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Abstract

We study the kinematic geometry of general 3-RPR planar parallel ro-
bots with actuated base joints. These robots, while largely overlooked,
have simple direct kinematics and large singularity-free workspace.
Furthermore, their kinematic geometry is the same as that of a newly
developed parallel robot with SCARA-type motions. Starting from the
direct and inverse kinematic model, the expressions for the singularity
loci of 3-RPR planar parallel robots are determined. Then, the global
behavior at all singularities is geometrically described by studying
the degeneracy of the direct kinematic model. Special cases of self-
motions are then examined and the degree of freedom gained in such
special configurations is kinematically interpreted. Finally, a practi-
cal example is discussed and experimental validations performed on
an actual robot prototype are presented.

KEY WORDS—planar parallel robot, kinematic geometry,
singularity, self-motion

1. Introduction

From an industrial point of view, the complexity and existence
of numerous singular configurations seems to be the worst
drawback of parallel robots as these configurations reduce the
size of the workspace, which is already smaller than that of
similarly-sized serial robots. Fortunately, the determination of
singularities is a well-researched problem and several compu-
tational methods have already been presented (Gosselin and
Angeles 1990� Zlatanov et al. 1994� Bonev et al. 2003).
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The worst singular configuration a parallel robot can meet
is the Type 2 singularity (Gosselin 1990). In such a singularity,
the robot gains at least one degree of freedom and cannot resist
some wrenches applied to its platform. Furthermore, the robot
cannot exit such a singular configuration without external help.
Type 2 singular configurations can be divided into two classes
depending on the nature of the degree(s) of freedom gained,
being either infinitesimal or finite, i.e. self-motion. However,
by merely studying the Jacobian (Gosselin and Angeles 1990�
Bonev et al. 2003), one cannot identify the nature of Type 2
singularities.

Symmetry and, more precisely, design conditions that sim-
plify the generally too complex direct kinematics of parallel
robots are often privileged by robot designers. Unfortunately,
such design conditions usually lead to self-motions, which are
certainly the worst type of singularity. Furthermore, as we
show in this paper, self-motions also occur in unsymmetrical
seemingly general designs without simplified direct kinematic
models. Hence, it is essential that the design conditions for
such self-motions be well known in order to be avoided.

Several papers discuss self-motions in parallel robots. Not
surprisingly, most of them deal with the Gough-Stewart plat-
form whose direct kinematic model leads to as many as 40
real solutions for a relatively general design. Design conditions
simplifying the direct kinematics of Gough-Stewart platforms,
subsequently leading to self-motions, are given in: Husty and
Zsombor-Murray (1994)� Karger and Husty (1998)� Husty and
Karger (2000)� Karger (2001, 2003)�Wohlhart (2003). A clas-
sification of all self-motions of the Stewart-Gough platform
is presented in Karger and Husty (1998). It is shown that
the self-motions can be translations, pure rotations, general-
ized screw motions, motions equivalent to the displacements
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of spherical four-bar mechanisms or more complex spatial
motions.

The Stewart-Gough platform is not the only parallel ro-
bot with self-motions. A few other parallel robots having self-
motions have also been studied. For example, in Bonev et al.
(2006), it is shown that all singularities of the special 3-RRR (R
stands for a passive revolute joint, and R for an actuated rev-
olute joint) spherical parallel robot, known as the Agile Eye,
are self-motions. The analysis of self mobility of spatial 5R
closed-loop mechanisms with one degree of freedom are pre-
sented in Karger (1998). Bandyopadhyay and Ghosal (2004)
discuss the determination of generalized analytical expressions
for the analysis of self-motions and present several examples
for both planar and spatial mechanisms with legs composed of
R joints.

In this paper, we study the self-motions of general 3-
RPR planar parallel robots (P stands for a passive prismatic
joint). The 3-RPR planar parallel robot has a simple direct
kinematic model and, when properly designed, a relatively
large singularity-free workspace. However, despite these ad-
vantages, only a couple of works deal with this kind of ro-
bot (Hayes 1999� Hayes and Zsombor-Murray 2004). How-
ever, a recently developed new decoupled parallel robot with
SCARA-type motions (Briot and Arakelian 2007) has its pla-
nar displacements governed by the same kinematic model as
that of a 3-RPR planar parallel robot. Furthermore, the self-
motions of a particular design of a 3RPR planar parallel robot
with congruent equilateral base and platform were studied in
Chablat et al. (2006), mainly from a theoretical point of view.
This paper basically generalizes that study and demonstrates
the advantages of general 3-RPR planar parallel robots.

The rest of this paper is organized as follows. Section 2
deals with the kinematics of the general 3-RPR planar paral-
lel robot. The direct and inverse kinematic models are derived
from the closure equations, and the singularity analysis based
on the observation of the rank of the Jacobian matrix is pre-
sented. Section 3 presents a self-motion analysis based on the
degeneracy of the direct kinematic model. Singularity loci are
given and the degree of freedom gained is kinematically inter-
preted. Section 4 deals with a particular case of 3-RPR planar
parallel robot with equilateral base and platform triangles and
the results obtained are validated on an actual robot prototype.
Conclusions are drawn in Section 5.

2. Kinematics and Singularity Analysis

The following analysis is based on the schematics of the robot
shown in Figure 1. The revolute joints Ai (i = 1, 2, 3) are fixed
on the base and are actuated. Each leg is composed of one pas-
sive prismatic joint, placed between points Ai and Bi , and one
passive revolute joint Ci , connected to the mobile platform.

We consider that we control the position (x, y) of point P
from the mobile platform and the orientation � of the mo-
bile platform. The origin of the base frame is chosen at point

Fig. 1. Schematic representation of the 3-RPR planar parallel
robot under study.

O. Points O and P are located at the centers of the circum-
scribed circles of triangles A1A2A3 and C1C2C3, respectively
(Figure 2). Finally, let �i = �Ai Bi � and Li = �Bi Ci �, the latter
referred to as an offset.

It is therefore possible to express the position of points Ai

and Ci as

OAi �
�

xAi

yAi

�
� Rb

�� cos � i

sin � i

�� �

OCi �
�

xCi

yCi

�
�
�

x

y

�
� Rp

�� cos�� � �i �

sin�� � �i �

�� (1)

where � i � ��b � 	���b���b � 
b� and �i � �� p �
	��� p��� p � 
 p�. From these expressions and referring to
Bonev et al. (2003), one can determine the closure equations
of the system:

OCi �OBi �
�

xCi � xAi � �i cos � i

yCi � yAi � �i sin � i

�

� Li

�
� sin � i

cos � i

�
� (2)

Refer to Bonev et al. (2003) for the full derivation. The ve-
locity equation for the 3-RPR robot is:

A
� ��� �x� �y�T � B

� ��1� ��2� ��3
�T

(3)

with

A �

�			�
fT
1 Eg1 fT

1

fT
2 Eg2 fT

2

fT
3 Eg3 fT

3

�


� � B �

�		�
�1 0 0

0 �2 0

0 0 �3

�

� � (4)
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Fig. 2. Parameterization of the base and platform triangles: (a) fixed base and (b) mobile platform.

and

gi �
�

xCi � x yCi � y
�T
� E �

�� 0 1

�1 0

�� �

fi �
�� � sin � i

cos � i

�� � (5)

2.1. Inverse kinematic problem

Solving the inverse kinematics for each leg of this robot is es-
sentially finding the intersection points between two circles,
one with diameter �Ai Ci � centered at the middle of segment
Ai Ci , and one with radius Li centered at Ci . Pre-multiplying
both sides of Equation (2) with the term fT

i , one can obtain
an equation expressing the angles � i as a function of the other
parameters:

�xCi � xAi � sin � i � �yCi � yAi � cos � i � Li � 0� (6)

From Equation (6), it is possible to find the expressions for
the active-joint variables � i as functions of the position (x, y)
and the orientation � of the mobile platform:

� ip � 2 tan�1



��xCi�xAi ��

�
�xCi�xAi �2��yCi�yAi �2�L2

i
�Li�yCi�yAi

�
� (7a)

� im � 2 tan�1



��xCi�xAi ��

�
�xCi�xAi �2��yCi�yAi �2�L2

i
�Li�yCi�yAi

�
� (7b)

The two solutions � ip and � im define the two inverse kine-
matic solutions for leg i (Figure 3). These define a total of

Fig. 3. The two inverse kinematic solutions of the ith leg of the
robot: (a) first solution, �i (+) and (b) second solution, �i (–).

eight solutions to the inverse kinematics of the parallel robot,
also called working modes (Wenger and Chablat 1998). We
will see that for this robot, provided there are non-zero offsets
Li 
 0, the singularity loci will depend on the working mode.

2.2. Type 1 Singularities

Type 1 singularities occur when the determinant of B van-
ishes, i.e. when �i = 0 (for i = 1, 2, or 3) (Figure 4) (Bonev
et al. 2003). These configurations correspond to the internal
boundaries of the workspace of a general 3-RPR planar par-
allel robot. When the offsets are zero, i.e. Li = 0, there is a
generic Type 1 (RI) singularity where the input velocities are
indeterminate (Zlatanov et al. 1994). On this singularity, the
inverse kinematic model of leg i admits only one solution be-
cause �xCi � xAi �

2 � �yCi � yAi�
2 � L2

i � �2
i � 0.

2.3. Direct Kinematic Problem

It is shown in Merlet (1996) that the solution of the direct kine-
matics of a 3RPR planar parallel robot is equivalent to finding
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Fig. 4. Type 1 singularity.

Fig. 5. Geometric interpretation of the direct kinematics.

the intersection points between an ellipse and a line, but no
analytical expressions are given. Let us dismount the revolute
joint at C3. For given active-joint variables �1 and �2, points C1

and C2 are constrained to move along two lines, �1 and �2, re-
spectively, and the mobile platform undergoes a Cardanic mo-
tion (Sekulie 1998� Tischler et al. 1998) (Figure 5). As a result,
any points Q from the mobile platform, including P and Ci , de-
scribe a curve �(Q), which can be an ellipse, two parallel lines
or a doubly-traced line segment. Thus, the direct kinematics
can be solved by finding the intersection points between the
curve �(C3) and the line �3.

Let us now derive the expression of the elliptic curve �(C3).
It is possible to write the following closure equation:

OC3 � OA1 �A1B1 � B1C1 �C1C3� (8)

This yields the expression:

OC3 �
�

xC3

yC3

�
�
�

xA1

yA1

�

� �1

�� cos �1

sin �1

��� L1

�� � sin �1

cos �1

��

� 2Rp cos




 p

2
� � p

��	� cos
�

 p
2 � �

�
sin
�

 p
2 � �

�
�
� � (9)

In this expression, all parameters are known except �1 and
�. However, they are dependent on each other. Without loss
of generality, we choose � as the independent variable and ex-
press �1 as a function of �, using the closure equation:

A1A2 � A1B1 � B1C1 �C1C2 �C2B2 � B2A2� (10)

Developing this relation, we obtain:�
xA2 � xA1

yA2 � yA1

�
� �1

�� cos �1

sin �1

��� L1

�� � sin �1

cos �1

��

� 2Rp cos� p

�� cos�

sin�

��

� L2

�� � sin �2

cos �2

��� �2

�� cos �2

sin �2

�� �(11)

Expressing �1 and �2 as a function of � from Equation (11),
we obtain:

� j � a j1 � a j2 cos� � a j3 sin�� � j � 1� 2� (12)

where the expressions for a ji are given in the appendix. Sub-
stituting Equation (12) into Equation (9), we find the relation:

OC3 �
�

xC3

yC3

�
�
�� b11 � b12 cos� � b13 sin�

b21 � b22 cos� � b23 sin�

�� � (13)

where b ji (j = 1, 2) are given in the appendix.
Therefore, for any fixed input parameters � i , we have found

in Equation (13) the parametric expression of the elliptic curve
�(C3) depending on the orientation � of the platform. Further-
more, we know that point C3 belongs to line �3 with expres-
sion:

y � tan �3�x � L3 sin �3 � xA3�� yA3 � L3 cos �3� (14)
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Fig. 6. Type 2 singularities of the parallel robot: (a) infinitesimal rotation about W and (b) finite translation (self-motion) along
the direction of the prismatic joints.

Thus, the intersections between �(C3) and �3 can be found
by substituting x and y in Equation (14) by the expressions of
xC3 and yC3 of Equation (13). After the substitution into Equa-
tion (14) and multiplying the equation by cos �3, we obtain:

0 � sin �3�xC3 � L3 sin �3 � xA3�

� cos �3�yA3 � L3 cos �3 � yC3�� (15)

Developing Equation (15),

c1 � c2 cos� � c3 sin� � 0� (16)

where ci are given in the appendix. From Equation (16), it is
therefore possible to find the solution for �:

� � 2 tan�1

���c3 �
�

c2
3 � c2

1 � c2
2

c1 � c2

�� � (17)

Note that this solution is not unique and corresponds to the
two assembly modes of the robot. Finally, it is possible to find
the expression for the position using the closure equation:

OP � OA1 �A1B1 � B1C1 � C1P (18)

which yields:

OP �
�

x

y

�
�
�

xA1

yA1

�
� �1

�� cos �1

sin �1

��

� L1

�� � sin �1

cos �1

��� Rp

�� cos�� � � p�

sin�� � � p�

�� �(19)

2.4. Type 2 Singularities Analysis

Type 2 singularities occur when the determinant of A vanishes.
It can be shown that the numerator of the determinant of ma-
trix A contains three radicals and is dependent on the working
mode. If we manipulate this expression properly and raise it
to square three times, we can obtain a polynomial of degree
16 in x and y (Bonev et al. 2003). This polynomial will cover
all working modes. Note, however, that if Li = 0, the numer-
ator becomes a quadratic polynomial in x and y and that the
denominator of this expression is equal to �1�2�3. Unfortu-
nately, the study of this determinant cannot characterize the
motion gained by the mobile platform at Type 2 singularities.

In a Type 2 singularity, the lines normal to the directions of
the prismatic joints passing through points Ci are concurrent
or parallel (Figure 6) (Bonev et al. 2003). These lines coincide
with the direction of the forces Ri applied to the platform by
the actuators.

However, we need more information for characterizing the
complete kinematic behavior of the robot inside such a singu-
lar configuration. This can be found by studying the degen-
eracy of the direct kinematic model. Thus, there are Type 2
singularities if the following holds.

1. �(C3) is an ellipse tangent to �3: in such a case, the
directions of the three forces Ri intersect at one point W
and the robot gains one infinitesimal rotation about this
point (Figure 6a).

2. �1, �2 and �3 are parallel and �(C3) degenerates to two
lines parallel to �1 and �2 (and �3): in such a case, the
directions of the three forces Ri are parallel and the robot
gains one self-motion of translation (Figure 6b).
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Fig. 7. Cardanic self-motion.

3. �(C3) degenerates to a doubly-traced line segment par-
allel to �3: this case will be discussed in detail in Sec-
tion 3.

3. Analysis of Self-motions

Self-motions are certainly the worst type of singularity a par-
allel robot can encounter. If the robot enters such a singular-
ity, since there are infinitely many possible poses for the same
active-joint variables, the information on the pose of the plat-
form is lost. For the robot under study, one could think that
such singularities exist only when �1, �2 and �3 are paral-
lel. In this case, we observe the apparition of a self-motion of
translation, corresponding to the case shown in Figure 6b.

It turns out that a second, more complicated, case of self-
motion appears when �(C3) degenerates into a doubly-traced
line segment parallel to �3. This case corresponds to a Car-
danic self-motion (Figure 7). Note that such a singularity is a
particular case of singular configuration where the three forces
Ri intersect at one point W (Figure 6a).

3.1. Design Conditions Leading to Cardanic Self-motions

We have to find the geometric conditions that lead to Cardanic
self-motions, i.e. when the ellipse �(C3) degenerates into a
doubly-traced line segment. This happens when yC3 is linearly
dependent upon xC3 for sin��1 � �2� 	� 0. Rearranging Equa-
tion (13), we obtain:

OC3 �
�

xC3

yC3

�
�
�

b11

b21

�
� b

�
cos�

sin�

�
� where

b �
�

b12 b13

b22 b23

�
� (20)

Fig. 8. Example of Cardanic motion for a 3-RPR planar par-
allel robot with Rp = 0.2 m, Rb = 0.35 m, L1 = L2 = 0.05 m
(L3 can be arbitrary), � p = 36
 and 
 p = 72
.

�(C3) will degenerate to a doubly-traced line if the deter-
minant of matrix b vanishes. This would be the case if

�1 � �2 � �p� where �p � � p � 	�2� (21a)

As pointed out by one of the anonymous reviewers of this
paper, this simple condition can also be directly obtained using
the geometric properties of Cardanic motion. At each moment
the intersection point between lines �1 and �2 lies on the cir-
cumcircle of the mobile platform.

For such a condition, it is therefore possible to find through
algebraic manipulations that

yC3 � m�xC3 � b11�� b21 and �3 � �2 � � p (21b)

where m � tan �3 and � p � 
 p�2�n	 (n = 0, 1, 2, . . . ). Once
again, this condition can also be obtained using the fact that at
each moment the intersection point between lines �2 and �3

lies on the circumcircle of the mobile platform. It can also be
shown that lines �1, �2 and �3 are concurrent.

Therefore, when�1 and �2 make an angle of �p and �2 and
�3 make an angle of � p, the robot gains a Cardanic self-motion
(Figure 8). However, at this stage, it is not clear whether
any design allows self-motions or only particular (symmetric)
ones.

Let us now find the conditions for the existence of Car-
danic self-motions. Introducing conditions (21a) and (21b)
into Equation (16), it turns out that terms c2 and c3 are equal
to zero. The equation can therefore be simplified as:

c1 � 0� (22)

Developing Equation (22) and expressing c1 as a function
of the sine and cosine of �2, we obtain

c1 � d1 cos �2 � d2 sin �2 � d3 � 0� (23)
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where

d1 � Rb
�
sin�� p � �b � 
b�� sin��b � � p�

�
� (24)

d2 � Rb
�
sin�� p � �p � �b � 
b�

� sin�� p � �p � �b � 
b�� sin��p � �b � � p�
�
� sin �p

� Rb
�
sin���p � �b � � p�

� 2 sin��� p � �b � � p�
�
� sin �p� (25)

d3 � L1 sin � p � L2 sin�� p � � p�� L3 sin �p

sin � p
� (26)

Two cases for the cancellation of Equation (23) must there-
fore be examined:

1. when Equation (23) is satisfied only for some sets of
active-joint angles�

2. when Equation (23) is satisfied for any �2, which is only
possible if d1 = d2 = d3 = 0.

Let us begin with the first case. The sets of active-joint vari-
ables satisfying Equation (23) can be found as:

�2p � 2 tan�1

���d2 �
�

d2
2 � d2

1 � d2
3

d3 � d1

�� � (27a)

�2m � 2 tan�1

���d2 �
�

d2
2 � d2

1 � d2
3

d3 � d1

�� � (27b)

As angles � p and �p are defined with n	 (n = 0, 1, 2,. . . ),
the maximal number of sets of active-joint variables is equal
to eight, depending on the working modes. As pointed out by
one of the anonymous reviewers, these solutions correspond
to the intersection of six limaçons defined as the loci of the
intersection points between lines �1, �2 and �3 (which are
concurrent for a Cardanic self-motion) for varying angle �2.
Thus, the robot can have Cardanic self-motions for a maximum
of eight sets of (or infinitely many) active-joint angles.

Now, the most useful result is that there obviously exist de-
signs without Cardanic self-motions. The condition for non-
existence of Cardanic self-motions is simply the condition that
prevents Equation (23) having real solutions, i.e.

d2
3 
 d2

2 � d2
1 � (28)

Considering the simple case where the base and platform
are similar (or even equilateral) triangles and the offsets are
equal i.e. L = L1 = L2 = L3, and introducing these new para-
meters in Equation (28), it can be found that the condition of
non-existence of Cardanic self-motions is

L 	� 0� (29)

There therefore exist simple symmetric designs without
Cardanic self-motions.

Now, we saw that Cardanic self-motions appear (or not) for
only several active-joint sets. However, for a particular design
of 3-RPR planar parallel robot with congruent equilateral base
and platform triangles, if condition (21) is satisfied there exists
an infinity of active-joint sets for which the robot gains a Car-
danic self-motion (Chablat et al. 2006). Thus, there must be
design conditions for the robot to have Cardanic self-motion
for any value of angle �2.

The second possibility for canceling Equation (23) consists
of the cancellation of terms di of Equations (24–26). Resolving
these three equations leads to

L1 sin � p � L2 sin�� p � �p�� L3 sin �p � 0 (30)

and
�b � � p and 
b � 
 p� (31)

Thus, the base and the mobile platform should be similar
triangles and condition (30) on the offsets must hold. Such
conditions for Cardanic self-motions do not depend on the
value of angle �2, as previously demonstrated in Chablat et
al. (2006).

In summary, Cardanic self-motions can be avoided by con-
straining the design parameters of the 3-RPR planar parallel
robot (Equation (28)). In the worst case, if the base and the mo-
bile platform are similar and if L1 sin � p � L2 sin�� p � � p� �
L3 sin �p � 0, there are Cardanic self-motions for infinitely
many active-joint sets. Finally, if one wants to have similar or
even equilateral base and platform triangles, one way of com-
pletely avoiding self-motions is to use equal non-zero offsets.

3.2. Kinematic Analysis of the Cardanic Self-motion

Let us now analyze the allowable displacement of the center
P of the platform when the base and the mobile platform are
similar triangles, i.e.

�1 � �2 � � p� �3 � �2 � � p�

L1 sin � p � L2 sin�� p � � p�� L3 sin � p � 0�

The expressions of the coordinates of point P, a function of
�2, are found using the closure equation:

OP � OA2 �A2B2 � B2C2 �C2P� (32)

Developing this expression, one can obtain:

OP �
�

x

y

�
�
�

xA2

yA2

�
� �2

�� cos �2

sin �2

��

� L2

�� � sin �2

cos �2

��� Rp

�� cos��� p � ��
sin��� p � ��

�� � (33)

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at ECOLE TECHNOLOGIE SUPERIEURE on July 18, 2008 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


862 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July 2008

Fig. 9. Schematics of a Cardanic self-motion of a robot with Rp = 0.1 m, Rb = 0.35 m, L1 = L2 = 0.07 m, L3 = 0 m, �b = 30
 and

b = 120
.

where the expression of �2 is given by Equation (12). Devel-
oping and introducing Equations (21), (30) and (31) in (33), it
can be found that

OP �

�													�

Rp cos�� p � 2�2 � ��
�Rb cos�� p � 2�2�

�L2 sin��2 � � p�� L1 cos �2

Rp sin�� p � 2�2 � ��
�Rb sin�� p � 2�2�

�L2 cos��2 � � p�� L1 sin �2

�












�
� (34)

From the previous expression it is possible to conclude that
by varying the orientation � of the mobile platform, point P
moves in a circle � centered at O’ whose radius is Rp (Fig-
ure 9). The coordinates of point O’ are defined:

OO� � �Rb

�
cos�� p � 2�2�

sin�� p � 2�2�

�

� L2

�
� sin��2 � � p�

cos��2 � � p�

�
� L1

�
cos �2

sin �2

�
� (35)

Computing the expressions of the coordinates of point W,
the intersection point of the three wrenches Ri , one obtains:

OW �

�													�

2Rp cos�� p � 2�2 � ��
�Rb cos�� p � 2�2�

�L2 sin��2 � � p�� L1 cos �2

2Rp sin�� p � 2�2 � ��
�Rb sin�� p � 2�2�

�L2 cos��2 � � p�� L1 sin �2

�












�
� (36)
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Fig. 10. The PAMINSA parallel robot: (a) prototype of the PAMINSA robot and (b) kinematic chain.

Thus, W is located on a circle � centered at O’ whose ra-
dius is 2Rp. It is also possible to observe that the platform and
vector O’P rotate in opposite senses.

One can rearrange Equation (34) as follows:

OP �

�							�

R cos�� � 2�2�� L2 sin��2 � � p�

�L1 cos �2

R sin�� � 2�2�� L2 cos��2 � � p�

�L1 sin �2

�






�
(37)

with

R �
�

R2
b � R2

p � 2Rb Rp cos� and

� � tan�1



� Rp sin�� � � p�� Rb sin� p

Rp cos�� � � p�� Rb cos� p

�
� (38)

For a given angle � and active-joint angle �2, Equation (37)
represents the singularity loci (for the Cardanic self-motions
only) of the robot with specified parameters. The obtained re-
sult corresponds to the parametric expression of an epicycloid
� . The epicycloids �1 and �2 represented in Figure 9 are the
curves corresponding to angles � = 0 and � = 	 , respectively.

4. Example and Experimental Validations

A prototype of a new decoupled 4-DOF parallel robot called
PAMINSA (Parallel Robot of the INSA, Figure 10) was devel-
oped in INSA de Rennes (Briot and Arakelian 2007). Such a
robot with Schoenflies motions allows the decoupling of the
displacements in a horizontal plane (two translations along the
x and y axes and one rotation about axes parallel to z) from
the translation along a vertical axis (for details, see Briot and
Arakelian 2007). This decoupling therefore allows the separa-
tion of the control laws between two different models:

1. a model for the horizontal displacements equivalent to
the control model of the 3-RPR planar parallel robot
(Figure 11a)� and2.

2. a linear model for the vertical translation due to the use
of the pantograph linkage (Figure 11b).

Thus, PAMINSA presents the same Type 2 singularities as
a symmetric 3-RPR planar parallel robot, which will be studied
in this section. Indeed, the planar projection of the prototype
of the PAMINSA robot corresponds to a 3-RPR planar parallel
robot whose base and platform are non-identical equilateral tri-
angles and whose offsets are zero, Li = 0. These conditions cor-
respond to a robot with infinitely many Cardanic self-motions
within its workspace.

Introducing these constraints into matrix A of Equation (3),
we can find the determinant of this matrix as

D � 2Rp cos� p�sin�� p � 
 p�� sin� p�

�1�2�3

� �Rb cos� � Rp��x
2 � y2

� �R2
b � R2

p � 2Rp Rb cos���� (39)

Type 2 singularity loci for the PAMINSA occur when the
above expression vanishes (Briot and Arakelian 2007). Thus,
the robot is in a Type 2 singularity when:

�i � �
� for i � 1� 2 or 3 (40)

or
� � �s � � cos�1�Rp�Rb� (41)

or
x2 � y2 � R2

b � R2
p � 2Rb Rp cos�� (42)

Condition (40) implies that the platform is located at an
infinite distance from the center of the base frame. This is
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Fig. 11. The control models for the PAMINSA parallel robot: (a) model for the planar displacements and (b) model for the
vertical translations.

equivalent to the fact that the three legs of the robot are par-
allel (Figure 6b). Condition (41) implies that the robot gains
one degree of freedom for any position (x, y) of the workspace,
for a fixed platform angle �s . Finally, condition (42) implies
that the robot gains one degree of freedom when point P
is located on a circle centered at O whose radius is R ��

R2
b � R2

p � 2Rb Rp cos�. Thus, we have to find which of

the last two conditions correspond to Cardanic self-motions.
Introducing the constraints Li = 0, �b = � p and 
b = 
 p into

Equation (34), we find

OP �
�

x

y

�

�
�� Rp cos�� p � 2�2 � ��� Rb cos�� p � 2�2�

Rp sin�� p � 2�2 � ��� Rb sin�� p � 2�2�

��� (43)

Raising the norm of vector OP to square, we obtain Equa-
tion (42). Thus, this particular design of 3RPR planar parallel
robot gains one Cardanic self-motion when the end effector is
positioned on a circle � centered at O and with radius equal

to R �
�

R2
b � R2

p � 2Rb Rp cos� (Figure 9). The circles �1

and�2 represented in Figure 12 are the circles P corresponding
to angles � = 0 and � = 	 , respectively.

Note that, for the angle �s , the robot gains one infinitesimal
degree of freedom at any position, except if point P is lo-
cated on a circle centered at O whose radius is equal to Rs ��

R2
b � R2

p � 2Rb Rp cos�s . Such a position still corresponds

to a Cardanic self-motion. Moreover, for Rp = Rb, the angle
�s corresponds to a self-motion of translation (Chablat et al.
2006). This means that when the platform center is located at
the circle �1, the platform gains two self-motions at the same
time.

Fig. 12. Schematics of a Cardanic self-motion for a robot with
Rp = 0.1 m, Rb = 0.35 m, �b = 30
 and 
b = 120
.

Observing Equation (43), it is possible to conclude that the
degree of freedom gained is motion along a circle � centered
at O’ whose radius is Rp. The coordinates of point O’ are:

OO� � �Rb

�� cos�� p � 2�2�

sin�� p � 2�2�

�� � (44)
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Fig. 13. Cardanic self-motion of the mobile platform of the PAMINSA prototype starting from the configuration x = 0 m, y =
–0.25 m, � = 0
.

Note that the circle � is tangent to circles �1 and �2. This
means that the maximal singularity-free workspace is delim-
ited by the circle �1. The radius of the circle �1 is equal to:

R1 �
��Rb � Rp

�� � (45)

Dividing Equation (45) by Rb yields

� � R1�Rb �
��1� Rp�Rb

�� � (46)

Therefore, the smaller the ratio Rp/Rb, the greater the value
of �. It is therefore possible to conclude that, for a larger
singularity-free workspace, the rate Rp/Rb has to be smaller.
However, the smaller the mobile platform with respect to the
base, the less accurate is its orientation.

In order to demonstrate the previous results, we have po-
sitioned the PAMINSA prototype in a singular configuration
with Cardanic self-motion (x = 0 m, y = -0.25 m, � = 0
). This
position is shown on Figure 13(g). For such a configuration,
the three actuators are blocked. However, it is possible to see
on Figures 13(a–e) that the platform is not constrained and un-
dergoes a Cardanic self-motion when external force is applied
to the platform.

5. Conclusions

In this paper, the singular configurations of general 3-RPR pla-
nar parallel robots were studied. It was shown that a general

3-RPR robot can have Cardanic self-motions for none, up to
eight, or infinitely many active-joint sets. The conditions for
having no self-motions or having self-motions for infinitely
many active-joint sets were explicitly derived. It was shown,
for example, that designs with similar (or even equilateral)
base and platform triangles and equal offsets have no self-
motions as long as the offsets are non-zero.
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Appendix

Expressions for a ji (j = 1, 2� i = 1, 2, 3):

a11 � �xA2 � xA1� sin �2 � L1 cos��2 � �1�� L2

sin��2 � �1�

a12 � �2Rp sin �2 cos� p

sin��2 � �1�

a13 � 2Rp cos �2 cos� p

sin��2 � �1�

a21 � �xA2 � xA1� sin �1 � L2 cos��2 � �1�� L1

sin��2 � �1�
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a22 � �2Rp sin �1 cos� p

sin��2 � �1�

a23 � 2Rp cos �1 cos� p

sin��2 � �1�

Expressions for b ji (j = 1, 2� i = 1, 2, 3):

b11 � xA1 � a11 cos �1 � L1 sin �1

b12 � a12 cos �1 � 2Rp cos



� p � 
 p

2

�
cos


 p

2

b13 � a13 cos �1 � 2Rp cos



� p � 
 p

2

�
sin

 p

2

b21 � yA1 � a11 sin �1 � L1 cos �1

b22 � a12 sin �1 � 2Rp cos



� p � 
 p

2

�
sin

 p

2

b23 � a13 sin �1 � 2Rp cos



� p � 
 p

2

�
cos


 p

2

Expressions of ci (i = 1, 2, 3):

c1 � �b21 � yA3� cos �3 � �xA3 � b11� sin �3 � L3�

c2 � b22 cos �3 � b12 sin �3� c3 � b23 cos �3 � b13 sin �3�

References

Bandyopadhyay, S. and Ghosal, A. (2004). Analysis of
configuration space singularities of closed-loop mecha-
nisms and parallel robots. Mechanism and Machine Theory
39(5): 519–544.

Bonev, I.A., Zlatanov, D. and Gosselin, C.M. (2003). Singular-
ity analysis of 3-DOF planar parallel mechanisms via screw
theory. Journal of Mechanical Design 125(3): 573–581.

Bonev, I.A., Chablat, D. and Wenger, P. (2006). Working and
assembly modes of the Agile Eye. In Proceedings of IEEE
International Conference on Robotics and Automation, Or-
lando, FL, USA, pp. 2317–2322.

Briot, S. and Arakelian, V. (2007). Singularity analysis of
PAMINSA robot. In Proceedings of 12th IFToMM World
Congress, Besançon, France.

Chablat, D., Wenger, P. and Bonev, I.A. (2006). Self-motions
of a special 3-RPR planar parallel robot. Advances in Robot
Kinematics, J. Lenarcic and B. Roth (eds.), Springer, pp.
221–228.

Gosselin, C.M. and Angeles, J. (1990). Singularity analysis of
closed-loop kinematic chains. IEEE Transactions on Robot-
ics and Automation 6(3): 331–336.

Hayes, M.J.D. (1999). Kinematics of general planar Stewart-
Gough platform. Ph.D. thesis. McGill University, Montreal,
Quebec, Canada.

Hayes, M.J.D., Zsombor-Murray, P. and Chen, C. (2004).
Unified kinematic analysis of general planar parallel robots.
Journal of Mechanical Design 126(5): 866–874.

Husty, M.L. and Zsombor-Murray, P. (1994). A special type of
singular Stewart-Gough platform. Advances in Robot Kine-
matics and Computational Geometry, J. Lenarcic and B.
Ravani (eds.), Kluwer Academic Publishers, pp. 449–458.

Husty, M.L. and Karger, A. (2000). Self-motions of Griffis-
Duffy type parallel robots. In Proceedings of IEEE Inter-
national Conference on Robotic and Automation, San Fran-
cisco, CA, USA, pp. 7–12.

Karger, A. (1998). Classification of 5R closed kinematic chain
with self mobility. Mechanism and Machine Theory 33(1):
213–222.

Karger, A. (2001). Singularities and self-motions of equiform
platforms. Mechanism and Machine Theory 36(7): 801–
815.

Karger, A. (2003). Architecture singular planar parallel robots.
Mechanism and Machine Theory 38: 1149–1164.

Karger, A. and Husty, M.L. (1998). Classification of all
self-motions of the original Stewart-Gough platform.
Computer-Aided Design 30(3): 205–215.

Merlet, J.-P. (1996). Direct kinematics of planar parallel ro-
bots. In Proceedings of IEEE International Conference on
Robotics and Automation, Minneapolis, Minnesota, USA,
pp. 3744–3749.

Sekulie, A. (1998). Method of synthesis of Cardanic motion.
Facta Universitatis, Mechanical Engineering, University of
NIS, 1(5): 565–572.

Tischler, C.R., Hunt, K.H. and Samuel, A.E. (1998). A spa-
tial extension of Cardanic movement: its geometry and
some derived mechanisms. Mechanism and Machine The-
ory 33(8): 1249–1276.

Wenger, P. and Chablat, D. (1998). Workspace and assem-
bly modes in fully-parallel robots: a descriptive study. Ad-
vances in Robot Kinematics and Computational Geometry,
Kluwer Academic Publishers, pp. 117–126.

Wohlhart, K. (2003). Mobile 6-SPS parallel robots. Journal of
Robotic Systems 20(8): 509–516.

Zlatanov, D., Fenton R.G. and Benhabib B. (1994). Singularity
analysis of mechanisms and robots via a velocity-equation
model of the instantaneous kinematics. In Proceedings of
IEEE International Conference on Robotics and Automa-
tion, San Diego, CA, USA, pp. 980–991.

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at ECOLE TECHNOLOGIE SUPERIEURE on July 18, 2008 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com



