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Abstract—Manipulators of a new class characterized by a parallel-cross structure are considered. Kine-
matic chains located according to the principles of a parallel structure are linked with cross chains that
contain drives or impose constraints. Such a layout may facilitate a decrease in the dimensions of the
foundation and the output link and an increase in stiffness. A classification of the proposed mechanisms
is presented. The working volumes of the new manipulators and those of the most popular manipulators
based on a parallel structure (the Gough—Stewart platform) are compared.
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In recent years, many publications have been devoted to parallel-structure manipulators [1-6] owing to
their unique capacity to bear large loads and ensure high accuracy. However, such mechanisms are charac-
terized by inferior indicators with regard to the working volume and the capacity to ensure different orien-
tations of the output link. This is due to the fact that the presence of many parallel kinematic chains results
in their interference, i.e., in the appearance of contacts between links. Additionally, it is possible that driving
kinematic chains located between the foundation and the output link ensure high stiffness along only one
direction, with the stiffness characteristics along other axes being significantly lower.

Another factor that may limit the applicability of parallel-structure mechanisms may be the necessity of
locating many elements related to the kinematic pair of driving chains on the foundation and the output link.
This may result in an increase in the dimensions of the foundation and the output link and, consequently, of
the mechanism as a whole.

In this study, an alternative to these manipulators is proposed in the form of mechanisms with a parallel-
cross structure that are characterized by the location of cross kinematic chains, which contain drives or
impose constraints, between several kinematic chains arranged according to parallel-structure concepts.
This approach may enable some increase in the working volume since the kinematic chains are now less
subject to interference. Additionally, stiffness may increase in the directions perpendicular to the location
of parallel kinematic chains. The proposed engineering solutions involve some disadvantages; in particular,
the design of the structures of the parallel kinematic chains to which elements of the cross chains are fixed
becomes more complex. The proposed class of mechanisms may be relatively broad, as is indicated by the
presented classification based on the number of degrees of freedom and the number of parallel and cross
kinematic chains.

To compare the proposed manipulators with already existing ones, in this study, we compare the working
volumes of the two most popular parallel-structure mechanisms (Gough and Stewart platforms) with the
working volumes of two newly developed mechanisms. In one of these mechanisms, drives are located
within the working space, and in the other, they are located outside the working space. Owing to this, the
mechanism may be used in a corrosive environment, e.g., in vacuum.

The working volumes are compared under the following conditions. First, the constraints are considered
that are imposed by the design of linear actuators, namely, the maximal and minimal rod extensions. Then
the constraints related to the design of kinematic pairs (the maximal rotation angle) are imposed. Next, the
conditions of interference between links are taken into account. Then the limitations related to the require-
ments set for mechanisms are applied, namely, the permissible pressure angle, the limiting minimal stiff-
ness, and the minimal number of orientations of the output link that is determined at each studied point of
the working volume. The orthogonal coordinates of the center of the output-link coordinate system are stud-
ied within a preset parallelepiped in the interior of which they are scanned with some step. The orientations
of this link are considered in a similar way.
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DEVELOPMENT OF MANIPULATORS WITH A PARALLEL-CROSS STRUCTURE 177

We now consider a description and classification of the proposed mech-
anisms belonging to the new class. Their main difference from parallel-
structure mechanisms is that the kinematic chains located in parallel are
interrelated with cross-located kinematic chains. We present their classifi-
cation signatures.

Similarly to the approach used for parallel-structure mechanisms [5, 6],
the list of the classification signatures includes the number of degrees of
freedom, the number of kinematic chains with a sequential location of
links, and (this is characteristic of this class of mechanisms) the relation Fig. 1.
between the number of kinematic chains located in parallel and across. The
number of degrees of freedom m may be determined from the known for-
mula m = 6n - 5ps ~ 4p, - 3p3, where n is the number of mobile links and ps, p,, and p, are the numbers
of pairs belonging to a certain class.

However, to develop a classification, we use the fact that, in the absence of any constraints imposed by
kinematic chains, the output link has six degrees of freedom. Each ith chain with a sequential location of
links that contains no more than six pairs of the fifth class should impose D; constraints and/or contain one
or more drives. The number of constraints imposed by a chain is

Di = 6"p5’ (1)

where ps is the number of kinematic pairs of the fifth class in this kinematic chain (pairs of other classes
may be represented as a set of pairs of the fifth class).

We determine the number of degrees of freedom m using relation (1),

where k is the number of kinematic chains.

We use formulas (1) and (2) to classify mechanisms belonging to the new class. Table 1 shows the vari-
ants that differ by the number of degrees of freedom and the number of kinematic chains. For each variant,
the kinematic chains located in parallel are shown to the left and the chains located across are shown to the
right. Each digit corresponds to the number of kinematic pairs of the fifth class in the corresponding kine-
matic chain. According to Table 1, there are 118 base schemes of mechanisms belonging to the considered
class. A more detailed classification may be developed; for example, variants with six kinematic chains may
be classified by the number of kinematic chains located in parallel and the number of cross chains (Table 2).

Afterward each of the base variants was represented in a graphical form. This presentation requires much
space and is not shown here in full. We represent only one mechanism (Fig. 1) that has six kinematic chains
of which five are located in parallel and one is located across. In Fig. 1, nondriving kinematic pairs are
shown as circles and driving pairs are shown as crosses. This mechanism has six degrees of freedom. One
more factor that affects operability should be noted. In designing such mechanisms, one should take into
account that each closed loop should contain no less than seven fifth-class pairs; otherwise it will be a truss.

We consider in more detail the development of two mechanisms of the new class with six degrees of free-
dom and six kinematic chains of which three are located in parallel and three are located across (Fig. 2).
Two variants of the drive location may be found. In the first case, all actuators are located in the working
zone, i.e., on the same side of the foundation as the output link (Fig. 2a). In the second case, the actuators
are located outside the working zone (Fig. 2b). Spherical kinematic pairs may be designed as a set of rotating
pairs (Fig. 2c).

Each mechanism comprises a foundation (fixed link A;4,A5) and a mobile platform (output link B,B,B;).
The output link is connected with the foundation by three spherical pairs each of which contains two spher-
ical pairs with the centers located at points A; and B; and one driving translational pair whose axis is oriented
along segment A;B; (i = 1, ..., 3). Additionally, these three kinematic chains are connected with each other
by three more chains that comprise two spherical pairs with the centers at points C; and D; and one driving
translational pair whose axis is oriented along segment C;D; (j=i+ 1 fori=1,2 and j'= 1 for i = 3). If
spherical pairs B; and D; are represented as a Cardan joint (ﬁig. 2¢), the number of mobile links is n = 13,
the number of pairs of the corresponding classes ps = p, = p, = 6, and each mechanism has six degrees of
freedom.

We denote displacements in translational pairs A;B; as p; (i=1, ..., 3) and in translational pairs C ;D: as
Pis3(j=i+1fori=1and2andj=1fori=3). We assume that triangles A,4,4; and B,B,B; are equilateral
triangles. The center of the coordinate system of the output link is located at point P, which is the center of
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Table 1
Number of Number of degrees of freedom
kinematic
chains 6 5 4 3 2 1
66666-6 56666-6 55666-6 555666 55556-6 55555-6
666666 66666-5 56666-5 55666-5 66555-5 55556-5
666666 566666 556666 5556-66 5555-66 5555-56
6666-65 566665 5566-65 6655-55 5556-55
6 566-666 6666-55 5666-55 6555-65 555-556
666-665 556-666 555-666 666-566 556-555
566-665 556-665 665-555
- 666-655 566-655 655-655
666-555
66666 5666-6 4666-6 5556-6 5555-6 5555-5
666-66 6666-5 66664 555-66 555-56 555-55
566-66 5566-6 55665 655-55
66665 5666-5 566-55
5 466-66
66664
556-66
566-65
666-55
666-6 566-6 466-6 366-6 356-6 355-6
666-5 556-6 666-3 366-5 356-5
566-5 456-6 656-3 556-3
4 666-4 466-5 455-6 445-6
5664 456-5 446-5
5664 456-4
555-5 455-5
5554
66-6 56-6 55-6 45-6 26-6 25-6
66-5 56-5 46-5 66-2 26-5
654 35-6 65-2
36-6 56-3 35-5
3 66-5 36-5 55-3
55-5 44-6 44-5
464 45-4
554
54-5

triangle B,B,B;. The position of point P is set by the vector [x, y, z]~. The center O of the base coordinate
system coincides with the center of triangle A;A,A;. The x, axis of the base coordinate system is oriented
parallel to segment A;A; and the y; axis is directed along segment OA;.

The platform orientation is set by the angles ¢, 3, and y of rotation around axes z, x;, and y,, respectively.
The indices show that the axes were modified after corresponding rotations.
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Table 2
Number of kinematic Number of degrees of freedom
chains 6 5 4 3 2 1

5 66666-6 566666 55666-6 55566-6 55556-6 55555-6
66666-5 56666-5 55666-5 66555-5 55556-5
666666 5666-66 556666 5556-66 5555-66 5555-56
4-2 6666-65 5666-65 5566-635 6655-55 5556-55

6 6666-55 5666-55 6555-65
666-666 566666 556666 555-666 666-566 555-556
3.3 666665 566665 556665 665-555 556-555

666655 566-655 655-655

666-555

We now consider the problem of the positions of these mechanisms. The positions of points 4;, B;, C;,
and D; (i = 1, 2, 3) of a manipulator may be expressed in the following way:

0A, = ard(3, )[R, 0 (] -

x R,;c089;
OB; = || +curl(o, zo)curl(B, x,)curl(y, y,) R,sind,

Z 0

l’7
0C, = OA,.+§A,.B,., oD, = OAi+‘—)iAB

iis
1

where the distances R, = OA; and R, = PB;; the angles 8,=-5n/6, -1/6, 1/2 (i=1,2, 3) (since triangles A,A,4,
and B,B,B; are equilateral); [, = A;C;, [, = A;D;; and Rot({, w) is a matrix that describes the rotation by the
angle ( ({= o, B, and 7) around axis w of the variable coordinate system (w = z,, x;, and ¥).

Therefore, the expressions for the generalized coordinates have the following form:
b= J(AB)(AB) (i=1,2,3) and p,,, = /(ciDj)T(ciDj)
(j=i+1 for i=1,2 and j=1 for i=3).

Thus, the problem of the positions is solved.

Fig. 2.
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We now consider the equations of constraints that follow from the problem of the positions and partial
derivatives of those equations. The equations of constraints have the following form:

fi=0=p/-(AB) AB) (i=1,23),
fivs=0=p/5=(CD)(CD) (j=i+lfori=1,2;j=1fori=3).

Differentiating these equations by time, we arrive at the following equations [7]:

Av+BG=0, A= [%] B = [%

aX,' ,':|’ Xi =(y.z0 B’ Y)»

where A and B are two matrices, 4 =[p;, p,, Pa, P4, Ps, Ps )7 is the vector of generalized velocities, and

v=[%.9,2, &, B, 7] is the vector of the time derivatives of the absolute coordinates of the output link—
platform.

Degenerate matrices yield different types of singular positions (singularities). If matrix B is degenerate,
the kinematic screws that correspond to one kinematic chain are linearly dependent and the mechanism
loses one degree of freedom [4-7]. This singularity corresponds to type 1. If matrix A is degenerate, the
forcing screws transmitted to the output link from the side of kinematic chains are linearly dependent and
the mechanism has an infinitely small uncontrolled mobility for one kinematic screw [4~7]. This singularity
corresponds to type 2. There is a third type of singularity when both matrices (A and B) are degenerate.

Using transformation matrix D, vector v may be related with the kinematic screw t of the platform
expressed in the fixed coordinate system [4]

L. 0 0 cosa —sinocosp
t = Dv, where D = [’03” 21, L = {0 sina coso.cosf |»
3x3 1 O sinB

where I, ; and 05 5 are the unit and zero 3 x 3 matrices, respectively.
Therefore, the Jacobi matrix J that relates the kinematic screw t of the platform with the generalized
velocities ¢ has the following form:

J=-DA'B.
Matrix A has the following form:

XB1—Xa1 ¥YB1— Ya1 Zp1—Za1 Qia Gys Ay
Xp2—=Xu2 Y2 = Vaz Lpr— 2z gy Gps Qog

A = 2| ¥B37 %43 YB3~ Va3 Tp3y — Za3 Qag Gas g

A4 Ay Qys  Qyg Qys Qg
sy sy Usy  Qsq Gss dse
(g, gy gy ey Uos gl

3, 3y, 325,
where g = 59‘_;1 (g —0a) + E)f (=) + a—ZCB-' (zpi—z4)and (= (0, B, y) fori=1,2, 3and k=4, 5, 6. Other
)

components of matrix A are described by more complex expressions and are not presented here.
Matrix B has the following form:

2p, 0 0 0
0 2p, 0O 0
0 0 2p; 0
dfydp, dffdp, O 2p, 0 O
0 dfs/dp, dfs/dps O 2ps O
0fs/dp; 0 dfg/dps O O 2pg|

o O O
oo O
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(b)

Fig. 3.

The elements of matrix A for i =1, 2, 3 may be expressed as

Of .3 - _z_l}i(xBi_xAi)(xAj(l - é‘-) + éngj_xAi(l = -l-]-)— “l‘lxai)

dp; p; i/ Pj P/ Pi
l ( ( lz) L ( ll) I,

=2= (Vi = Yad)| Yajl L == |+ =¥gj— Yail 1 - = __)’i)
plz(yB yA) )A] p] pij] A p,‘ pi B
l [ l Iy 1

- zp—}(zBi - ZAi)(ZAj(l - 52) + b'z;ZBj—zAi(l - i) - b’l'iZBi)'

Other elements may be represented in a similar way.

We now compare the properties of the newly developed mechanisms with those of the parallel-structure
mechanisms that are studied most widely [1, 2], i.e., the platforms proposed by Gough (Fig. 3a) and Stewart
(Fig. 3b). Each of the mechanisms has six degrees of freedom and is driven by six linear drives (Fig. 3). The
internal mobility that exists in the spherical pairs of each kinematic chain may be eliminated by using rota-
tional pairs (Fig. 2¢). The kinematic and force analysis of these mechanisms may be found in many studies
and we will not consider it here in detail.

For the comparative analysis, we consider the same components of the existing and new mechanisms,
namely, strokes of drive rods (ranges of variation of generalized coordinates) and the dimensions of the
foundation and the output link. We determine which manipulator has larger dimensions of the working
space taking into account the following factors: geometrical constraints (set limits for variations of gener-
alized coordinates, limits for rotation angles in kinematic pairs, and possible interference between links);
the value of the pressure angle in manipulators; the number of possible orientations of the mobile platform
at points of the working space; and the bearing capacity of the manipulators, which is related with the stiff-
ness of drives.

FANUC F200 is a popular robot that was developed on the basis of the Gough platform (which is some-
times referred to as the Stewart or Gough-Stewart platform). This manipulator is characterized by high bear-
ing capacity and low compliance under the effect of a vertical force. We assume the following geometrical
parameters: radii of the circles circumscribed around the mobile and immobile platforms R, = 0.2 m and
R, = 0.3 m, respectively, and drive rod strokes (ranges of variation of generalized coordinates) (A;B;)
AB)uin=065m@=1,...,6).

The structures of the considered mechanisms are different. Therefore, to make the COMmparison more jus-
tified, we select the closest values of the parameters of these mechanisms; namely, the parameters of the
foundation and the output link should be the same for each manipulator and correspond to the set of param-
eters of a FANUC F200 robot, the drive rod strokes should be equal to 0.65 m, and all of the points that
belong to the foundation should be located within triangle A,4,A5.

Next we compare the working volume of the studied manipulators taking into account different limiting
factors. The procedure used for determining the working space is as follows. The Cartesian space within
which the output link moves is divided into 7 points and the possible orientation angles are divided into p
orientations. The scanning step in the Cartesian space is 0.05 m and in the orientation space it is 10° for

max
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Fig. 4.

angles o, {3, and yvarying from —60° to +60°. Point Q is considered to belong to the working space if at least
one of the p orientations may be implemented at this point taking into account geometrical constraints, The
corresponding characteristic may be associated with the maximal working volume [4].

The following geometrical constraints were imposed on the manipulator: the maximal drive rod stroke
is 0.65 m; to prevent interference, the minimal distance between the links should be no less than 0.1 m; the
minimal angle between two adjacent links connected with a hinge should be no less than 15° (for example,
the angle between links A;D; and C;D; (Fig. 2c) should be no less than 15°); and the range of rotations in
spherical pairs should range from —60° to +60°.

The geometrical parameters of the Gough platform are determined by the design of this manipulator. The
geometrical parameters of other manipulators are assumed to be closest to the operational parameters of the
FANUC F200 robot: for the Stewart platform, points C}, C,, and C; coincide with points Ay, Az, and A},
respectively, and A;D; = 0.2 m; for the first of the proposed manipulators (drives located within the working
zone), [;=0.15 m and [, = 0.65 m; and for the second manipulator (drives located outside the working zone),
[y=-03mand [,=-0.75 m.

As aresult of the analysis of the working space (Fig. 4), we determined that the working volumes have
the following values: (a) for the Gough platform, 0.719 m?; (b) for the Stewart platform, 1.749 m?; and for
the manipulator with a parallel-cross structure, (c) 1.959 (variant 1) or (d) 2.168 m? (variant 2). This com-
parison has an approximate character since the considered mechanisms differ in their structure.

The nextstep in the study was to determine the parameters of the working space taking into account pres-
sure angles. This characteristic is known to a larger extent for mechanisms with one degree of freedom [8,
9] and to a smaller extent for mechanisms with more than one degree of freedom [10]. The pressure angle
is the angle between the direction of the force action and the direction in which the point to which this force
is applied moves. For mechanisms with m degrees of freedom, it is necessary to consider m mechanisms
with one degree of freedom fixing each time m — 1 drives. In singular position 2, the pressure angles are 90°,

It is known that, for a parallel-structure mechanism, the ith row in the inverse Jacobi matrix that relates
the kinematic screw of a mobile platform with generalized velocities (¢ = J-'t) represents the forcing screw
w; that corresponds to the ith drive. For a mechanism with six degrees of freedom, the inverse Jacobi matrix
may be represented as
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DEVELOPMENT OF MANIPULATORS WITH A PARALLEL-CROSS STRUCTURE 183

where all notations were explained above.

Without loss of generality, we consider the case where actuator 1 is
not fixed and other actuators are fixed. The kinematic screw of the plat-
form t, is a screw that is reciprocal to the forcing screws w, ..., W that
act on the platform from the side of kinematic chains 2, ..., 6. This kine-
matic screw corresponds to five equations of reciprocity

Fig. 5.

0=v,F, + U, Fy+ 0 Fr+ 0, M + oM, +0, M, (i=2,...,6),

where Vp =[v,, vy, v,]" is the projection of the velocity of point P of the platform on the x, Y, and 7 axes;
Q [w,,, 0, ;)7 is the projection of the angular velocity of the platform on the x, y and z axes; F,,, F iy» and
F;; are the projections of the vector of the force that acts from the side of the ith motor on the x, ¥, and 7 axes;
and M;,, M;,, and M, are the projections of the torque that acts from the side of the ith motor on the x, ¥, and
Z axes.

Selecting coordinate vy, as the first coordinate, one can find other coordinates of kinematic screw t,:

F2y F2z M2x M?.y MZZ
, where N=| : : :

= F6y F6: M6x M6y MGZ

For each considered manipulator, the forcing screw that acts from the side of drive 1 on point B of the
platform is a pure vector (zero-parameter screw) F. Velocity V, of point B, may be expressed in the fol-
lowing way: Vg, = Vp + B, P x Q,, where all notations were defined above.

T
7))
[,V

It should be noted that the pressure angle expresses the power P that is transmitted from the side of

drive 1 to the platform P = FIT Vi1 = [Fi[[Vp [cosoy. Therefore, if the angle o, is 90°, the power P is 0 and

the manipulator cannot be activated by the corresponding drive. For a mechanism with six degrees of free-
dom, six pressure angles may be determined and afterward the most unfavorable of them may be selected.
This method allows one to find all of the pressure angles for the Gough and Stewart platforms as well three
of the six pressure angles for the proposed mechanisms. However, for actuators with numbers from four to
six, the approach to determining pressure angles should be somewhat changed.

Without loss of generality, we consider link C,D, (Fig. 5) for the new mechanisms. Using the considered
mechanism, one can find the kinematic screw t, of the platform where all of the drives except drive 4 are
fixed. As a result, velocities may be determined V, = (/ PV and Vi, = (L,/p,) V.

t1 = 5 Fx = [sz, F3xs F4x7 FSx? FGX]T'

-NF

Thus, the pressure angle is o = cos*‘(

The power transmitted from the drive side may be represented as P = Ff Vo, - Ff V¢, where F, is the
direction of the vector of the force that acts from the actuator side on links A|B, and A,B,. The power may

T . . . . .
be represented as P = F4T (Voo = Vo) = F4 Voo, where Vi, is the relative velocity of point D, with
respect to point C;. Therefore, the pressure angle is
T
Fi Vo )
‘F4“VD2C1|

oy = cosgl(
\

A similar expression may be derived for drives 5 and 6. It should be noted that the analysis of pressure
angles is also an operation that allows the singular positions to be studied. A pressure angle is a static crite-
rion of a singular position. This criterion restricts the working volume in a more stringent way than the kine-
matic criteria based on the linear dependence of screws or rows in a Jacobi matrix. The working volumes of
the studied mechanisms may be analyzed on this basis. We assume that an angle of 82° is the maximal per-
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missible pressure angle. If at some point of the working space there is at least one orientation where pressure
angles are less than this value, this point belongs to the working space. The values of the working space are
close to those obtained earlier, namely, 0.719 m? for the Gough platform, 1.727 m? for the Stewart platform,
and 1.952 (variant 1) or 2.154 m? (variant 2) for a manipulator with a parallel-cross structure.

The next criterion for assessing the compared mechanisms is based on the number of possible orienta-
tions of the output link. In all of the cases considered above, 13® = 2197 orientations were checked at each
point of the working space and a point was considered to be suitable if at least one orientation was accessi-
ble. Now a new limitation is introduced and a point is considered to be suitable if no less than 200 orienta-
tions are accessible. In this case, we obtain values of the working space that are smaller than those obtained
earlier, namely, 0.260 m’ for the Gough platform, 0.953 m? for the Stewart platform, and 1.438 (variant 1)
or 1.493 m? (variant 2) for a manipulator with a parallel-cross structure.

The next step in the comparison of the manipulators is related to the consideration of their loading capac-
ity or stiffness. This characteristic depends on the stiffness of drives and configurations of mechanisms. We
introduce the following notations: w = [F,, F,, F,,M,, M, M,])" is the forcing screw that acts on the output
link (mobile platform); here, coordinates F, F, F,, M., M,, and M, represent the force and the torque; 7=
[T, Tos T, T, Ts, Tl i the vector of the generalized forces that act in the drives; dx = [8x, 8y, 8z, 8a, OB, oy1”
is the modified kinematic screw of an infinitesimally small motion of the mobile platform; dx, &y, and &z are
coordinates of linear displacement; dc, 8, and &y are coordinates of angular displacement; and 0q = [0g,,

042, 8gs, 894, 8gs, d5)" is the vector of the elementary increments of the generalized coordinates.

The Jacobi matrix is known to yield a solution of the problem of force analysis. Indeed, according to the
principle of virtual displacements, for an elementary increment of generalized coordinate dg;, the expression
for the elementary work yields

0q%; = (0x/dq;F + ...+ 9y/dq;M )8q;, whence T, = dx/dq,F, + ... +dY/dg;M,.

Therefore, © = J7w, where J is the Jacobi matrix that relates the increments of the generalized and abso-
lute coordinates dx = Jdq.

Considering stiffness in the drives, we obtain

k0 ... 0
T = ksq’ k = O kz E ,

0

0 ... 0 kg

where k; is the elastic coefficient of the ith drive (i=1, ..., 6).

This yields the displacement &x of the mobile platform as a result of the force action w = K&x and K =
J‘TkJ“‘, where all of the notations were introduced above.

In the analysis, we considered a load that acts in the horizontal plane. In this case the forcing screw is
w=[F,F,,0,0,0,0]” The stiffness of the drives is assumed to be k; =10000 N/m (i = 1, ..., 6); this value
is close to the stiffness in the FANUK F200 robot. First, this manipulator was considered and the maximal
linear displacement was determined for the configurations specified in the cases above for the given loads
in the horizontal plane. Therefore, the working volume for this mechanism remained unchanged. An
assumption was made for all of the manipulators that a studied point belongs to the working space if no less
than 200 orientations of the output link may be implemented and the linear displacement does not exceed
the maximal displacement of the FANUK F200 robot. In this case, the dimensions of the working volume
are less than those obtained earlier except for the robot mentioned above, namely, 0.260 m® for the Gough

platform, 0 for the Stewart platform, and 0.814 m? (variant 1) or O (variant 2) for a manipulator with a par-
allel-cross structure.

In summary, manipulators of a new class that are characterized by a parallel-cross structure were pre-
sented. The mechanisms were classified and their working volumes were compared. Although such a com-
parison may not be considered as a strict one due to the difference between the structures of the considered
mechanisms, we may conclude that mechanisms of the new class may be of significant practical interest.
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