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Abstract

It is known that a parallel manipulator at a singular configuration
can gain one or more degrees of freedom and become uncontrollable,
that is, it might not reproduce a stable motion along a prescribed
trajectory. However, it is proved experimentally that there is possible
passing through the singular zones. This was simulated and shown
through numerical examples and illustrated on several parallel struc-
tures. In this paper, we determine the optimal dynamic conditions gen-
erating a stable motion inside the singular zones. The obtained results
show that the general condition for passing through a singularity can
be defined as follows: the end-effector of the parallel manipulator
can pass through the singular positions without perturbation of mo-
tion if the wrench applied on the end-effector by the legs and external
efforts of the manipulator are orthogonal to the twist along the direc-
tion of the uncontrollable motion. This condition is obtained from the
inverse dynamics and analytically demonstrated by the study of the
Lagrangian of a general parallel manipulator. Numerical simulations
are carried out using the software ADAMS and validated through ex-
perimental tests.

KEY WORDS—parallel manipulators, singularity, dynamics,
force management, trajectory planning.

1. Introduction

Parallel manipulators have experienced an increase in pop-
ularity in recent years due to their higher rate of accelera-
tion, payload-to-weight ratio, stiffness and low effective inertia
compared with serial manipulators. However, they have some
drawbacks, such as a small workspace and special singular
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zones within it. Thus, in the presence of singular positions, the
workspace of the parallel manipulators, which is smaller than
that of serial manipulators, becomes even smaller and limits
their functional performance. The studies of singularity have
reached different stages of development. The previous work on
this problem is reported in a great number of publications and
can be classified by different criteria. They can be arranged,
for example, into three major groups, which are distinguished
by historical evolution and are characterized by the method of
study of the singularity, from kinematic, kinetostatic and dy-
namic points of view.

The physical interpretation of a singularity in kinematics
refers to those configurations of parallel manipulators in which
the number of degrees of freedom (DOF) of the mechanical
structure changes instantaneously, either the manipulator gains
some additional, uncontrollable DOF or loses some DOF. In
this case the singularity analysis can be carried out on the ba-
sis of the properties of the Jacobian matrices of the mechani-
cal structure (i.e. when the Jacobian matrices relating the in-
put speeds and the output speeds become rank deficient (Gos-
selin and Angeles 1990� Ma and Angeles 1992� Ottaviano et
al. 2001� Wen and Oapos Brien 2003)), by using Grassmann
geometry (Merlet 1989) or screw theory (Hunt 1987� Bonev
et al. 2003). However, it was observed that close to a singu-
lar configuration, a parallel manipulator loses its stiffness and
its quality of motion transmission and, as a result, its payload
capability. For this purpose, a kinetostatic approach has been
applied for the evaluation of the quality of motion transmission
in the singular zones of parallel manipulators. The quality of
motion transmission of parallel manipulators was successfully
studied by Kim and Choi (2001), Kim and Ryu (2004), Lee
et al. (2002) and Weiwei and Shuang (2006). The quality of
motion of manipulators with three DOF has been evaluated by
means of a kinetostatic indicator, which is similar to the pres-
sure angle (Alba-Gomez et al. 2005). Arakelian et al. (2008)
used the pressure angle as an indicator of the quality of motion
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transmission and the nature of the inaccessibility of singular
zones by parallel manipulators was shown.

The further study of singularity in parallel manipulators has
revealed an interesting problem that concerns the path plan-
ning of parallel manipulators in the presence of singular po-
sitions, that is, the motion feasibility in the neighborhood of
singularities. In this case the dynamic conditions can be con-
sidered in the design process. One of the most evident solu-
tions for the stable motion generation in the neighborhood of
singularities is to use redundant sensors and actuators (Collins
and Long 1975�Dasgupta and Mruthyunjaya 1998a�Alvan and
Slousch 2003� Glazunov et al. 2004). However, it is an expen-
sive solution to the problem because of the additional actuators
and the complicated control of the manipulator caused by actu-
ation redundancy. Another approach concerns the use of mo-
tion planning to pass through the singularity (Nenchev et al.
1997� Bhattacharya et al. 1998� Dasgupta and Mruthyunjaya
1998b� Perng and Hsiao 1999� Hesselbach et al. 2004� Kemal
Ider 2005� Kevin Jui and Sun 2005), that is, a parallel manip-
ulator may track a path through singular poses if its velocity
and acceleration are properly constrained. This is a promising
method for the solution of this problem. Only a few research
papers on this approach have addressed the use of path plan-
ning to obtain a good tracking performance, but they have not
adequately addressed the physical interpretation of dynamic
aspects.

In this paper the dynamic condition for passing through the
singular positions is defined in general. It allows the stable mo-
tion generation inside in the presence of a singularity by means
of the optimum force control. The disclosed condition can be
formulated as follows. In the presence of a type 2 singularity,
the platform of the parallel manipulator can pass through the
singular positions without perturbation of motion if the wrench
applied on the platform by the legs and external forces is or-
thogonal to the direction of uncontrollable motion. In other
terms, the condition is that the work of applied forces and mo-
ments on the platform along the uncontrollable motion is equal
to zero. This condition is obtained from the inverse dynamics
and analytically demonstrated by the study of the Lagrangian
of a general parallel manipulator. The obtained results are il-
lustrated by numerical simulations and validated using experi-
mental tests.

The paper is organized as follows. The next section presents
theoretical aspects of the examined problem. Based on the
Lagrangian formulation, the condition of force distribution is
defined, which allows any of the parallel manipulators to pass
through the type 2 singular positions. In Section 3, two ap-
plications illustrate the obtained theoretical results. In Sec-
tion 4, the numerical simulations carried out using the software
ADAMS are validated through experimental tests.

2. Optimal Dynamic Conditions for Passing
through a Type 2 Singularity

Let us consider a parallel manipulator of m links, n DOF and
driven by n actuators.

The Lagrangian dynamic formulation for a parallel manip-
ulator can be expressed as

��� � d

dt

�
�L

� �q
�
� �L

�q
� BT���� (1)

where: ��� is the vector of the input efforts� L is the La-
grangian of the manipulator� q � [q1� q2� ���� qn]T and �q �
[ �q1� �q2� ���� �qn]T represent the vector of active joints vari-
ables and the active joints velocities, respectively� x �
[x� y� z� �� �� � ]T and v � [ �x� �y� �z� ��� ��� �� ]T are trajectory
parameters and their derivatives, respectively� x, y, z represent
the position of the controlled point and �, � and � the ro-
tation of the platform about three axes a� , a� and a� � ��� is the
Lagrange multipliers vector, which is related to the wrench ap-
plied on the platform by

��� � A�TWp� (2)

where A and B are two matrices relating the vectors v and
�q according to Av � B �q (they can be found by derivating
the closure equations with respect to time)� Wp is the wrench
applied on the platform by the legs and external forces (Khalil
and Guégan 2002), which is defined as

Wp �
�

d

dt

�
�L

�v

�
� �L

�x

�
�
�
� fp

np

�
� � (3)

where fp is the force along the directions of the global frame
and np is the torque about the axes a� , a� and a� .

The term Wp can be rewritten in the base frame using a
transformation matrix D (Merlet 2006):

Wp � D	R0Wp
� (4)

where R0Wp is the expression of the wrench Wp in the base
frame, and

D �
�
� I3�3 03�3

03�3 R3�3

�
� � (5)

where I3�3, 03�3 and R3�3 are, respectively, the identity ma-
trix, the zero matrix and the transformation matrix between
axes a� , a� and a� and the base frame, whose dimensions are
3 � 3.

By substituting (5) into (1), one can obtain

��� � Wb � JT R0Wp� Wb � d

dt

�
�L

� �q
�
� �L

�q
� (6)
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where J � �R0A
��1 B is the Jacobian matrix between twist t of

the platform (expressed in the base frame) and �q, R0 A � AD
is the expression of matrix A in the base frame.

For any prescribed trajectory x(t), the values of vectors �q,
�q and q can be found using the inverse kinematics. Thus, tak-
ing into account that the manipulator is not in a type 1 singu-
larity (Gosselin and Angeles 1990), the terms Wb and R0 Wp

can be computed. However, for a trajectory passing through a
type 2 singularity, the determinant of matrix J tends to infinity.
Numerically, the values of the efforts applied by the actuators
become infinite. In practice, the manipulator is either locked
in such a position of the end-effector or it generates an un-
controlled motion. That is, the end-effector of the manipulator
could produce a motion, different to the prescribed trajectory.

It is known that a type 2 singularity appears when the deter-
minant of matrix R0A vanishes, in other words, when at least
two of its columns are linearly dependant (Merlet 2006).

Let us rewrite the matrix R0A as

R0A �

�
									�

a11 a12 � � � a16

a21 a22 � � � a26

���
���

� � �
���

a61 a62 � � � a66

�









�
� (7)

In the presence of a type 2 singularity the columns of the
matrix R0A are linearly dependant, that is,

6�
j�1

� j ai j � 0� i � 1� � � � � 6� (8)

where � j are the coefficients, which in general can be func-
tions of qp (p = 1, . . . , n). It should be noted that the vector ts

= [�1, �2, . . . , �6]T represents the direction of the uncontrol-
lable motion of the platform in a type 2 singularity.

Rewriting (8) in a vector form, we obtain

6�
j�1

� j N j � 0� N j � [a1 j � a2 j � � � � � a6 j ]
T�

j � 1� � � � � 6� (9)

where N j represents the jth column of the matrix R0A.
By substituting (9) into (2), we obtain

NT
j��� � W j � j � 1� � � � � 6� (10)

where W j is the jth row of vector R0Wp.
Then, from (9) and (10) the following conditions are de-

rived:
6�

j�1

�
� j NT

j���
� � 6�

j�1

�
� j W j

� � 0� (11)

Fig. 1. Kinematic chain of the planar 5R parallel manipulator.

The term on the right-hand side of (11) corresponds to the
scalar product of vectors ts and R0Wp.

Thus, in the presence of a type 2 singularity, it is possible
to satisfy conditions (11) if the wrench applied on the platform
by the legs and external efforts R0Wp are orthogonal to the
direction of the uncontrollable motion ts. Otherwise, the dy-
namic model is not consistent. Obviously, in the presence of a
type 2 singularity, the displacement of the end-effector of the
manipulator has to be planned to satisfy (11).

Let us illustrate the considered problem by examples.

3. Illustrative examples

In this section, two examples are chosen to illustrate the ob-
tained theoretical results discussed above. The first example
presents a planar 5R parallel manipulator, which allows rela-
tively simple mathematical models to be obtained to demon-
strate the expected results using numerical simulations. The
second example presents a parallel manipulator which was de-
veloped in the I.N.S.A. of Rennes. This example was chosen
for validation of numerical simulations carried out by the soft-
ware ADAMS on the built prototype.

3.1. Example 1: Planar 5R Parallel Manipulator

In the planar 5R parallel manipulator, as shown in Figure 1,
the output point is connected to the base by two legs, each of
which consists of three revolute joints and two links. In each
of the two legs, the revolute joint connected to the base is ac-
tuated. Thus, such a manipulator is able to position its output
point in a plane.

As shown in Figure 1, the actuated joints are denoted by A
and E with input parameters q1 and q2. The common joint of
the two legs is denoted by C, which is also the output point
with controlled parameters x and y. A fixed global reference
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Fig. 2. Second kind of singularities of the planar 5R parallel manipulator.

system xOy is located at the center of AE with the y-axis nor-
mal to AE and the x-axis directed along AE. The lengths of
the links AB, BC, CD, DE are respectively denoted by L1, L2,
L3 and L4. The positions of the centers of masses Si of links
from joint centers A, B, D and E are respectively denoted by
dimensionless lengths r1, r2, r3 and r4, that is, AS1 � r1L1,
BS2 � r2L2, DS3 � r3L3 and E S4 � r4L4.

The singularity analysis of this manipulator (Liu et al.
2006) shows that the type 2 singularities appear when legs 2
and 3 are in parallel (Figure 2).

In both cases, the gained degree of freedom is an
infinitesimal translation perpendicular to legs 2 and 3. How-
ever, if L2 = L3, the gained degree of freedom in case (b) be-
comes a finite rotary motion about point B.

In order to simplify the analytic expressions, we consider
that the gravity effects are along the z-axis and consequently
the input torques are only due to inertia effects. To simplify
the computation, it is also preferable to replace the masses of
moving links by concentrated masses (Seyferth 1974� Wu and
Gosselin 2007). For a link i with mass mi and its axial moment
of inertia Ii , we have

�
				�

1 1 1

ri 0 1� ri

r2
i L2

i 0 	1� ri 

2L2

i

�




�

�
				�

mi1

mi2

mi3

�




�

�

�
				�

mi

0

Ii

�




� � 	i � 1� 2� 3� 4
� (12)

where mi j (j = 1, 2, 3) are the values of the three point masses
placed at the centers of the revolute joints and at the center of
masses of the link i.

In this case, the kinetic energy T can be written as

T � 1

2
	mS1V2

S1 �mS2V2
S2 �mS3V2

S3

� mS4V2
S4 �m BV2

B �mC V2
C � mDV2

D
� (13)

where mS1 � m12, mS2 � m22, mS3 � m32, mS4 � m42,
mB � m13�m21, mC � m23�m21 and mD � m33�m41. The
terms mi j (i = 1, 2, 3, 4) are deduced from the relation (12),
VSi is the vector of the linear velocities of the center of masses
Si � VB , VC and VD are the vectors of the linear velocities of
the corresponding axes.

The input torques can be obtained from (6):

��� � Wb � JT
5RWp (14)

taking into account that for the examined manipulator

Wb � JT
BFB � JT

DFD� (15)

where

JB �
�
� �L1 sin q1 0

L1 cos q1 0

�
� �

JD �
�
� 0 �L4 sin q2

0 L4 cos q2

�
� � (16)

FB � mB1���B �mC1���C�

FD � mD2���D �mC3���C� (17)

���B � L1

�

 �q1

�
� � sin q1

cos q1

�
�� �q2

1

�
� cos q1

sin q1

�
�
�
� �
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���D � L4

�

 �q2

�
� � sin q2

cos q2

�
�� �q2

2

�
� cos q2

sin q2

�
�
�
� �

���C �
�
� �x

�y

�
� � (18)

m B1 � mS1r2
1 �m B � mS2	1� r2


2�

mC1 � mS2r2	1� r2
� (19)

mC3 � mS3r3	1� r3
�

mD2 � mS4r2
4 �m D �mS3	1� r3


2� (20)

The term Wp is given by

Wp � mC1���B �mC2���C �mC3���D� (21)

mC2 � mS2r2
2 � mC �mS3r2

3 (22)

and the Jacobian matrix J5R is given by

J5R � A�1
5R B5R� (23)

where

A5R �
�
� a11 a12

a21 a22

�
�

� 2

�
� x � L1 cos q1 � a y � L1 sin q1

x � L4 cos q2 � a y � L4 sin q2

�
� � (24)

B5R � �

�
								�

L1

�
�
 a11 sin q1

�a12 cos q1

�
�� 0

0 L4

�
�
 a21 sin q2

�a22 cos q2

�
��

�








�
� (25)

and we determine ts in accordance with (8):

ts � [� sin�1� cos�1]T� (26)

Thus, the examined manipulator can pass through the given
singular positions if the wrench Wp determined by (21) is or-
thogonal to the direction of the uncontrollable motion ts de-
scribed by (26).

Let us now consider the motion planning, which makes it
possible to satisfy this condition. For this purpose the follow-
ing parameters of the manipulator’s links are specified: L1 =

Fig. 3. Initial, singular and final positions of the planar 5R par-
allel manipulator.

L2 = L3 = L4 = 0.25 m� r1 = r2 = r3 = r4 = 0.5� a = 0.2 m� m1 =
m4 = 2.81 kg� I1 = I4 = 0.02 kg/m2� m2 = m3 = 1.41 kg� I2 = I3

= 0.01 kg/m2.
With regard to the prescribed trajectory generation, the

point C should reproduce a motion along a straight line be-
tween the initial position C0 (x0, y0) = C0 (0.1, 0.345) and the
final point C f (x f , y f ) = C f (-0.1, 0.145) in t f = 2 s.

Thus, the given trajectory can be expressed as follows:

x �
�
� x	t


y	t


�
� �

�
� x0 � s	t
	x f � x0


y0 � s	t
	y f � y0


�
� � (27)

However, the manipulator will pass through a type 2 singu-
lar position at point Cs (xs , ys) = Cs (0, 0.245) (Figure 3).

Developing the condition for passing through the singular
position (11) for the planar 5R parallel manipulator at point
Cs , we obtain

mC1L1	248 �x2 � 48 �y2
� 3
�

6mC2 �y � 0� (28)

Then, taking into account that the velocity and the acceler-
ation of the end-effector in initial and final positions are equal
to zero, the following nine boundary conditions are found:

s	t0
 � 0� (29)

s	t f 
 � 1� (30)

s	ts � 1s
 � 0�5� (31)

�s	t0
 � 0� (32)

�s	t f 
 � 0� (33)

�s	ts
 � �ys
	y f � y0
 � �xs
	x f � x0
 � 1� (34)

�s	t0
 � �s0 � 0� (35)

�s	t f 
 � �s f � 0� (36)

�s	ts
 � �ss � mC1L1	248 �x2
s � 48 �y2

s 


	3	x f � x0

�

6mC2

� (37)
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Fig. 4. Input torques of the planar 5R parallel manipulator in the case of the eighth-order polynomial trajectory planning, obtained
by the ADAMS software.

Fig. 5. Input torques of the planar 5R parallel manipulator in the case of the fifth-order polynomial trajectory planning, obtained
by the ADAMS software.

From (28)–(37), the following eighth-order polynomial tra-
jectory planning is found:

s 	t
 � �0�25851t3 � 3�84228t4 � 5�72792t5

� 3�58909t6 � 1�07101t7 � 0�12606t8� (38)

Thus, the generation of the motion by the obtained eighth-
order polynomial makes it possible to pass through the singu-
larity without perturbation and the input torques remain in the
limits of finite values, which are validated through numerical
simulations carried out by the ADAMS software (Figure 4).

Thus, we can assert that the obtained optimal dynamic
conditions assume that the manipulator’s end-effector passes
through the singular position.

Now, we would like to show that, in the case of the genera-
tion of the motion by any trajectory planning without meeting

the adopted boundary conditions, the end-effector is not able
to pass through the singular position. For the purpose of gen-
erating motion between the initial and final positions, let us
generate a fifth-order polynomial trajectory planning:

s 	t
 � 1�25t3 � 0�9375t4 � 0�1875t5� (39)

The obtained numerical simulations carried out by the soft-
ware ADAMS are given in Figure 5. We can see that, when the
manipulator is close to the singular configuration (for ts = 1 s),
the values of the input torques tend to infinity.

3.2. Example 2: PAMINSA

The second example we present concerns a parallel manip-
ulator, which was invented and developed at the I.N.S.A of
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Fig. 6. PAMINSA with four DOF.

Rennes (Arakelian et al. 2006b): PAMINSA (Parallel Manip-
ulator of the I.N.S.A.). The particularity of this architecture is
in decoupling of the displacements of the platform in the hor-
izontal plane from the translations along the vertical axis. The
advantages of such an approach were disclosed in Arakelian et
al. (2005) and Briot et al. (2007b) and the singularity analy-
sis was discussed in Briot et al. (2007a), Briot and Arakelian
(2008) and Arakelian et al. (2006a).

The previous studies have revealed that there are type 2
singularities in the workspace of the symmetrical architecture
of PAMINSA. Let us illustrate the proposed approach for the
PAMINSA with four DOF (Figure 6).

Each leg of this manipulator is realized by a pantograph
mechanism (Figure 7) with two input points 3i and 8i , and an
output point 5i (i = 1, 2, 3). Each input point 8i is connected to
the rotating drive Mi by means of a prismatic guide mounted
on a rotating link. This kind of architecture allows for the gen-
eration of motion in the horizontal plane by the use of rotating
actuators M1, M2, M3, and the vertical translations by means
of the linear actuator M� . Thus, the displacements (x, y, �) of
the platform in the horizontal plane xOy, that are translations
along the x- and y-axes, and rotations about the z-axis are in-
dependent of vertical translations z.

This implies that the kinematic models controlling the dis-
placement of the manipulator can be divided into two parts:

(i) a model for the displacements in the horizontal plane,
which is equivalent to a 3-RPR manipulator. R and P
stand for passive revolute and prismatic joints, respec-
tively, and R for an actuated revolute joint�

(ii) a model for the translations along the vertical axis equiv-
alent to the model for the vertical translations of a pan-
tograph linkage.

The type 2 singularities of such a manipulator appear when
(Arakelian et al. 2006a� Briot et al. 2007a):

(a) the three legs of the manipulators are in parallel, which
is impossible for the developed PAMINSA manipulator�

Fig. 7. Kinematic chain of each leg.

Fig. 8. Example of a type 2 singular configuration (horizontal
projection of the examined structure).

(b) the orientation of the platform is equal to
cos�1	Rpl
Rb
, where Rpl and Rb correspond respec-
tively to the lengths PCi and OM’i (Figure 8)� in this
case, the manipulator gains one infinitesimal rotation
around one vertical axis�

(c) the platform is located in a circle defined by

x2 � y2 � R2
pl � R2

b � 2Rpl Rb cos�	 (40)

in this case, the manipulator gains one finite rotation
about one vertical axis (Cardanic self motion) (Briot et
al. 2007a).

For cases (b) and (c), the direction of the unconstrained mo-
tion can be represented by the twist ts = [0, 0, 1, xW , yW , 0]T,
where xW and yW corresponds to the planar coordinates of the
intersection point of the wrenches Ri applied on the platform
by the three legs of the manipulator (Figure 8).
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Let us now study the inverse dynamics of the PAMINSA.
The potential energy V can be written as

V � Vpl �
3�

i�1

Vlegi � (41)

where V pl is the potential energy of the platform and Vlegi is
the potential energy of the leg i (i = 1, 2, 3).

By further considering that the coordinates of all of the
points of the pantograph linkages can be found as a linear com-
bination of the coordinates of points 3i , 5i and 9i , one can ex-
press the terms V pl and Vlegi as follows:

Vpl � m pl gz� (42)

Vlegi � C�1z5i � C�2z9i � C�3q� � C�4� (43)

Here C� j (j = 1, 2, 3) are constant terms whose dimension
is equivalent to a mass multiplied by the gravitational accel-
eration g, mpl is the mass of the platform with a payload, and
z5i and z9i are the altitude of joints 5i and 9i . The expressions
of the coordinates of joints 5i and 9i are given in Appendix A.
The expressions for C� j (j = 1, . . . , 4) are given in Appendix B.

We consider that the links are perfect tubes. Therefore, the
tensor of inertia I j of the link B ji at the center of masses will
be written as

I j �

�
				�

I 	 j

X X 0 0

0 I 	 j

Y Y 0

0 0 I 	 j

Z Z

�




� � with I 	 j


Y Y � I 	 j

Z Z � (44)

Thus, the kinetic energy T of the manipulator can be repre-
sented as

T � Tpl �
3�

i�1

Tlegi � (45)

where T pl is the kinetic energy of the platform, Tlegi is the
kinetic energy of the leg i, and

Tpl � 1

2

�
m pl	 �x2 � �y2 � �z2
� Ipl ��2

�
� (46)

where I pl is the axial moment of inertia of the platform about
the vertical axis. In addition,

Tlegi � Ttransi � Troti � (47)

Ttransi � Cc1	 �x2
5i � �y2

5i 
� Cc2 �z2
5i � Cc3	 �x2

9i � �y2
9i � �z2

9i 


� Cc4	 �x5i �x9i � �y5i �y9i 
� Cc5 �z5i �z9i

� Cc6 �q2
� � Cc7 �z5i �q� � Cc8 �q2

i � (48)

where Troti is the kinetic energy of the rotating links.
Note that there are two types of rotations (see, Fig. 7):

(i) rotation due to the actuators Mi (i = 1, 2, 3) (angle qi ),
which is about the vertical axis�

(ii) rotation due to the displacement of the pantograph in
the linkage plane (angles � i and �i denoted as the angles
between the direction of the passive slider and the links
B4i and B3i respectively).

Thus, the kinetic energy of the rotating links can be written
as

Troti � Cc9 �� 2
i � Cc10 ��2

i � �q2
i 	Cc13 � Cc10 sin2 � i

� Cc9 cos2 � i � Cc12 sin2 �i � Cc11 cos2 �i 
� (49)

The expressions for Ccj (j = 1, . . . , 13) are given in Appen-
dix C.

The input torques can be obtained from (6):

��� � Wb � JT
P AMWp� (50)

where the terms JP AM , Wb and Wp are presented in Appen-
dix D.

The following parameters of manipulator’s links are
specified for the trajectory generation:


 the radii of the circles circumscribed to the base and
platform triangles are respectively equal to Rb = 0.35
m and Rpl = 0.1 m�


 the magnification factor of the pantograph, k = 3�


 gravitational acceleration g is equal to 9.81 m/s2�


 the lengths of the links of the pantograph linkages, LB1

= 0.308 m, LB2 = 0.442 m, LB3 = LB8 = 0.42 m, LB4 =k
LB7 = 0.63 m, LB5 = 0.0275 m, LB10 = 0.3635 m�


 the masses of the joints of the pantograph linkages, m2

= 0.214 kg, m3 = 0.338 kg, m4 = 0.262 kg, m5 = 0.233
kg, m7 = 3.08 kg, m8 = 0.305 kg, m9 = 0.259 kg�


 the mass of the platform, mpl = 2.301 kg�


 the masses of the links of the pantograph linkages, mB1

=1.221 kg, mB2 = 0.921 kg, mB3 = 0.406 kg, mB4 = 0.672
kg, mB7 = 0.107 kg, mB8 = 0.403 kg, mB10 = 0.436 kg�


 the term of the inertia matrix of the platform, Ipl �
0�015kg.m2�


 the terms of the inertia matrices of the links of the
pantograph linkages, I 	B3


X X � 0�0038kg.m2, I 	B3

Y Y �

0�02kg.m2, I 	B4

X X � 0�0012kg.m2, I 	B4


Y Y � 0�048kg.m2,
I 	B7


X X � 8 � 10�4kg.m2, I 	B7

Y Y � 0�003kg.m2, I 	B8


X X �
0�0024kg.m2, I 	B8


Y Y � 0�02kg.m2, IB2 � 0�003kg.m2,
IB10 � 0�02kg.m2.
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Fig. 9. Displacement of the PAMINSA along the prescribed
straight line (planar projection).

The point P is desired to make a motion x(t) along a straight
line between points P0 (x0� y0) = P0 (0, 0) and point P f (x f ,
y f ) = P f (0.3, 0) in t f = 2.4 s. However, the manipulator will
pass through a type 2 singular position at point Ps (xs , ys) =
(0.25, 0) (Figure 9).

In order to carry out a comparative analysis for the op-
timized and non-optimized dynamic conditions for passing
through type 2 singularity, we consider two cases. The first is
such a movement on the given trajectory, which is calculated
from condition (11), and the second is an arbitrary motion.

First let us consider an optimized trajectory which allows
the condition (11) to be satisfied, that is, the force Wp should
be perpendicular to the twist ts [0, 0, 1, 0, 0.1, 0]T defining the
direction of the unconstrained motion. Developing the expres-
sion (11) for the PAMINSA at point Ps , we obtain

0 � 0�06441 �x � 1�2115 �y � 0�14649�z � 0�04425 ��
� 0�06827� 6�85084 �x2 � 0�11720 �y2 � 0�18482�z2

� 0�02947 ��2 � 0�85175 �� �x � 0�05643 �� �y � 0�19423 �� �z
� 5�17625 �x �y � 0�46477 �x �z � 2�94694 �y �z� (51)

Now considering that the end-effector of the manipulator
moves along a straight line directed along the x-axis, we can
note that �y	ts
 = �z	ts
 = �y	ts
 = �z	ts
 = ��	ts
 = ��	ts
 = 0. Thus,
the relationships that satisfy the condition of passing through
the singular positions, taking into account that the velocity and
the acceleration of the platform in the initial and final positions
are equal to zero, can be expressed by the following boundary
conditions:

x	t0
 � x0� (52)

x	t f 
 � x f � (53)

x	ts � 2s
 � xs� (54)

�x	t0
 � 0� (55)

�x	t f 
 � 0� (56)

�x	t0
 � 0� (57)

�x	t f 
 � 0� (58)

�x	ts
 � �xs � 0�05 m
s� (59)

�x	ts
 � �xs � �1�32583 m
s2� (60)

In this case, a motion for the passing of the platform
through the singular position can be found from the following
eighth-order polynomial form:

x 	t
 � 3�41t8 � 37�65t7 � 166�05t6 � 365�23t5

� 400�63t4 � 175�27t3� (61)

However, a trajectory obtained by (61) cannot be repro-
duced by the prototype because of the limited capability of
the drivers’ deceleration. Therefore, the trajectory was divided
into two parts, that is, the first sixth-order polynomial trajec-
tory assumes the motion from an initial to the singular position
(P0Ps) and the second sixth-order polynomial trajectory from
singular to the final position (PsP f ). The core of the problem
is the same but it allows for motions to be generated for the
prototype.

Thus, the trajectory planning equations can be written as

x 	t
 � x0 � 	xs � x0


� �
b3t3 � b4t4 � b5t5 � b6t6

�
for t � ts� (62)

x 	t
 � xs �
�
x f � xs

�
	c1	t � ts
� c2	t � ts


2 � c4	t � ts

4

� c5	t � ts

5 � c6	t � ts


6
 for t � ts � (63)

with b3 = –3.3033, b4 = 5.10456, b5 = –2.45207, b6 = 0.37844,
c1 = 1, c2 = –13.25829, c4 = 2,365.3672, c5 = –11,953.07236
and c6 = 16,158.76157.

Thus, the motion obtained from the following sixth-order
polynomial equations:

x 	t
 � �0�826t3 � 1�276t4 � 0�613t5 � 0�095t6

for t � 2s� (64)

x 	t
 � 72722�7� 206718�3t � 244555�2t2 � 154122�4t3

� 54571�1t4 � 10292�9t5 � 807�9t6 for t � 2s� (65)
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Fig. 10. Input efforts of the PAMINSA in the case of the sixth-order polynomial trajectory planning, computed using the ADAMS
software.

which allows the singularity to be passed through without
perturbation, and the input efforts take on finite values (Fig-
ure 10).

It can be seen that the input torques remain in the limits of
finite values, but, by the end of the motion, there is an increase
of the input efforts, caused by a quick deceleration to stop the
manipulator before it reaches the workspace boundary. We fur-
ther show below that in the case of the motion generated by
any trajectory planning without meeting the adopted boundary
conditions (52)–(60), the manipulator platform is not able to
pass through the singular position. For this purpose, the gener-
ation of motion between the initial and final positions is carried
out by a fifth-order polynomial trajectory planning.

In this case, for y 	t
 � 0 m, z 	t
 � �0�45 m and � 	t
 �
0, the fifth-order polynomial trajectory planning is as follows:

x 	t
 � 0�217t3 � 0�137t4 � 0�023t5� (66)

The obtained input efforts computed by the software
ADAMS are represented in Figure 11.

It should be noted that, while the manipulator passes
through the singular configuration (for ts 
 1.8 s), the values
of the input torques tend to infinity.

Let us now validate the results obtained using experimental
tests.

4. Experimental Validation of the Obtained
Results

To validate the results of the previous section, we have car-
ried out experimental tests on the prototype of the PAMINSA
developed in the I.N.S.A. of Rennes (Figure 12).

First, we applied an arbitrary fifth-order control law and
observed the reproduction of motion during the displacement
of the platform. The obtained trajectory is shown in Figure 13
(dotted line).

The different positions are classified by time. For positions
(a) to (d), the platform moves towards the singular zone but
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Fig. 11. Input efforts of the PAMINSA in the case of the fifth-order polynomial trajectory planning, computed using the ADAMS
software.

Fig. 12. The prototype of PAMINSA developed in the I.N.S.A.
of Rennes.

it remains outside of it. In this case, the reproduction of the
real trajectory is similar to the desirable. At position (e), the
manipulator enters the singular zone, which is close to the cir-
cle of the theoretical singular loci, and starts an uncontrollable
motion. Thus, since the motion generation is carried out by
non-optimized dynamic parameters, the platform moves along
an unplanned trajectory (see positions (e)–(h) in Figure 13).

Next, we implemented the sixth-order control law as shown
in the previous section and observed the behavior of the plat-
form during the displacement (Figure 14). The different posi-
tions are classified by time. During all of these displacements,
the manipulator retains its orientation and passes through the
singular configuration without any perturbation.

Thus, we can note that the obtained optimum dynamic con-
ditions allow the manipulator to pass through the singular po-
sition.
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Fig. 13. Trajectory reproduction on the PAMINSA during the displacement of the platform with the fifth-order polynomial law
(view from below).

Fig. 14. Trajectory reproduction on the PAMINSA during the displacement of the platform with the sixth-order polynomial law
(view from below).

5. Conclusion

At a singular configuration, a manipulator can gain one or
more DOF, and at such a configuration it may become uncon-
trollable, that is, it may not reproduce stable motion with a pre-
scribed trajectory. Nevertheless, there are several motion plan-
ning techniques that allow these singular zones to be passed
through. These approaches have simulated by numerical ex-
amples and illustrated on several parallel structures. It is a
promising tendency for the solution of this problem. However,
attention has focused only on control aspects of this problem
and very little attention has been paid to the dynamic interpre-

tation, which is a crucial factor for governing the behavior of
parallel manipulators at the singular zones.

In this paper we have found the optimal dynamic conditions
to make passing through the type 2 singular configurations
possible. The general definition of the condition for passing
through the singular position is formulated as follows: in the
presence of type 2 singular configuration, the platform of a
parallel manipulator can pass through the singular positions
without perturbation of motion if the wrench applied on the
platform by the legs and external efforts are orthogonal to the
direction of the uncontrollable motion or, in other words, if the
work of the applied forces and moments on the platform along
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the uncontrollable motion is equal to zero. This condition has
been verified by numerical simulations carried out with the
software ADAMS and validated by experimental tests on the
prototype four-DOF parallel manipulator PAMINSA.

It should be noted that the formulated general conditions
should apply to any given trajectory generation through Type 2
singular configurations in the manipulator workspace. We
would like to point out that the trajectory is not imposed and
only the conditions of force generation must be satisfied.

Thus, the passing of any parallel manipulator through the
singular positions by the proposed technique is carried out by
the optimal generation of inertia forces. Hence, it is impossible
to stop the manipulator in the singular locus and to start again
from a fixed position.

We would like to mention that we have studied the optimal
redistribution of forces only in singular positions of the manip-
ulator, but it should be noted that there are zones close to these
positions in which the manipulator loses the quality of motion.
For a more reliable generation of motion, it is desirable to en-
sure the given condition of force generation not only in the
singular positions of the manipulator but also in the zones near
to these positions. It should also be mentioned that a future
development of our work will involve studying the difficulties
of controlling parallel robots in the neighborhood of singular
configurations.

Finally, it should be noted that the proposed technique can-
not be used for the case of non-controllable external forces
applied on the platform. Therefore, the most prominent field
of the industrial application is a “fast pick and place” manipu-
lation, when the generation of motion is determined by input,
gravitational and inertia forces.

Appendix A

The coordinates of points 3i , 5i and 9i (i = 1, 2, 3) are�
				�

x3i

y3i

z3i

�




� �

�
				�

Rb cos � i

Rb sin � i

z5i
k

�




� �

�
				�

x5i

y5i

z5i

�




� �

�
				�

x

y

z

�




��

�
				�

Rpl cos	� � � i 


Rpl sin	� � � i 


Lc

�




� �

where � i = (�5�
6���
6� �
2),�
				�

x9i

y9i

z9i

�




� �

�
				�

x3i � X9i cos qi

y3i � X9i sin qi

F

�




� �

with

X9i � A � B F� F � �	D � K 

	2E
�

K �
�

D2 � 4EC� E � �	B2 � 1
�

D � 2B	X8i � A
� C � L2
B3 � X2

8i � 2AX8i � A2�

B � z5i
	k X8i 
�

A � 	L2
B4 � L2

B3 � X2
5i � X2

8i � z2
5i 

	2k X8i 
�

X8i � �X5i
	k � 1
�

X5i �
�
	x5i � x3i 
2 � 	y5i � y3i 
2�

Appendix B

The expressions of terms C� j (j = 1, . . . , 4) are

C�1 � g

�

m5 �

�
j�2�3�4�7

�m j

k

�
� mB4

2

�
�
j�1�7

�m Bj

2k

�
�

3�
j�2

�m Bj

k

��� �

C�2 � g

�
	k � 1
m4 �m7 � km9

k

� 	k � 2
mB3 � mB7

2k
� mB4 � mB8

2

�
�

C�3 � g
m B1

2
� C�4 � gL B2

�
m2 � m B1 �mB2

2

�
�

Appendix C

The expressions of terms Ccj (j = 1, . . . , 13) are

Cc1 � 1

2

�
m4

k2
� m5 � m7

	k	k � 1

2
� m8

	k � 1
2

� m B3	k � 2
2

	2k	k � 1

2
� mB4

4
� mB7	k � 1
2

	2k	k � 1

2

� mB8

	2	k � 1

2

�
�

Cc2 � 1

2

�

 �

j�2�3�4�7

�m j

k2

�
� m5 �

�
j�1�7

�m Bj

4k2

�

�
3�

j�2

�m Bj

k2

�
� mB4

4

�
� �
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Cc3 � 1

2

�
	k � 1
2m4

k2
� m7

k2
�m9 � m B3	k � 2
2

4k2

� m B4

4
� mB7

4k2
� m B8

4

�
�

Cc4 � 1

2

�
2	k � 1
m4

k2
� m7

k2	k � 1

� m B3	k � 2
2

2k2	k � 1


� m B4

2
� mB7	k � 1


2k2	k � 1

� mB8

2	k � 1


�
�

Cc5 � 1

2

�
4		k�1
m4�m7
�mB7�2m B3	k�2


2k2 � m B4

2

�
�

Cc6 � m B1

8
� Cc7 � mB1

4k
� Cc8 � m B10L2

B10

8
�

Cc9 � I 	B4

Y Y � I 	B7


Y Y

2
� Cc10 � I 	B4


X X � I 	B7

X X

2
�

Cc11 � I 	B3

Y Y � I 	B8


Y Y

2
� Cc12 � I 	B3


X X � I 	B8

X X

2
�

Cc13 � IB2 � IB10

2
�

Appendix D

The global Jacobian matrix is JP AM = A�1B where matrices A
and B are

A��

�
													�

sin q1 � cos q1 0 �zPC1 cos q1 �zPC1 sin q1 �PCT
1 d1

sin q2 � cos q2 0 �zPC2 cos q2 �zPC2 sin q2 �PCT
2 d2

sin q3 � cos q3 0 �zPC3 cos q3 �zPC3 sin q3 �PCT
3 d3

0 0 �1 yPC1 �xPC1 0

0 0 �1 yPC2 �xPC2 0

0 0 �1 yPC3 �xPC3 0

�













�
�

B�

�
																	�

�1 0 0 0

0 �2 0 0

0 0 �3 0

0 0 0 k

0 0 0 k

0 0 0 k

�

















�

with �i � �
	x5i � x3i 
2 � 	y5i � y3i 
2, PCi ��

xPCi � yPCi � zPCi
�T � �

x5i � x� y5i � y� z5i � z
�T

and

di �
�

cos qi sin qi 0
�T

(for i = 1, 2, 3).

The expressions of the terms Wb and Wp are

Wb �
3�

i�1

	JT
Q3i F3i � JT

Q4i F4i � JT
Q9i F9i � JT

Q7i F7i

� JT
Q2i F2i � JT

QS4i FS4i � JT
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QS8i FS8i

� JT
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Wp � FP �
3�
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� JT
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�
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�
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RPqi �
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� sin � i 0 cos � i

0 0 0

� cos � i 0 � sin � i

�



� �

JQ7i �

�
																					�

01�3 �1i

�

RPqi Rot	� i � y


�
� L B4
k

02�1

�
�
�
�

T

01�3 �2i

�

RPqi Rot	� i � y


�
� L B4
k

02�1

�
�
�
�

T

01�3 �3i

�

RPqi Rot	� i � y


�
� L B4
k

02�1

�
�
�
�

T

01�3 01�3

�





















�

T

�

JX7i �

�
				�

03�1 Rot	qi � z
RP� i

�
	� L B4
k

02�1

�

�

03�1 03�1

�




� JX� i�i � JX8i �

JQS4i � 0�5
�
JQ5i � JQ9i

��
�
� 03�4

JQ�1i

�
� �

JQ�1i �
�
� 02�1 02�1 02�1 02�1

�1i �2i �3i 0

�
� �

JXS4i � 0�5 	JX5i � JX9i 
�
�
� 03�6

JX�1i

�
� �

JX�1i �

�
				�

0 � sin qi

0 cos qi

0 0

�




� JX� i�i �

JQS3i � 0�5
�
JQ4i � JQ7i

��
�
� 03�4

JQ�2i

�
� �

JQ�2i �
�
� 02�1 02�1 02�1 02�1

�1i �2i �3i 0

�
� �

JXS3i � 0�5 	JX4i � JX7i 
�
�
� 03�6

JX�2i

�
� �
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JX�2i �

�
				�
� sin qi 0

cos qi 0

0 0

�




� JX� i�i �

JQS8i � 0�5
�
JQ8i � JQ9i

��
�
� 03�4

JQ�2i

�
� �

JXS8i � 0�5 	JX8i � JX9i 
�
�
� 03�6

JX�2i

�
� �

JQS7i � 0�5
�
JQ8i � JQ7i

��
�
� 03�4

JQ�1i

�
� �

JXS7i � 0�5 	JX8i � JX7i 
�
�
� 03�6

JX�1i

�
� �

JQS10i �
�
� �[xS10i �yS10i �zS10i ]T

�q

JQ�1i

�
� �

JQS2i �

�
								�

�
				�

1 0 0 0

0 1 0 0

0 0 1 0

�




� JQ3i

JQ�1i

�








�
�

FP �
�

m pl �x m pl �y m pl �z 0 0 Ipl ��
�T
�

F j i � m j

�
�x ji �y ji �z ji 0 0 0

�T
�

for j � 2� 3� 4� 5� 7� 8� 9

FB1i �
�

0 0 mB1 �q� 0 0 0
�T
�

FBji �
�

mBj �xSji mBj �ySji m B2 �zSji 0 0 IB j �qi

�T
�

for j � 2� 10

FBji �
�

mBj �xSji mBj �ySji m B2 �zSji CT
Sji

�T
�

for j � 3� 4� 7� 8

CSji � �
RPqi Rot	�i � y
� Rot	qi � z
RP�i

�
� IBj 	Rot	qi � z
Rot	�i � y

T�Bji

� Rot	qi � z
Rot	�i � y
IBj 	RPqi Rot	�i � y


� Rot	qi � z
RP�i 

T�Bji �Rot	qi � z
Rot	�i � y


� IBj 	Rot	qi � z
Rot	�i � y

T ��Bji

with �i = � i if j = 4, 7, �i = �i if j = 3, 8 and �Bji ��
���i sin qi ��i cos qi �qi

�T
.

In these expressions, �i j represents the Krönecker symbol
(�i j = 1 if j = i and �i j = 0 if j �� i).
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