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Investigation on the Effort
Transmission in Planar Parallel
Manipulators
In the design of a mechanism, the quality of effort transmission is a key issue. Tradition-
ally, the effort transmissivity of a mechanism is defined as the quantitative measure of the
power flowing effectiveness from the input link(s) to the output link(s). Many researchers
have focused their work on the study of the effort transmission in mechanisms and diverse
indices have been defined. However, the developed indices have exclusively dealt with
the studies of the ratio between the input and output powers and they do not seem to have
been devoted to the studies of the admissible reactions in passive joints. However, the
observations show that it is possible for a mechanism to reach positions in which the
transmission indices will have admissible values but the reaction(s) in passive joint(s)
can reach excessively high values leading to the breakdown of the mechanism. In the
present paper, a method is developed to ensure the admissible values of reactions in pas-
sive joints of planar parallel manipulators. It is shown that the increase of reactions in
passive joints of a planar parallel manipulator depends not only on the transmission
angle but also on the position of the instantaneous center of rotation of the platform. It
allows the determination of the maximal reachable workspace of planar parallel manipu-
lators taking into account the admissible reactions in its passive joints. The suggested
method is illustrated via a 5R planar parallel mechanism and a planar 3-RPR parallel
manipulator. [DOI: 10.1115/1.4023325]

Keywords: planar parallel manipulators, design, effort transmission, transmission angle,
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1 Introduction

Parallel manipulators have many advantages in terms of accel-
eration capacities and payload-to-weight ratio [1], but one of their
main drawbacks concerns the presence of singularities [2–5]. It is
known that in the neighbourhood of the singular positions, the
reactions in joints of a manipulator considerably grow up.

In order to have a better understanding of this phenomenon,
many researchers have focused their works on the analysis of the
effort transmission in parallel manipulators. One of the evident
criterions for evaluation of effort transmission is the transmission
angle (or pressure angle which is equal to 90 deg minus the trans-
mission angle) [6–8]. The pressure angle is well known for char-
acterizing the transmission quality in lower kinematic pairs, such
as cams [9], but this idea was also used for effort transmission
analysis in the parallel manipulators [6,8].

To evaluate the effort transmission quality, several indexes
have been introduced. One of the first attempts was proposed in
Ref. [10]. This paper presents a criterion named the transmission
index (TI) that is based on transmission wrench screw. The TI
varies between 0 and 1. If it is equal to 0, the considered link is in
a dead position, i.e., it cannot move anymore. If it is equal to 1,
this link has the best static properties.

In the same vein as Ref. [10], the study [11] generalizes the TI
for spatial linkages and defines the global TI (GTI). The authors
also prove that the GTI is equal, for prismatic and revolute joints,
to the cosine of the pressure angle.

The conditioning index was also proposed [12] for characteriz-
ing the quality of transmission between the actuators and the end-
effector. This index is based on the Jacobian matrix or its “norm,”

which relate the actuator velocities (efforts, respectively) to the
platform twist (wrench, respectively) by the following relations:
t ¼ J _q and w ¼ J�Ts; where J is the Jacobian matrix, t is the plat-
form twist, _q is the input velocities, s is the actuator efforts, and w
is the wrench applied on the platform.

All these indices have been used in many works for design and
analysis of parallel mechanisms [13–20]. However, it is also
known that because of the nonhomogeneity of the terms of the Ja-
cobian matrix, the conditioning index is not well appropriated for
mechanisms having both translational and rotational degrees of
freedom (DOF) [21]. Moreover, all the previously mentioned indi-
ces do not take into account the real characteristics of the actua-
tors, i.e., the fact that their input efforts are bounded between
[�smax

i ; smax
i ] [21].

In order to solve this problem, in a study [22] a numerical anal-
ysis method has been developed. It has been proposed to charac-
terize the force workspace of robots taking into account a given
fixed wrench applied on the platform and actuator efforts com-
prised in the boundary interval [�smax

i ;smax
i ]. However, this work-

space depends on the given direction and norm of the external
force/moment and will change with the variation of the applied
wrench. Moreover, for many robot applications, the external
wrench direction is not known, contrary to its norm. Therefore, in
Ref. [23], a way to compute the maximal workspace taking into
account the actuator effort limitations for a given norm of the
external force and moment was proposed. This approach is based
on the computation of the transmission factors of matrix J�T,
which are obtained geometrically through the mapping of a cube
by the Jacobian matrix.

All the previously mentioned approaches analyze the quality of
the effort transmission by taking into account the input torque lim-
itations only. However, there are such positions of parallel manip-
ulators for which the limitations of input torques can be satisfied
while the limitations of reactions in passive joints are not. To
have a better understanding of this phenomenon, let us consider a
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simple example via a planar 5R manipulator (Fig. 1). Close to
such singularity a small effort w applied on the end-effector of the
manipulator will create a large reaction R1 in the passive joint B.
But in this pose, the actuator torques s1 will stay under acceptable
values, as it depends only on the small component F1 of the reac-
tion R1. Thus, for the mentioned case, the transmission indices
will have acceptable values but they will not give any information
about the inadequately high values of reactions in passive joints of
the mechanism.

Therefore, the development of criteria for limitation of the pas-
sive joints’ reactions is also an important consideration in effort
transmission field. It is a complementary condition to the trans-
mission indices for characterizing the quality of effort transmis-
sion especially in the neighbourhood of singularity.

This paper focuses on the study of the effort transmission in
planar parallel mechanisms (PPM) from the above point of view.
It aims at proposing a new criterion for taking into account the
passive joint reactions and at finding the relationships between
this criterion and the previously developed indices, especially the
transmission angle.

First, the expressions of the maximal platform joint reactions as
a function of the parameters of the wrench applied on the platform
is presented, i.e., the maximal force norm and the absolute value
of the moment. Then, it is disclosed that the maximal values of
platform joint reactions depend not only on the value of the trans-
mission angle but also on the position of the instantaneous center
of rotation of the platform. Moreover, the obtained results allow
one to define the ranges for the admissible values of the transmis-
sion angles and distance to the instantaneous center of rotation
that ensure a good effort transmission quality. Finally, two illus-
trative examples and simulation results are presented.

2 A Criterion for Evaluation of the Passive

Joints Reactions

For any PPM, the reaction forces Ri in the platform passive
joints (denoted as Bi in Fig. 2, i¼ 1,…, 3) can be related to the
external wrench wT¼ [fT, C]T (f is the external force and C the
scalar value of the external moment applied on the platform)
applying the Newton–Euler equations at any point Q

f ¼ �
X3

i¼1

Ri and C ¼ �
X3

i¼1

�dT
QBiRi (1)

where �dT
QBi ¼ ½�yQBi; xQBi� with xQBi and yQBi are the coordinates

of vector QBi along x and y axes (the position of point Bi may
vary if the passive joints linked to the platform are prismatic
joints). It should be mentioned that in Fig. 2 and the following fig-
ures, the double arrows indicate the direction of the platform reac-
tion forces but not their norm. Considering that Ri¼Ri ri, where
ri is a dimensionless unit vector and jjRijj ¼Ri, and applying the
Newton–Euler equations at point B1, it comes that

w¼�
r1 r2 r3

0 �dT
B1B2

r2
�dT

B1B3
r3

" # R1

R2

R3

2
664

3
775¼� sw1 sw2 sw3½ �R¼�ATR

(2)

sT
wi ¼ rT

i ;
�dT

B1Bi
ri

h i
being unit screws corresponding to the direc-

tion of the platform joint reaction wrenches.
Matrix A used in Eq. (2) is defined in Refs. [1,3] as the parallel

Jacobian matrix than can be found through the differentiation of
the loop closure equations of the robot with respect to the platform
coordinates. As a result, this matrix is always invertible if the
robot is not in a type 2 singularity.

The reactions R of the passive joints can be found from Eq. (2)

R ¼ �A�Tw (3)

where matrix A
–1 can be expressed in the form [2]

A�1 ¼ st1 st2 st3½ �; with sT
ti ¼ ½vT

i ;xi� (4)

where sti is a screw corresponding to the direction of the platform
twist when leg i is disconnected. Moreover, it should be noted that

— vi is a dimensionless vector parallel to the platform transla-
tional velocity vector vBi expressed at point Bi, i.e., vBi¼ kvi

where k is a scalar of which dimension is in m/s (Fig. 2);
— xi is a scalar that is related to the platform rotational veloc-

ity Xi by Xi¼ kxi [6] (Fig. 2). Therefore, the dimension of
xi is in m�1. On Fig. 2, point I1 corresponds to the position
of the instantaneous center of rotation of the platform when
leg 1 is disconnected.

Without loss of generality, let us consider the norm R1 of the
reaction force in the joint attaching the leg 1 to the platform
(located at B1). Developing Eq. (3), it comes that

R1 ¼ � vT
1 f þ x1ðCþ �dT

B1PfÞ
� �

¼ � ðvT
1 þ x1

�dT
B1PÞf þ x1C

� �
(5)

For a given norm f of the external force f and a given value C
of the external moment, and for any direction of vector f, the max-
imal value R1max of R1 appears when

R1 max ¼ max
f;C
ðR1Þ

¼ f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v1k k2þ x1b1ð Þ2�2 v1k k x1b1j j cos b1

q
þ x1Cj j (6)

where b1 is the distance between the application point of the exter-
nal wrench, denoted as P, and point B1. b1 is the angle between
vectors v1 and �x1

�dB1P (Fig. 3).
Generalizing the approach to the other legs (i¼ 1, 2, 3)

Ri max ¼ max
f;C
ðRiÞ ¼ f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vik k2þ xibið Þ2�2 vik k xibij j cos bi

q
þ xiCj j

(7)

Fig. 1 Planar 5R manipulator close to a type 2 singular pose

Fig. 2 Determination of the pressure angle for the planar
3-RPR robot
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Equation (7) characterizes the effort transmission between the
external wrench applied on the platform and the reaction of the
platform joint located at Bi. For a given mechanism configuration
and a given value of Ri max, it is thus possible to find the admissi-
ble ranges for f and C, i.e., for the parameters of the external
wrench applied on the platform. Moreover, in order to avoid the
breakdown of the platform joint located at Bi, technological
requirements must imply that the admissible value of Ri should
not be superior to a given value Radm, i.e., Ri max � Radm.

It is shown in Sec. 3 that Eq. (7) can be related not only to the
value of the pressure angle (the pressure angle is equal to 90 deg
minus the transmission angle) but also to the value of the distance
of the platform instantaneous center of rotation Ii when leg i is
disconnected.

3 Relationships Between the Maximal Passive Joint

Reaction and the Pressure Angle

By combining Eqs. (2) and (4), it comes that sT
w1st1 ¼ rT

1 v1 ¼ 1.
Moreover, it was shown in Ref. [6] that the pressure angle of the
leg 1, depicted as a1 (see Fig. 2), may be expressed as the acute
angle between the directions of vectors r1 and v1 [24]. Therefore,
if B1 does not coincide with I1

rT
1 v1

�� �� ¼ 1 ¼ r1k k v1k k cos a1; i:e:; cos a1 ¼
rT

1 v1

�� ��
r1k k v1k k

(8)

By definition, r1 is a unit vector. As a result, v1k k ¼ cos a1ð Þ�1
.

Moreover, from the definition of a planar displacement for a rigid
body, v1k k ¼ d1 x1j j; where d1 is the distance from the platform
instantaneous center of rotation I1 to point B1 (Fig. 2). Introducing
these expressions into Eq. (6), it comes that

R1 max ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b1=d1ð Þ2�2 cosb1b1=d1

q
f þ Cj j=d1

cosa1

; for d1 > 0

(9a)

R1 max ¼ x1j jðfb1 þ Cj jÞ; for d1 ¼ 0 (9b)

Generalizing the approach to the other legs (i¼ 1, 2, 3)

Ri max ¼
cif þ Cj j=di

cos ai
; for di > 0 (10a)

Ri max ¼ xij jðfbi þ Cj jÞ; for di ¼ 0 (10b)

where ci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bi=dið Þ2�2 cos bibi=di

q
; di is the distance

between point Bi and the instantaneous center of rotation of the
platform when leg i is disconnected, ai is the pressure angle of the
leg i, bi is the distance between P and Bi, and bi is the angle
between vectors vi and �xi

�dBiP (and as a result between vectors

BiP and BiIi—Fig. 3), �dBiP; vi, and xi being defined at Eqs. (1)
and (4). It should be mentioned that the distance between point P
and Ii is equal to cidi.

Equation (10) shows that, for a given set of external force and
moment applied on the platform and for di> 0, the reactions in
passive joints depend not only on the pressure angle but also on
the position of the instantaneous center of rotation of the platform
when one of the legs is disconnected. To the best of our knowl-
edge, this property has not been rigorously formulated and dem-
onstrated before. It allows not only giving a qualitative evaluation
of the effort transmission in PPM but also disclosing the geometri-
cal interpretation of the problem: from the Eq. (10a), it can be
shown that the mechanical system under study can be instantane-
ously replaced by a virtual cantilever attached to the ground at Ii

(Fig. 3) lying on a virtual point contact at Bi, of which direction is
parallel to the vector Ri. The external force f is applied on the
point P of the cantilever.

As ai is a criterion used for the kinetostatic design of robots
[8,13,17,20], it is of interest to find its boundaries with respect to
the technological requirements that imply that the admissible
reaction Ri in passive joints should not be superior to a given
value Radm, i.e., Ri max � Radm.

The following of the paper is focused on finding the ranges on
ai and di, di> 0, i.e., the parameters of the equivalent cantilever
system, for which this inequality Ri max � Radm is respected.

The case di¼ 0 is discarded, as the pressure angle cannot be
defined. However, it can be shown that the joint reaction stays
under acceptable value if and only if xij jðfbi þ Cj jÞ � Radm.

Introducing Eq. (10a) into the inequality Ri max � Radm leads to

f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bi=dið Þ2�2 cos bibi=di

q
� Radm cos ai � Cj j=di (11)

Please note that, as by definition, f, cos ai, di, and Radm have
positive values, a necessary condition for the existence of Eq. (11)
is

0 � Radm cos ai � Cj j=di )
Cj j

Radm cos ai
� di (12)

If not, the left term of Eq. (11) will always be superior to Radm.
Let us now square the left and right sides of Eq. (11) and multiply
them by d2

i (from Eq. (10a), di> 0)

f 2 d2
i þ b2

i � 2 cos bibidi

� �
� d2

i Radm cos aið Þ2

þ C2 � 2di Cj jRadm cos ai (13)

The obtained expression can be rewritten as

0 � piðdiÞ (14)

where, piðdiÞ ¼ uid
2
i þ vidi þ wi, ui ¼ R2

adm cos2 ai � f 2,

vi ¼ �2 Cj jRadm cos ai � cos bibif
2ð Þ, wi ¼ C2 � f 2b2

i .
The inequality Eq. (14) has different solutions, depending on

the vanishing and signs of terms ui, vi, and wi. There are three
main cases ui> 0, ui< 0, and ui¼ 0. Let us consider these cases.

3.1 ui > 0. ui> 0 implies that f < Radm cos ai. In this case, the
polynomial pi has got two roots but only one corresponds to the
real mechanism, i.e., to a solution of Eq. (11). The other root is so-
lution of

�f 2 d2
i þ b2

i � 2 cos bibidi

� �
� d2

i Radm cos aið Þ2

þ C2 � 2di Cj jRadm cos ai (15)

In order to obtain a root of Eq. (14) with physical values, it is
necessary that the condition v2

i � 4uiwi � 0 is respected, i.e.,

Fig. 3 Instantaneous system equivalent to the planar 3-RPR
robot platform
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R2
admf 2b2

i

� �
cos2 ai � 2 Cj jRadm cos bibif

2
� �

cos ai

� sin2 bib
2
i f 4 þ f 2C2 � 0 (16)

Developing and simplifying, it can be shown that this polyno-
mial in cos ai has roots with real values if and only if

R2
adm sin2 bib

2
i f 4wi � 0 (17)

For the analysis of this inequality, two following cases must be
considered: wi� 0 and wi> 0.

3.1.1 wi> 0. The condition wi> 0 implies that Cj j> f bi.
Here, Eq. (16) has no real roots, i.e., Eq. (16) is true for any value
of ai. Thus, the condition for Eq. (11) to be true is that

di � max dið Þ1; Cj j= Radm cos aið Þ
� �

(18)

where dið Þ1¼ �vi þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

i � 4uiwi

p� �
=2ui is the root of Eq. (14)

solution of Eq. (11).

3.1.2 wi� 0. The condition wi� 0 implies that Cj j � f bi.
Equation (16) is true if its roots are bounded by

cos ai �
Cj j cos bi þ sin bij j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2b2

i � C2
p

Radmbi
(19a)

or

cos ai �
Cj j cos bi � sin bij j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2b2

i � C2
p

Radmbi
(19b)

After mathematical simplifications, it can be proven that if Eq.
(19b) is true, then

cos ai �
Cj j

Radmbi
� f

Radm

(20)

which is in contradiction with ui> 0. Therefore, the only condi-
tion for Eq. (16) to be true is that

cos ai � max
Cj j cos bi þ sin bij j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2b2

i � C2
p

Radmbi
;

f

Radm

 !
(21)

However, it can be demonstrated, by studying the sign of the

function g ¼ Cj j cos bi þ sin bij j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2b2

i � C2
p

� fbi; that

Cj jcosbiþ sinbij j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2b2

i �C2
p

Radmbi
� f

Radm

; for ui > 0 and wi � 0

(22)

Thus Eq. (21) implies that ui> 0, which is true. Then, Eq. (16) is
always true in this section. As a result, the only condition for Eq.
(11) to be true is Eq. (18).

3.2 ui < 0. ui< 0 implies that f > Radm cos ai. Introducing this
into Eq. (11) leads to 0� ci� 1, i.e., the cantilever allows decreas-
ing the applied force f. Here also, two cases of coming from the
analysis of Eq. (17) should be studied, i.e., wi� 0 and wi> 0.

3.2.1 wi> 0. If wi> 0, i.e., Cj j> f bi, from Eq. (12) it can be
shown that

fbi

Radm cos ai
<

Cj j
Radm cos ai

� di (23)

As in Sec. 3.2, ui< 0, which is equivalent to Radm cos ai< f,
from Eq. (23) it comes

bi <
fbi

Radm cos ai
; thus bi < di (24)

If Eq. (24) is true, the expression of ci at Eq. (10a) is bounded
by

ci �
bi � dij j

di
¼ di � bi

di
> 0 (25)

Introducing Eq. (25) into Eq. (11), and as Cj j> f bi, it comes
that

f di � bið Þ þ fbi

di
¼ f <

f di � bið Þ þ Cj j
di

� Radm cos ai (26)

Thus

f < Radm cos ai; or equivalently ui > 0 (27)

which is impossible in Sec. 3.2.

3.2.2 wi� 0. If wi� 0, i.e., Cj j � f bi, it could be shown after
several mathematical simplifications and looking at the results of
Sec. 3.1.2 that Eq. (16) is true if and only if

f

Radm

> cos ai �
Cj j cos bi þ sin bij j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2b2

i � C2
p

Radmbi
(28)

Once this condition is achieved, the condition for Eq. (11) to be
true is that

max
Cj j

Radm cos ai
;

bi

2 cos bi

� 	
� di � dið Þ2 (29)

where dið Þ2¼ �vi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

i � 4uiwi

p� �
=2ui is the root of Eq. (14)

solution of Eq. (11).

3.3 ui 5 0. We have to analyze one last case: ui¼ 0, i.e.,
cos ai ¼ f=Radm. Here also, this condition leads to 0� ci� 1, i.e.,
the cantilever allows decreasing the applied force f. In such a
case, the solution of Eq. (14) is solution of 0 � vidi þ wi with
vi ¼ 2f cos bibif � Cj jð Þ and wi ¼ C2 � f 2b2

i .
Three cases will appear: vi> 0, vi< 0, and vi¼ 0.

3.3.1 vi> 0. In this case, Ri max � Radm can be satisfied if and
only if

�wi

vi
¼ f 2b2

i � C2

2f cos bibif � Cj jð Þ � di (30)

3.3.2 vi< 0. In this case, Ri max � Radm can be satisfied if and
only if

0 � di �
�wi

vi
¼ f 2b2

i � C2

2f cos bibif � Cj jð Þ (31)

As in Sec. 3.2.1, the condition wi> 0 is not compatible with the
fact that ui¼ 0. For wi� 0

f 2b2
i � C2

2f cos bibif � Cj jð Þ � 0 (32)

Therefore, if vi< 0, the only condition is that Eq. (12) should
be respected.
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Table 1 Conditions for limiting the maximal values of the revolute joint linked to the platform, for di > 0

jCj > fbi jCj < fbi jCj ¼ fbi

f

Radm

< cos ai di � max dið Þ1;
jCj

Radm cos ai

� 	

f

Radm

> cos ai
N/A

cos ai �
jCj cos bi þ j sin bij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2b2

i � C2
p

Radmbi
;max

jCj
Radm cos ai

;
bi

2 cos bi

� 	
� di � dið Þ2

f

Radm

¼ cos ai
N/A vi> 0 vi< 0 vi¼ 0 vi> 0 vi< 0 vi¼ 0

di � max
jCj

Radm cos ai
;
�wi

vi

� 	
N/A N/A

di �
jCj

Radm cos ai

N/A di � bi;

for bi ¼ 0

Table 2 Norm of the reaction effort inside of the leg joints of planar parallel robots

Type of legs Joint reactions Type of legs Joint reactions

RPR WT
Ai ¼ fT

Ai; s

 �T

;

WT
Ci ¼ fT

Ci;CCi


 �T
with

fAik k ¼ fCik k ¼ Ri;

sj j ¼ qiRi;

CCij j ¼ liRi

RPR WT
Ai ¼ fT

Ai; 0

 �T

;

WT
Ci ¼ fT

Ci; 0

 �T

with

fAik k ¼ fCik k ¼ sj j ¼ Ri

RRR WT
Ai ¼ fT

Ai; s

 �T

; RRR WT
Ai ¼ fT

Ai; 0

 �T

;

WT
Ci ¼ fT

Ci; s

 �T

with

fAik k ¼ fCik k ¼ Ri;

sj j ¼ li2Ri sin eij j

WT
Ci ¼ fT

Ci; 0

 �T

with

fAik k ¼ fCik k ¼ Ri;

sj j ¼ li1Ri cos eij j

PRR WT
Ai ¼ fT

Ai;CAi


 �T
;

WT
Ci ¼ fT

Ci; 0

 �T

with

fAik k ¼ fCik k ¼ Ri;

CAij j ¼ li1Ri sin eij j
sj j ¼ Ri cos eij j

PRR WT
Ai ¼ fT

Ai; 0

 �T

;

WT
Ci ¼ fT

Ci; s

 �T

with

fAik k ¼ fCik k ¼ Ri;

sj j ¼ li2Ri sin eij j

PPR WT
Ai ¼ fT

Ai;CAi


 �T
;

WT
Ci ¼ fT

Ci;CCi


 �T
with

fAik k ¼ fCik k ¼ Ri;

CAij j ¼ Ri qi � li1 cos eij j
CCij j ¼ Rili2;

sj j ¼ Ri sin eij j

PPR WT
Ai ¼ fT

Ai;CAi


 �T
;

WT
Ci ¼ fT

Ci;CCi


 �T
with

fAik k ¼ fCik k ¼ Ri;

CAij j ¼ Ri li1 � qi cos eij j
CCij j ¼ Rili2 cos eij j;
sj j ¼ Ri sin eij j

PRP RRP

WT
Ai ¼ fT

Ai;CAi


 �T
;

WT
Ci ¼ fT

Ci;CCi


 �T
with

fAik k ¼ fCik k ¼ Ri;

CAij j ¼ Rili1 sin eij j;
CCij j ¼ Riqi;

WT
Ai ¼ fT

Ai; s

 �T

;

WT
Ci ¼ fT

Ci;CCi


 �T
with

fAik k ¼ fCik k ¼ Ri;

CCij j ¼ Riqi;

sj j ¼ Rili1 sin eij j
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3.3.3 vi¼ 0. Condition Eq. (14) can be satisfied if and only if
wi� 0. But, as previously, wi> 0 is not compatible with the fact
that ui¼ 0. Therefore, there exist only one possible case, wi¼ 0,
i.e., fbi ¼ C.

Table 1 summarized all conditions for obtaining Ri max � Radm;
for di> 0 (for di¼ 0, the solution is directly given at Eq. (9b). It
should be mentioned that for planar parallel robots, the reactions
in the other joints that are not linked to the platform can be found
using linear relationships with respect to Ri max (Table 22).

Let us now consider two illustrative examples.

4 Illustrative Examples

Let us now consider, for given external wrenches, the evolution
of the maximal joint reactions within the workspace of two given
planar robots: the DexTAR robot, which is a planar five-bar mech-
anism developed at the ETS [25] and a 3-RPR robot, which is the
planar model of the PAMINSA manipulator developed at the
INSA of Rennes [26].

4.1 The DexTAR Robot. The DexTAR is a five-bar mecha-
nism [27] (Fig. 4) of which dimensions are

— lAB¼ lDE¼ lAB¼ lDE¼ 0.23 m
— a¼ 0.1375 m

In the following of the paper, it is considered that the leg 1 is
composed of the segments AB and BP and that leg 2 is composed
of segments ED and DP. The active joints are located at points A
and E. For five-bar mechanisms, it can be shown that the matrix
A

T of Eq. (2) is equal to [1]

AT ¼ r1 r2½ � ¼
cos w1 cos w2

sin w1 sin w2

� 

(33)

Moreover, disconnecting leg 1 (2, respectively) from the end-
effector, for a fixed position of the actuator 2 (1, respectively), the
direction v1 (v2, respectively) of the translational velocity vector
of the end-point of leg 2 (1, respectively) is orthogonal to the
direction of the segment DP (BP, respectively) (Fig. 4). Therefore

v1 ¼
� sin w2

cos w2

� 

(34)

As a result

a1 ¼ cos�1 rT
1 v1

r1k k v1k k

� 	
¼ cos�1 sin w2 � w1ð Þj jð Þ

¼ cos�1 sin ej jð Þ ¼ a2 ¼ cos�1 rT
2 v2

r2k k v2k k

� 	
(35)

where e is the angle between segments BP and DP (Fig. 4). Please
note that

— e is denoted as the transmission angle of the robot [8];
— fixing angle e is equivalent to fixing the shape of the triangle

BPD and the robot can be shown as a 1-DOF planar four-
bar mechanism (Fig. 5).

Taking only into account the each revolute joint can admit a
maximal force Radm, and as for such mechanisms no moments are
applied on the controlled point, the only condition for nonbreak-
down of the mechanism under a force f applied at P is given by
f < Radm cos a. Knowing f and Radm, this remains to fixing the
maximal value amax of a.

For a fixed angle amax, four possible values of e are possible
(Fig. 5)

e1 ¼ sin�1 cos amaxð Þ; e2 ¼ e1 þ p; e3 ¼ �e1; e4 ¼ �e1 þ p

(36)

Therefore, four four-bar mechanisms can be studied, depending
on the assembly mode of the five-bar robot (Fig. 5). Therefore, the
constant pressure angle loci, and as a result, the constant joint
reaction loci, can be found algebraically by studying the displace-
ment of points P of the four-bar mechanisms. These borders are
portions of sextic curves [1]. The variations of the joint reaction
within the workspace of the DexTAR robot, on which is applied a
force equal to 100 N, are presented in Fig. 6 for the four working
modes of the robot. In this picture, the dotted black lines corre-
spond to the type 1 singularities and the full black lines to the type
2 singularities [4], i.e., the maximal workspace boundaries. It can
be shown that, the closer the robot from type 2 singular configura-
tions, the higher the joint reactions.

In Ref. [25], it is shown that the DexTAR is able to pass
through type 1 singularities [4]. For one given assembly mode, a
position of the end-effector is able to be attained by two working
modes. Taking this result into account, the borders of the force
workspace for a given assembly mode are computed. As previ-
ously, these borders can also be found algebraically, by studying
the displacement of points P of the four-bar mechanisms. For one
given assembly mode, a point of the sextic curves will belong to
the border of the force workspace if the pressure angle of the
mechanism at this end-effector position is always superior or
equal to amax for any of the working modes. If not, this point can

Fig. 4 Kinematic chain of the planar five-bar robot

Fig. 5 The four equivalent four-bars mechanisms, for a fixed
value of amax

2In this table, the dark joints correspond to the actuated joints.
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Fig. 6 Variation of the robot joint reaction (in Newton) within the workspace for f 5 100 N

Fig. 7 Workspace shape as a function of the maximal pressure angle amax
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be reached by at least one of the working modes, i.e., it is not a
workspace boundary. Some examples of the force workspace, for
several values of a, are presented in Fig. 7. Obviously, the smaller
amax, the smaller the workspace. When amax is large, the work-
space has only one aspect. For a smaller amax, several aspects will
appear.

4.2 The 3-RPR Robot. The PAMINSA (Fig. 8) is a parallel
manipulator with 4 DOF (Schoenflies motions) of which transla-
tion along the vertical axis is decoupled from the displacement in
the horizontal plane. When the vertical translational motion is
locked up, the PAMINSA is fully equivalent to a 3-RPR manipu-
lator (Fig. 8(b)) with equilateral platform and base triangles, of
which circumcircles have the following radii:

— for the base, Rb¼ 0.35 m
— for the platform, Rp¼ 0.1 m

For 3-RPR robots, it can be shown that the matrix AT of Eq. (2)
expressed at point Bi is equal to [26]

AT ¼ sw1 sw2 sw3½ � ¼ r1 r2 r3

C1 C2 C3

� 

(37)

with

rT
i ¼ � sin qi cos qi½ �

and

C1 ¼ 0; C2 ¼
ffiffiffi
3
p

Rp

� sin /

cos /

" #T

r2;

C3 ¼
ffiffiffi
3
p

Rp

� sin p=3þ /ð Þ

cos p=3þ /ð Þ

" #T

r3; if Bi ¼ B1

(38a)

C1 ¼
ffiffiffi
3
p

Rp

� sin /þ pð Þ

cos /þ pð Þ

" #T

r1; C2 ¼ 0;

C3 ¼
ffiffiffi
3
p

Rp

� sin 2p=3þ /ð Þ

cos 2p=3þ /ð Þ

" #T

r3; if Bi ¼ B2

(38b)

C1 ¼
ffiffiffi
3
p

Rp

� sin /þ 4p=3ð Þ

cos /þ 4p=3ð Þ

" #T

r1;

C2 ¼
ffiffiffi
3
p

Rp

� sin �p=3þ /ð Þ

cos �p=3þ /ð Þ

" #T

r2; C3 ¼ 0; if Bi ¼ B3

(38c)

Fig. 8 Kinematics of the PAMINSA

Fig. 9 Variations of the joint reaction (in Newton) at point B1

within the workspace for several platform orientations /, for
f 5 100 N and m 5 5 Nm
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For this mechanism, the way to compute the pressure angle and
the distance between the observed joint and the platform instanta-
neous center of rotation is explained in Ref. [6].

The variations of the joint reaction at point B1 within the work-
space for several platform orientations / are presented in Fig. 9
for f¼ 100 N and C¼ 5 Nm. The dotted lines correspond to the
type 2 singularities that appear if [26]

— for a given orientation / of the platform, the point P is
located on a circle C(/) centered in O, of radius equal toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
b þ R2

p � 2RbRp cos /
q

— for orientations / ¼ 6 cos�1ðRp=RbÞ; the robot is in singu-
lar configuration for any position of P.

It can be observed that, the closer from type 2 singularities, the
higher the joint reaction. Moreover, the lowest values of the joint
reactions appear in the center of the workspace.

Let us analyze the force workspace of the robot. On the contrary
of the DexTAR for which the obtained expressions are symbolic,

and the force workspace boundaries can be obtained algebraically,
for this robot, a numerical method has to be used. The method con-
sists in discretising the workspace using polar coordinates (r, h).
For one given angle h, the algorithm tests for all rising values of r
that the manipulator can support the applied wrench (see Tables 1
and 2). In the case where the manipulator cannot support the
applied wrench, the boundary of the force workspace is defined by
the previous computational point.

In the remainder of this example, we take into account only the
maximal admissible value Radm of the reactions of the revolute
joints located at Bi. It is applied on the platform a force of norm
f¼ 100 N and a moment of norm C¼ 5 Nm. The shape of the
force workspace, for one given assembly mode and for several
values of Rmax and platform orientation / is shown in Fig. 10.

It can be observed that, the greater the value of /, i.e., the
closer from the orientation for which the robot is in singular con-
figuration for any position of the platform center, the smaller the
workspace.

Fig. 10 Constant orientation workspace as a function of Rmax and the platform orientation /
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5 Conclusions

This paper extends the previous works on the quality of the
effort transmission in isostatic planar closed-loop mechanisms.
The traditional transmission indices only show the ratio between
input and output powers but they do not show an unacceptable
high increase of the reactions in the passive joints. In this study, it
is disclosed that the increase of reactions in passive joints depends
not only on the transmission angle but also on the position of the
instantaneous center of rotation of the platform. This is the first
time that such a kinetostatic property is rigorously formulated and
clearly demonstrated. The obtained results allow expanding the
knowledge about the effort transmission quality. They are com-
plementary conditions to the traditional transmission indices and
allow avoiding a breakdown close to the singularity. In this aim,
the boundaries for the admissible values of the transmission angle
and of the distance to the instantaneous center of rotation are com-
puted. The DexTAR and the 3-RPR robot have been studied as il-
lustrative examples. The effort transmission in these manipulators
has been studied as well as their reachable workspaces taking into
account the limitation of the efforts in passive joints.

Finally, it should be noted that in this paper, the disclosed prop-
erties have been only devoted to the study of planar parallel mech-
anisms. It is quite possible that such a concise and accurate
criterion can be also obtained for spatial case. In our future work
we will try to extend this approach to spatial parallel mechanisms,
but it is a real challenge.
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