulator with a nonlinear system model and a
changing payload is also rather complex task. That is why this paper proposes a new
approach of dynamic decoupling, which is a symbiosis ofmechanical and control solutions.
It is carried out in two steps. In the first step, the dynamic decoupling of serial manipula-
tor with adjustable lengths of links is achieved via the opposite rotation of links and their
optimal redistribution of masses. Such a solution proposed in the first step eliminates the
need for the connection of gears to the oscillating links. Aswasmentioned above, the gears
added to the oscillating links of the manipulator are sources of shocks between teeth that
lead to the perturbation of the operation of the manipulator, the noise and other negative
effects. This is the first main advantage of the suggested decoupling technique. Thus, the
proposedmechanical solution allows one to transform the original nonlinear systemmodel
into a fully linear system without using the feedback linearisation technique (Arakelian,
Baron, and Mottu 2011). Then, it is shown that the changing payload leads to the pertur-
bation of the dynamic decoupling of the manipulator. Therefore, in the second step, the
dynamic decoupling of the equation of motion due to the changing payload is carried out
using control techniques. The control of serial manipulators that are considered as con-
trollable systems of rigid bodies is normally based on nonlinear regulation and nonlinear
tracking. In nonlinear control, the concept of feedback plays a fundamental role in regu-
lation design, as it does in linear systems. However, the concept of feed forward is always
required toprovide anticipative actions in trackingdesign. It is interesting tonote thatmany
tracking controllers use a feed forward part (to supply the necessary input for following the
specified motion trajectory) and a feedback part (to stabilise the tracking errors dynamics).
Sometimes, the feed forward part can be used to cancel effects of known disturbances. In
the present case, the developed control technique is based on a feed forward part in the
controller to take into account the payload.

Such an approach is promising because it combines the advantages of two differ-
ent principles. It should be noted that the mechanical solutions, which can be used for
dynamic decoupling of motion equations taking into account the changing payload, can
only be reached with any undue complication of the design. Various actuated counter-
weights shouldbe applied. Such an approach is not viable. However, the lineariseddynamic
of the manipulator via opposite rotation of manipulator’s links, proposed in the present
study, leads to relatively simple equations, which are easier to analyse for further dynamic
decoupling, taking into account the changing payload. In other terms, the proposed
mechanical solution leads to the linearised equations of the manipulator, which then facil-
itate the optimal control design for decoupling of dynamic equations, taking into account
the changing payload. This is the second main advantage of the proposed mechatronic
design.

2. Conditions of dynamic decoupling via opposite rotating links

Consider a serial planar manipulator with two degrees of freedom shown in Figure 1.
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Figure 1. A 2-DOF planar serial manipulator.

According to Lagrangian dynamics, the equations of motion can be written as:

[
τ1

τ2

]
=

[
D11 D12

D21 D22

] [
θ̈1

θ̈2

]
+

[
D111 D122

D211 D222

] [
θ̇21
θ̇22

]
+

[
D112 D121

D212 D221

] [
θ̇1θ̇2

θ̇1θ̇2

]
+

[
D1

D2

]
(1)

with

D11 = m1l
2
AS1 + m2l

2
1 + m2l

2
BS2 + 2m2l1lBS2 cos θ2 + IS1 + IS2, (2)

D12 = D21 = m2l
2
BS2 + m2l1lBS2 cos θ2 + IS2, (3)

D22 = m2l
2
BS2 + IS2, (4)

D111 = 0, (5)

D122 = −m2l1lBS2 sin θ2, (6)

D211 = m2l1lBS2 sin θ2, (7)

D222 = 0, (8)

D112 = D121 = −m2l1lBS2 sin θ2, (9)

D212 = D221 = 0, (10)

D1 = (m1lAS1 + m2l1)g cos θ1 + m2glBS2 cos(θ1 + θ2), (11)

D2 = m2glBS2 cos(θ1 + θ2), (12)

where τ1 and τ2 are, respectively, the actuator torques in A and B; l1, l2 are the lengths of
links 1 and 2; θ1 is the angular displacement of link 1 relative to the base; θ2 is the angular
displacement of link 2 relative to link 1; θ̇1 is the angular velocity of link 1 relative to thebase;
θ̇2 is the angular velocity of link 2 relative to link 1;m1,m2 are themasses of links 1 and 2; lAS1
is the distance between the centre of mass S1 of link 1 and joint centre A; lBS2 is the distance
between the centre of mass S2 of link 2 and joint centre B; IS1 is the axial moment of inertia
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of link 1 relative to the centre of mass S1 of link 1; IS2 is the axial moment of inertia of link 2
relative to the centre of mass S2 of link 2; g is the gravitational acceleration.

Now, let us consider that the second link is statically balanced, that is, lBS2 = 0 and the
gravitational forces are perpendicular to the motion plane xOy, that is, D1 = D2 = 0.

In this case, Equation (1) can be rewritten as:

[
τ1

τ2

]
=

[
IS2 + IS1 + m1l2AS1 + m2l21 IS2

IS2 IS2

] [
θ̈1

θ̈2

]
=

[
a + b a
a a

] [
θ̈1

θ̈2

]
, (13)

where, a = IS2; b = IS1 + m1l2AS1 + m2l21.

or

⎧⎨
⎩
τ1 = (IS1 + m1l2AS1 + m2l21)θ̈1 + IS2(θ̈1 + θ̈2) = bθ̈1 + a(θ̈1 + θ̈2),

τ2 = IS2(θ̈1 + θ̈2) = a(θ̈1 + θ̈2).
(14)

From these equations, it follows that if θ̈1 = −θ̈2:

τ1 = (IS1 + m1l
2
AS1 + m2l

2
1)θ̈1 = bθ̈1,

τ2 = 0, (15)

that is, the dynamic equations are decoupled and the second actuator torque is cancelled.
Let us now consider the geometric synthesis for ensuring such a decoupling.

3. Adjustment lengths of links for ensuring opposite rotation of links

According to the inverse kinematics of the 2-DOF serial manipulator, the joint angles can
be expressed as:

θ1 = tan−1
[
y(l1 + l2 cos θ2)− xl2 sin θ2
x(l1 + l2 cos θ2)+ yl2 sin θ2

]
, (16)

θ2 = ±cos−1

[
x2 + y2 − l21 − l22

2l1l2

]
, (17)

where x and y are the coordinates of the end-effector with l2 = lBP (see Figure 1).
The given expressions show that for the same end-effector position, there are two possi-

ble configurations of the manipulator called ‘elbow down’ (configuration noted (1)) and
‘elbow up’ (configuration noted (2)). The fact that a manipulator has multiple solutions
would be used for ensuring the dynamic decoupling. Figure 2 shows two configurations
of the manipulator corresponding to the initial end-effector position Pi and the final end-
effector position Pf . As it has beenmentioned above, the initial position of the end-effector
can be found by the following solutions: θ i1(1), θ

i
2(1) ‘elbowdown’ solution, θ i1(2), θ

i
2(2) ‘elbow

up’ solution (not shown) and the final position of the end-effector by θ f1(1), θ
f
2(1) ‘elbow
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Figure 2. Two configurations of the 2-DOF planar serial manipulator corresponding to the initial and
final end-effector positions.

down’ solution (not shown), θ f1(2), θ
f
2(2) ‘elbow up’ solution. Thus, the links of the manip-

ulator move in such a manner that in the initial end-effector position (Pi), where the
configuration of the manipulator will correspond to the ‘elbow down’ solution; and, in the
final end-effector position (Pf ), where the configuration of themanipulator will correspond
to the ‘elbow up’ solution.

This choice of initial and final end-effector configurations of the manipulator with an
optimal selection of lengths l1 and l2 allows equal (�θ1 = �θ2) and opposite (θ̇1 = −θ̇2)
rotations of links 1 and 2, that is, |θ f1(2) − θ i1(1)| = −|θ f1(2) + θ i1(1)|. These conditions lead to

θ̈1 = −θ̈2 and consequently to Equations (15).
Figure 3 shows the proposed adjustable serial manipulator for ensuring the mentioned

conditions. It is composed of link 1 with elements 1a, 1b and link 2 with elements 2a, 2b.
The adjustable links of themanipulator allow an optimal selection of the lengths l1 and l2 of
links 1 and 2, which ensures an identical and opposite rotation of links. It can also be seen
that the proposed manipulator is provided with a double Scott–Russell mechanism, which
ensures the static balancing of link 2 for any position of element 2b (Arakelian and Briot
2015; Briot et al. 2009).

Now consider the operation of the proposed manipulator. First, consider the selection
of lengths l1 and l2 of links 1 and 2 for any given trajectory. To limit the variables in the
specified conditions, suppose that the following parameters are given:

• the initial position Pi of the end-effector: xi, yi;
• the final position Pf of the end-effector: xf , yf ;
• the initial angular position of the second link: θ i2(1);

• the rotating angle of the first link:�θ1 = θ f1(2) − θ i1(1).
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Figure 3. The 2-DOF adjustable serial manipulator with decoupled dynamics.

The geometrical equations of the manipulator with the specified conditions lead to the
following expressions:

l1 = x2f + y2f − x2i − y2i
2l2(cos θ f2(2) − cos θ i2(1))

, (18)

l2 =
[

−ξ − (ξ2 − 4χ)
1/2

2

]1/2

, (19)

where

χ =
[

x2f + y2f − x2i − y2i
2(cos θ f2(2) − cos θ i2(1))

]2

, (20)

ξ = 2(χ)1/2 cos θ i2(1) − x2i − y2i , (21)

θ f2(2) = −(�θ1 − θ i2(1)). (22)

Thus, the lengths l1 and l2 of links 1 and 2 determined from Equations (18) and (19) will
ensure equal (�θ1 = �θ2) and opposite (θ̇1 = −θ̇2) rotations of links.

For illustration and validation of the suggested design concept, the simulations using
ADAMS software have been carried out for a 2-DOF adjustable manipulator. The param-
eters of the manipulator are the following: m1 = 4 kg, m2 = 1.2 kg, IS1 = 0.16 kgm2,
IS2 = 0.1 kgm2, lBS2 = 0and lAS1 = 0.21m. The trajectory has been generated between the
initial position Pi with coordinates xi = 0.5627m, yi = 0.3654m and the final position
Pf with coordinates xf = 0.0657m, yf = 0.5236m. With θ i2(1) = 0◦ and�θ1 = �θ2 = 77◦,
from Equations (20) to (22), θ f2(2),χ , ξ are determined and then from Equations (18) to
(19), the link lengths: l1 = 0.42m and l2 = 0.25m. The generation of motions between the
initial and final positions of the links has been carried out using a fifth-order polynomial
expression.

Figures 4 and 5 show actuator torques. It can be seen that the torque of second actuator
is cancelled and the torque of the first actuator is linear to the actuator acceleration. Thus,
the manipulator is dynamically decoupled.



JOURNAL OF ENGINEERING DESIGN 775

Figure 4. Torque (solid line) and angular acceleration (dashed line) of the first actuator.

Figure 5. Torque (solid line) and angular acceleration (dashed line) of the second actuator.

In the end of this section, it should be noted that the links kinematically adjustable
in its length can be designed either by adjustment of pivots or by the link length (Cop-
pola et al. 2013; Peng 2010). However, the aim of this paper is to show the advantages of
the mechatronic design combining both mechanical and control solutions. Therefore, the
technological aspects including the design particularities of adjustment links will not be
discussed.

4. Dynamic decoupling taking into account the payload

Theprevious sections have beendevoted to themechanical solution permitting the decou-
pling of the dynamic equations via optimal motions and special variations of mass redistri-
bution. However, it is obvious that the changing payload creates the variable forces on the
actuators, which are also nonlinear. According to the above results, the dynamic equations
due to the mass�m of the payload can be written as:

τ1 = [IS1 + m1l
2
AS1 + m2l

2
1]θ̈1 +�ml1[l1 + l2 cos(θ2)]θ̈1 − [�ml1l2 sin(θ2)]θ̇1θ̇2, (23)

τ2 = �ml1l2[cos(θ2)θ̈1 + sin(θ2)θ̇21 ]. (24)
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From these equations, it follows if�m = 0:

τ1 = [IS1 + m1l
2
AS1 + m2l

2
1]θ̈1 = bθ̈1, (25)

τ2 = 0. (26)

The payload compensation is given by:

�τ1 = �ml1[l1 + l2 cos(θ2)]θ̈1 −�ml1l2 sin(θ2)θ̇1θ̇2, (27)

�τ2 = �ml1l2[cos(θ2)θ̈1 + sin(θ2)θ̇21 ]. (28)

5. Illustrative example with simulation results

In this section, the performance of the proposed technique is examined through computer
simulation for the study example presented in Figure 3, with payload compensation and
without payload compensation. The introduction of the payload leads to an unbalance of
the second link of themanipulator, and dynamic equations of the systemwith payload can
be written as follows:

τ1 = ψ(θ2)θ̈1 + [γ2 + β(θ2)]θ̈2 − 2α(θ2)θ̇1θ̇2 − α(θ2)θ̇
2
2 , (29)

τ2 = [γ2 + β(θ2)]θ̈1 + γ2θ̈2 + α(θ2)θ̇
2
1 , (30)

where

α(θ2) = M2l1lBS2 sin(θ2); β(θ2) = M2l1lBS2 cos(θ2)

ψ(θ2) = γ1 + γ2 + M2l
2
1 + 2β(θ2); γ1 = [IS1 + m1l

2
AS1]; γ2 = [IS2 + M2l

2
BS2]

withM2 = m2 +�m and lBS2 = (�m/(m2 +�m))l2
The inverse dynamic equations of the study system are:

θ̈1 = γ2

�(θ2)
τ1 − [γ2 + β(θ2)]

�(θ2)
τ2 + γ2α(θ2)

�(θ2)
θ̇1θ̇2

+ α(θ2)[γ2 + β(θ2)]
�(θ2)

θ̇21 + γ2α(θ2)

�(θ2)
(θ̇1 + θ̇2)θ̇2, (31)

θ̈2 = − [γ2 + β(θ2)]
�(θ2)

τ1 + ψ(θ2)

�(θ2)
τ2 − α(θ2)[γ2 + β(θ2)]

�(θ2)
θ̇1θ̇2

− α(θ2)ψ(θ2)

�(θ2)
θ̇21 − α(θ2)[γ2 + β(θ2)]

�(θ2)
(θ̇1 + θ̇2)θ̇2, (32)

where�(θ2) = γ1γ2 + M2l21IS2 + [α(θ2)]2 > 0
The manipulator, which is the system to be controlled, will be described by Equations

(31) and (32). These equations are used for the simulation of the system with MATLAB
software. The state of the system x = [θ1 θ2 θ̇1 θ̇2]T has been integrated by Runge–Kutta
method.

In the following section, two types of controllers for the simulation will be considered:
open-loop controller and closed-loop controller. At first, to demonstrate the influence of
the payload compensation, the open loop control system, which is a non-feedback system,
will be used.
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5.1. Open-loop control system

Figure 6 shows the open-loop control system. The open-loop controller obviously has no
access to any information about the manipulator.

The open-loop control law can be written as:

τ1(t) = τ1R(t)+�τ1R, (33)

τ2(t) = τ2R(t)+�τ2R, (34)

where

τ1R(t) = (a + b)θ̈1R(t)+ aθ̈2R(t), (35)

τ2R(t) = aθ̈1R(t)+ aθ̈2R(t). (36)

The payload compensation is given by:

�τ1R = �ml1[l1 + l2 cos(θ2R)]θ̈1R −�ml1l2 sin(θ2R)θ̇1Rθ̇2R, (37)

�τ2R = �ml1l2[cos(θ2R)θ̈1R + sin(θ2R)θ̇
2
1R] (38)

with

θ1R(t) = θ i1 + (θ f1 − θ i1)

(
t

T

)3
[
10 − 15

(
t

T

)
+ 6

(
t

T

)2
]

θ2R(t) = θ i2 + (θ f2 − θ i2)

(
t

T

)3
[
10 − 15

(
t

T

)
+ 6

(
t

T

)2
], 0 ≤ t ≤ T ,

θ̇1R(t) = 30
T
(θ f1 − θ i1)

(
t

T

)2
[
1 − 2

(
t

T

)
+

(
t

T

)2
]

θ̇2R(t) = 30
T
(θ f2 − θ i2)

(
t

T

)2
[
1 − 2

(
t

T

)
+

(
t

T

)2
], 0 ≤ t ≤ T ,

θ̈1R(t) = 60
T2
(θ f1 − θ i1)

(
t

T

) [
1 − 3

(
t

T

)
+ 2

(
t

T

)2
]

θ̈2R(t) = 60
T2
(θ f2 − θ i2)

(
t

T

) [
1 − 3

(
t

T

)
+ 2

(
t

T

)2
], 0 ≤ t ≤ T .

Figure 6. The open-loop control system.
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The initial and final positions of themanipulator given as illustrative example in Section 3
are:
θ i1 = θ i1(1) = 33◦; θ i2 = θ i2(1) = 0◦ and θ f1 = θ f1(2) = 110◦; θ f2 = θ f2(2) = −77◦. The trajec-

tories θ1R(t) and θ2R(t) are functions of time such that [θ1R(0) θ2R(0)]T = [θ i1 θ
i
2]
T and

[θ1R(T) θ2R(T)]T = [θ f1 θ
f
2]
T. In this case, T represents the amountof time taken toexecute the

trajectories. Since the trajectories are parameterised by time, velocities and accelerations
can be obtained along the trajectories by differentiation.

Hence θ f2 = θ i1 + θ i2 − θ f1 ⇒ θ̈2R(t) = −θ̈1R(t) and θ̇2R(t) = −θ̇1R(t)
For T = 1s and �m = 1 kg (payload), the responses with MATLAB of the manipulator

given for illustration in Section 3, are presented in Figures 7 and 8.
The dashed curves show the torques and the angular displacements of the manipulator

without payload compensation and the solid curves show the same parameters with pay-
load compensation. It can thus be seen that there are errors between these two cases. With

Figure 7. Torqueswith payload compensation (solid line) andwithout it (dashed line) for the open-loop
system.

Figure 8. Angular displacements of links with payload compensation (solid line) andwithout it (dashed
line) for the open-loop system.
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payloadcompensation, both linksof themanipulator can rotate exactly to the target angles.
But, without payload compensation, the errors of angular displacements of link 1 and 2
are, respectively, 39% and 16.5%. The effect of feedforward control taking into account the
payload is verified. Thus, a feedback control is needed to reduce the errors.

5.2. Closed-loop control system

Figure 9 shows the closed-loop control system, which accumulates information about the
manipulator during operation and can reduce the effect of the payload.

The closed-loop control law can be written as:

τ1(t) = τ1R(t)+�τ1R(t)− g11[(a + b)[θ̇1(t)− θ̇1R(t)] + a[θ̇2(t)− θ̇2R(t)]]

− g12[(a + b)[θ1(t)− θ1R(t)] + a[θ2(t)− θ2R(t)]], (39)

τ2(t) = τ2R(t)+�τ2R(t)− g21[a[θ̇1(t)− θ̇1R(t)] + a[θ̇2(t)− θ̇2R(t)]]

− g22[a[θ1(t)− θ1R(t)] + a[θ2(t)− θ2R(t)]], (40)

where τ1R(t), τ2R(t),�τ1R(t) and�τ2R(t) are given by Equations (35)–(38).
The constant gain elements g11, g12 and g21, g22 are obtained by an optimal pole-

placement design through state feedback. The state space representation of the 2-DOF
adjustable serial manipulator, which is statically balanced, can be written as:

⎡
⎢⎢⎣
θ̇1

θ̈1

θ̇2

θ̈2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
θ1

θ̇1

θ2

θ̇2

⎤
⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0
1
b

−1
b

0 0

−1
b

1
a

+ 1
b

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

[
τ1

τ2

]
.

The controllable canonical form is given by two independent subsystems as follows:[
(a + b)θ̈1 + aθ̈2
(a + b)θ̇1 + aθ̇2

]
=

[
0 0
1 0

] [
(a + b)θ̇1 + aθ̇2
(a + b)θ1 + aθ2

]
+

[
1
0

]
τ1

[
aθ̈1 + aθ̈2
aθ̇1 + aθ̇2

]
=

[
0 0
1 0

] [
aθ̇1 + aθ̇2
aθ1 + aθ2

]
+

[
1
0

]
τ2. (41)

Figure 9. The closed-loop control system.
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The subsystems (41) are represented by the normalised state space model of a double
integrator (the two eigenvalues of the state matrix are equal to zero).

A double integrator [
ϕ̈(t)
ϕ̇(t)

]
︸ ︷︷ ︸

ẋ(t)

=
[
0 0
1 0

]
︸ ︷︷ ︸

A

[
ϕ̇(t)
ϕ(t)

]
︸ ︷︷ ︸

x(t)

+
[
1
0

]
︸︷︷︸
B

u(t)

is completely controllable.
Thus, u(t) must be found that minimises the cost J = ∫ ∞

0 [xT(t)Qx(t)+ u2(t)] dt where
the matrix Q is based on the controllability Gramian (Franklin, David Powell, and Emami-
Naeini 1994) defined by:

Gc(0, Tp) =
∫ Tp

0
[eAtBBTeA

Tt] dt.

The matrix Q = [TpGc(0, Tp)]−1 is symmetric and positive definite. The parameter Tp
assume that poles of closed-loop system may be placed in the S plane, at the left of the
vertical straight with the abscissa −1/Tp.

The linear quadratic controller is unique, optimal u(t) = −Gx(t), the full state feedback
control law with, G = BT�, minimises the cost J.

The matrix� is the unique, symmetric, positive definite solution to the algebraic Riccati
equation AT� +�A −�BBT� + Q = 0 (Lancaster and Rodman 1995).

For the double integrator, the matrix G gives:

G =
[
g2 = 2

√
3

T2P
g1 = 2

√
1 + √

3
TP

]
.

Then the closed-loop characteristic polynomial is:

P(s) = s2 + 2
√
1 + √

3
TP

.s + 2
√
3

T2P
.

If P(s) = s2 + 2ζωn.s + ω2
n, we obtain by identification:

ωn =
√
2
√
3

TP
ζ =

√
1 + √

3√
2
√
3

= 0, 9.

For T = 1s, Tp = 0.2s and �m = 1 kg(payload), the responses calculated with MATLAB
are presented in Figures 10 and 11.

As in the previous case, the dashed curves show the torques and the angular displace-
ments of the manipulator without payload compensation and the solid curves show the
same parameters with payload compensation. With the feedback control, the payload
compensation allows an exact reproduction of manipulator motions. However, with the
feedback control, the errors of angular displacements of links 1 and 2 without payload
compensation (see Figures 10 and 11) are not more than 2%. Thus, without payload com-
pensation, the use of the feedback control reduces errors, but it does not eliminate them
entirely.
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Figure 10. Torques with payload compensation (solid line) and without it (dashed line) for the closed-
loop system.

Figure 11. Angular displacements of links with payload compensation (solid line) and without it
(dashed line) for the closed-loop system.

6. Discussion

The novelty of the developed method consist in the fact that the opposite rotation for
dynamic decoupling is achieved not by including gears in the existing systembut by oppo-
site rotation of the links themselves. It is obvious that such a condition can only be satisfied
by links with adjustable lengths. The design of links kinematically adjustable is known and
the authors were limited just a few references. This is due also to the fact that each designer
will solve this problem in his own way, based on the particularity of the developed manip-
ulator (the types of motors and joints, the constraints onweight and size of links, etc.). With
regard to possible examples of the application of this method, it should be noted that the
frequent adjustment of the links’ lengths is not optimal since it results in a loss of time and
energy sources. Therefore, the authors see an eventual implementation of the developed
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method in fixed-sequence manipulators with predetermined initial and final positions of
the manipulator gripper. This often occurs in pick-and-place systems with initial and final
positions of the gripper predetermined for a certain number of similar cycles. It should
be noted that the possible applications would result from these properties and cannot
be identified more specifically. Any technological process which needs a fixed-sequence
manipulation can be a potential field of application of this solution.

7. Conclusion

This paper deals with the design concept of adjustable serial manipulators with linearised
and decoupled dynamics taking into account the changing payload. It is achieved by
adding links of adjustable lengths to the initial architecture with a double Scott–Russell
mechanism and by using an optimal control technique. Such a dynamic decoupling is a
symbiosis of mechanical and control solutions. It is carried out in two steps. At first, the
dynamic decoupling of the serial manipulator with adjustable lengths of links is accom-
plished via an opposite rotation of links and optimal redistribution of masses. Such a
solution proposed for the first time allows one to carry out the dynamic decouplingwithout
connection of gears to the oscillating links. The elimination of gears from design concept
is a main advantage of the suggested solution. Thus, the proposed mechanical solution
allows one to transform the original nonlinear system model into a fully linear system
without using the feedback linearisation technique. However, it is obvious that the chang-
ing payload leads to the perturbation of the dynamic decoupling of the manipulator. To
ensure linearised and decoupled dynamics of the manipulator for any payload, an optimal
control technique is applied. It is shown that the dynamic decoupling of the manipulator
simplifies the control solution ensuring the dynamic decoupling taking into account the
changing payload. The perturbation of required motions of the manipulator with payload
compensation and without it is shown via ADAMS and MATLAB simulations. Two kinds of
simulations are carried out with open-loop control systemwhich is a non-feedback system
andclosed-loopcontrol system. Theobtained results showed theefficiencyof theproposed
solution.
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