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ABSTRACT

The balancing of linkages is an integral part of the mechanism design. Despite its long history,
mechanism balancing theory continues to be developed and new approaches and solutions are
constantly being reported. Hence, the balancing problems are of continued interest to researchers.
Several laboratories around the world are very active in this area and new results are published
regularly. In recent decades, new challenges have presented themselves, particularly, the balancing
of robots for fast manipulation. Various design concepts and methods for balancing of robot
manipulators are available in the literature. The author believes that this is an appropriate moment
to present the state of the art of the studies devoted to balancing of robot manipulators and to
summarize their research results. Thus, the aim of this paper is to propose a review of shaking
force and shaking moment balancing methods used in robotics, in particular, for serial and parallel
architectures. The described methods are arranged into two principal parts: the resultant inertia
force (shaking force) balancing and the resultant inertia moment (shaking moment) balancing. Then
each part is divided into subgroups according to features of balancing methods and illustrated via
kinematic schemes. At the end of the paper, the balanced robot manipulators having particular
structures, the balancing taking into account the payload, the reactionless space robots and the
optimization methods used in the balancing of robot manipulators are discussed.
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1. Introduction balancing of the moving masses has the influence not only
on the level of vibrations but also on the resource, reliabil-
ity, and accuracy of mechanisms. Besides the mentioned
negative effects, vibrations bring to the environments pol-
lution and the loss of energy, and can also provoke various
health issues. Consequently, the quality improvement of
the mass balancing has not only technical, technological,
and economical aspects but also social.

Thus, a primary objective of the balancing of manip-

ulators is to cancel or reduce the variable dynamic loads

It is known that fast-moving mechanical system with
rotating and reciprocating masses is a significant source
of vibration excitation. The high-speed manipulators can
generate significant fluctuating forces with even small
amounts of unbalance. In general, two types of forces must
be considered: the externally applied forces and the inertial
forces. Inertial forces arise when links of a mechanism are
subjected to large accelerations. The inertial force system
acting on a given link can be represented as an inertia force

acting on a line through the center of mass and an inertia
torque about the center of mass. The determination of the
inertial forces and torques is well known and it has been
disclosed in various hand books [1,2]. With regard to the
external forces, for example input torques, in many cases,
they constitute internal forces with respect to the manip-
ulator as a whole. Thus, if all external active forces applied
to the links of a manipulator are internal forces for the
mechanism as whole, then the balance of the manipula-
tor will be ensured under the fulfillment of inertia forces
and inertia torque cancelation. Therefore, the balancing
of shaking force and shaking moment due to the inertial
forces of links acquires a specific importance. The quality of

transmitted to the frame and surrounding structures. It is
important to note that the reduction of vibrations leads to
the increased accuracy of manipulators [3], which is one
of the positive consequences of the balancing. As was men-
tioned in [4] can also be distinguished other advantages of
balancing as the reduced cycle time [5], reduced noise, wear,
and fatigue [6], as well as the improved ergonomics [7].

Different approaches and solutions devoted to the
shaking force and shaking moment balancing have been
developed and documented for one degree of freedom
mechanisms [8-10]. A new field for their applications is
the design of mechanical systems for fast manipulation,
which is a typical problem in advanced robotics.
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The balancing of robot manipulators is generally car-
ried out in two steps: (i) the cancelation (or reduction) of
the shaking force and (i) the cancelation (or reduction) of
the shaking moment [11]. Therefore, in the present review,
the balancing methods are arranged into two principal
parts, which are then decomposed into various subgroups
according to the particularities of balancing methods. The
criteria for forming any subgroup can be various: struc-
tural particularity, nature of balancing force, control
mode, etc. The given systematization is not the only way
and can be modified according to the subjective prefer-
ences of each researcher. Nevertheless, the author believes
that this review of state-of-the-art literature systematizes
and generalizes the current research trends quite fine and
provides a comprehensive view on the problem. However,
there are some subgroups which are not included in the
principal parts. They are given at the end of the paper:
balanced robot manipulators having particular structures,
balancing taking into account the payload, reactionless
space robots, and optimization methods used in the bal-
ancing of robot manipulators. This paper summarizes
an overview previously published in the proceedings
of the 20th CISM-IFToMM Symposium on Theory and
Practice of Robots and Manipulators [12] and presents a
more extensive and detailed analysis of balancing methods
including a more complete list of literature.

Thus, let us consider firstly the methods for the shaking
force balancing of robot manipulators.

2. Inertia forces (shaking force) balancing in
robot manipulators

The review of methods devoted to the shaking force bal-
ancing of manipulators has shown that following principal
subgroups can be distinguished.

2.1. Shaking force balancing by adding
counterweights in order to keep the total center of
mass of moving links stationary

In the case of open-chain manipulators, we start from the
outermost link and add a counterweight to it to bring the
center of mass of this link on the immediately preced-
ing joint axis. Such a balancing process must be repeated
sequentially until the center of mass of the whole chain is
fixed of the base pivot [13,14].

It is obvious that the adding of the supplementary mass
due to the counterweights is not desirable because it leads
to the increase of the total mass, of the overall size of the
robot-manipulator and of the efforts in joints. That is
why in many designs of industrial robots the masses of
the motors are often used as counterweight (for example,
KUKA R360 or PUMA 200, [15]).

With regard to the parallel manipulators, the approach
is the same: adding counterweights to keep the total center
of mass of moving links stationary. However, the approach
is simpler to carry out in planar parallel manipulators
(Figure 1) than in spatial parallel manipulators (Figure 2).

To achieve the balancing condition of inertia forces,
different mathematical approaches are used, for example,
the method of ‘principal vectors’ or the method of ‘static
substitution of masses’ [9]. The aim of the ‘method of prin-
cipal vectors’ is to study the balancing of the mechanism
relative to each link and in the determination of those
points on the links relative to which a static balance is
reached. These points are called ’principal points. Then,
from the condition of similarity of the vector loop of the
principal points and the structural loop of the mechanism,
the necessary conditions of balancing are derived. It is
of a particular importance as it serves to create several
auxiliary devices intended for studying the motion of the

Figure 1. Counterweight balancing of a planar parallel
manipulator [16].

Figure 2. Counterweight balancing of a spatial parallel
manipulator [17].



centers of mechanism masses, as well as to synthesize new
types of balanced mechanisms [18]. The aim the method
of ‘static substitution of masses’ is to statically substitute
the mass of the link (or a platform if it is a parallel manip-
ulator) by concentrated masses, which are balanced there-
after together with the rotating links. Such an approach
permits changing the problem of manipulator balancing
into a simpler problem of balancing rotating links.

2.2. Shaking force balancing by adding auxiliary
structures

Different approaches have developed in order to keep the
total center of mass of moving links stationary by adding
auxiliary structures.

In [14,19,20], the parallelograms were used as auxiliary
structures in order to create the balanced manipulators.
As shown in Figure 3, the three scaled lengths are added
to form parallelograms and are then used to identify the
center of mass C. For the three-link mechanism, the sys-
tem consists of parallelograms in two layers: the first layer
has two parallelograms while the second layer has one.
As is mentioned in the cited paper, this procedure can be
extended to # links.

The pantograph has also been used in order to balance
the shaking force. Different solutions were proposed for
shaking force and shaking moment balancing of Delta
robot [21,22]: by adding a pantograph to each leg or by
adding a pantograph connected with the center of mass
localized using the parallelograms.

2.3. Shaking force balancing by elastic components

These studies are focused on optimum force balancing
of a five-bar parallel manipulator by a combination of
a proper distribution of link masses with springs con-
nected to the driving links [23,24]. The force balancing

; End-effector

Figure 3. Manipulator with auxiliary parallelograms to locate the
center of mass [14].
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is formulated as an optimization problem in such a way
that the root-mean-square values of bearing and spring
forces are minimized. However, it should be noted that
the springs connected to the driving links produce elastic
forces which are internal forces and the added springs
cannot have an influence on the shaking force minimiza-
tion due to the inertia of the moving links. They influence
the gravitational forces and the input torques which are
also included in the objective function. In the mentioned
studies, the authors overlook this fact.

2.4. Shaking force balancing by adjustment of
kinematic parameters

These studies deal with the synthesis of the balanced
five-bar mechanism via changing the geometric and kin-
ematic parameters of the mechanical structure [25,26].
The shaking force balancing leads to the conditions which
are traditionally satisfied by the redistribution of moving
masses. In the mentioned studies, the mass of the link
is considered unchanged and the length and the mass
center of the links are determined in order to carry out
the shaking force balancing. Thus, a new kinematic chain
is obtained which is fully force balanced. With regard to
the trajectory planning, the authors propose to estimate
the given positions of the end effector of the mechanism
by the controllers of servomotors. As is rightly mentioned
in these studies, the proposed design approach will change
the workspace, so some regions of the original workspace
may not be reachable. The drawback of this approach is
that the project designers set the structural and kinematic
tasks, and then the dynamic optimization, sequentially.
Fixing the values of moving masses and then finding the
kinematic parameters of the mechanism is quite unusual.

This approach was also applied on the design of a spa-
tial three-degree-of-freedom parallel manipulator [27].
Theoretical results were obtained, but cannot be easily
used for real application. Therefore, for the shaking force
balancing of the proposed spatial three-degree-of-free-
dom parallel manipulator, another method was used [28].

It seems that the combined optimization including
mass and geometric parameters will be more attractive
for a wide range of applications of this technique.

2.5. Shaking force minimization via center of mass
acceleration minimization

In [29,30], a resourceful solution was developed, which is
based on the optimal control of the robot center of masses.
The aim of the suggested method consists in the fact that
the manipulator is controlled not by applying end-effector
trajectories but by planning the displacements of the total
mass center of moving links. The trajectories of the total
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mass center of moving links are defined as straight lines
and are parameterized with “bang-bang” motion profiles.
Such a control approach allows the reduction of the max-
imal value of the center of mass acceleration and, conse-
quently, leads to the reduction in the shaking force. Such a
balancing technique seems more promising since it is not
based on a mass redistribution of moving links but their
optimal motion. However, despite the obvious advantages,
observations and attempts of practical implementations
showed that it also has some drawbacks. Firstly, it is dif-
ficult to apply such a balancing on parallel manipulators
due to the complexity of relationships between trajectories
of the end-effector of the manipulator and its center of
mass. Secondly, the control of a robot-manipulator based
on the kinematic parameters of a virtual point as a center
of masses leads to additional inconvenience. For exam-
ple, measurements and refinements of the displacements
of the total mass center of moving links becomes pretty
complex. Another significant imperfection of the men-
tioned method is the fact that the end-effector trajectory
becomes a derivative of the trajectory of the center of
masses, i.e. using this balancing method it is possible to
ensure only initial and final positions of the end-effector
but not a straight line trajectory between them. By impos-
ing a straight line trajectory for the center of masses, it will
be obtained nonlinear characteristics for the end-effector
trajectory.

3. Inertia moments (shaking moment)
balancing in robot manipulators

With regard to the shaking moment balancing of manip-
ulators, the developed approaches can be arranged into
following subgroups.

3.1. Shaking moment balancing by counter-
rotation

The concept of the shaking moment balancing by coun-
ter-rotation was studied for the first time in [31,32]. This

(a) (b)

approach was developed further in the various studies
devoted to the balancing of 1-dof mechanisms and later
in [33-39] to multi-dof mechanisms (Figure 4).

As is rightly pointed out in [40], this technique leads to
the unavoidable increase in the initial mass and as a result,
to the increase in input torques. Thus, the price paid for
complete shaking moment balancing is extremely high.

In [41-46], a new design concept was proposed, stud-
ied and optimized for light-weight shaking moment
balancing by gears. The aim of this concept is to assume
both the functions of counter-rotation and counterweight
simultaneously (Figure 5), which helps to reduce the mass
of the resulting mechanism.

The major disadvantage of this technique is the need
for the connection of gears to the oscillating links. The
oscillations of the links of the manipulator will create
noise unless expensive anti-backlash gears are used. Anti-
backlash gears are devices that pre-load the gear always
to favor one side of the tooth through spring action.
Regardless of the direction of movement, they should
always ‘push’ up against the same side of the tooth. They
are basically comprised of two gears that are spring loaded
in opposite directions. One gear is attached to the mecha-
nism being moved, while the other simply ‘floats’ to pro-
vide the pre-loading.

In the recent study [47], a new counter-mechanism is
proposed in order to dynamically balance a force balanced
two degrees of freedom mechanism with variable inertia,
which is expected to reduce the drawbacks of the coun-
ter-rotation technique.

(b)

Figure 5. Counter-rotary counter-mass. (a) External gears [4] and
(b) Internal gears [4].

Figure 4. Shaking moment balancing by counter-rotation. (a) Gears with external teeth [41], (b) Gears with internal teeth [41], and (c)

Balancing an articulated dyad by gears [36].



3.2. Shaking moment balancing with modules
based on dynamically balanced four-bar linkages

In this case, the complete shaking force and shaking
moment balancing is carried out without any separate
counter-rotation [48-51]. It becomes possible thanks to
the synthesis of fully balanced four-bar linkages. It was
shown that a four-bar linkage having specific geomet-
ric parameters and assuming some report between the
lengths of links can be fully balanced only by optimal
choice of mass and inertia parameters of moving links.
This principle is also practicable when the input angular
velocity of the four-bar linkage is variable. Thus, the vari-
ous structures of manipulators are designed by special legs
constructed with modules based on dynamically balanced
four-bar linkages (Figure 6).

3.3. Shaking moment balancing by generating
optimal trajectories of moving links

In [52], a redundant 3-dof manipulator is designed in
which the system center of mass is fixed by an optimal
redistribution of masses. Moreover, the dynamics of the
system is decoupled. The latter feature simplified the plan-
ning of optimal motions in order to balance the shaking
moment of the manipulator. A similar study is carried
out in [53].

In [54] was proposed a method for obtaining glob-
ally optimal motions with minimal base reactions for a
redundant mechanical manipulator. The forces transmit-
ted to the supporting base of a manipulator are desired
to be small so as to reduce the stresses and the magnitude
of vibration in the supporting structure. The proposed
method was illustrated via a planar 3R manipulator.

Shaking moment balancing by prescribed rotation of
the end-effector was proposed in [55-57]. The shaking
moment of 3-dof planar parallel manipulator [55] was
canceled using two approaches: through a proper choice of
inertia and geometric parameters and by using appropriate
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motion planning. The shaking moment on the frame of
the SCARA-type robots with 4-dof has been eliminated
by a prescribed velocity of the end-effector [56]. Taking
into account that the two angles of the linear positioning
do not depend on the orientation angle, it was proposed
to rotate the end-effector during the linear displacements
of the end-effector and to balance in such a manner the
shaking moment of the robot. The advantage of such a
balancing is its simplicity because the complete balancing
of the shaking moment is achieved without significant
design modifications. The major drawback is the increase
of the inertia moment of the end-effector in order to com-
pensate the inertia moment of the other rotating links.
A similar approach has been applied on the PAMINSA
manipulator in [57].

3.4. Shaking moment balancing by adding an
inertia flywheel rotating with a prescribed angular
velocity

It is well known that after shaking force balancing, the
shaking moment applied on the base is constant relative to
any point [58], i.e. for a given position of the mechanism
it has the same value for any point of the base. Taking into
account this property, the shaking moment of any planar
manipulator can be balanced adding an inertia flywheel
rotating with a prescribed angular velocity (Figure 7) [36].
This balancing technique has been also applied on the
3-dof planar parallel manipulator with unlimited rotation
capability [59]. A similar approach based on the active bal-
ancing of the shaking moment of the Delta robot by three
additional rotating inertia was discussed in [21,60]. Active
balancing of the Hummingbird minipositioner with three
axis servo mechanisms was discussed in [61].

The redundant servomotors was also used in order to
improve the dynamic performance of robots and to carry
out shaking moment, driving torque, and ground joint
force minimization [62,63].

Figure 6. Balancing by adding four-bar linkages. (a) Planar 2-DOF mechanism [49] and (b) Planar 3-DOF mechanism [49].
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Figure 7. Shaking moment balancing of fully force-balanced
3-DOF 3-RRR parallel manipulator by an inertia flywheel [36].

However, it should be noted that the practical valid-
ity of this balancing solution depends on the technical
potentials to generate the desirable input motion with
great precision. In reality, several factors affect unfavora-
bly, such as the elasticity of the links, joint clearance, and
superposition of natural vibrations over the prescribed
motion. Unfortunately, the mentioned factors act simul-
taneously. Therefore, only extensive experimental studies
would assess the real effect of the balancing procedure.

It is difficult to provide an overall systematization of
all results in a single system. That is why let us now con-
sider some studies which are not included in the review
structure of shaking force and shaking moment balancing
methods given below.

At first, it should be noted that the new balanced struc-
tures were also developed. In [64], a dynamically balanced
3-DoF planar parallel manipulator has been presented and
tested. The manipulator is composed of two independently
force-balanced five-bar linkages pivoted to the base and
coupled with an end-effector link. In this manipulator,
each leg was balanced separately, which has been made
possible by distributing the inertia of the platform on each
of its attachment points [36,65].

In [66], a novel 3-DOF parallel mechanism referred
to as the parallelepiped mechanism has been developed.
Counterweights and counter-rotations were used to
dynamically balance the proposed mechanism.

Design of a fully force-balanced redundant planar
4-RRR parallel manipulator has also been developed
[67,68]. In this case, some properties of the balanced par-
allelogram system are used. The counterweights added
only in the links mounted on the frame allows a complete
cancelation of inertia forces in the manipulator.

The complete shaking force and shaking moment bal-
ancing of planar parallel manipulators with prismatic

pairs [69] and with variable payload [33,51,60,70,71] have
also been studied. In this case, the adjustable parameters
are introduced into the balancing system to ensure the
shaking force and shaking moment balancing taking into
account the payload. However, it should be noted that
such solutions are quite complex.

In the field of free-floating space robots the design of
reactionless robots was also studied. The formalism called
“Reaction Null Space” was initially introduced in [72]
(see also [73]). Later, it has been applied to reactionless
motion generation and vibration control with flexible base
robots [74-78]. The dynamic balancing of a novel 2-dof
reactionless pointing mechanism for satellite antennas
was studied in [79]. In regard to the shaking moment,
its elimination is achieved by the use of the ball joint as
a mounting mechanism of the antenna. As mentioned in
this study, the torques are produced by the actuators which
are counteracted internally in the counterweight due to
the special actuation principle.

The study [80] deals with a novel scheme for the motion
planning of a dual-arm free-floating planar manipulator
where one arm is commanded to perform desired tasks
while the other provides compensating motions to keep
the base inertially fixed.

The use of kinematic redundancy for robot base reac-
tion reduction was explored in [81,82]. The given numerical
examples demonstrate that the developed approach is effec-
tive for reducing base reactions for planar and spatial robots.

The study [83] demonstrated that three orthogonally
mounted wheels in the attitude-control system can com-
pensate the total moment of the system. They further
show that induced translational motion of the base can be
counteracted using a set of augmented inverse-kinematic
relations when calculating the commanded joint variables.

In [84], the control-moment gyroscopes are proposed
as actuators for a spacecraft-mounted robotic arm to
reduce reaction forces and torques on the spacecraft base.

The balancing has been also used to pass through a
type II singularity of parallel robots [85]. The balancing
conditions were derived based on the previously devel-
oped studies [86,87].

In the context of dynamic decoupling of serial manip-
ulators new balancing solutions have been developed in
[88,89]. The developed balancing solutions accomplish the
dynamic decoupling via opposite rotation of adjustable
links [88] or using a Scott Russell mechanism [89].

Finally, it should be noted that the various optimiza-
tion methods were also applied in order to reduce the
shaking force and shaking moment of robot manipulators
[90-95]. In [90], it is proposed to carry out the shaking
force and shaking moment balancing via minimization
of global dynamic characteristics combining general-
ized inertia ellipsoid or isotropy. The sensitivities of the



shaking moment to the position, velocity and acceleration
of the manipulator are also used as the objective function
to minimize the shaking moment [91,92]. In studies [93]
and [94], the derivation of the shaking force and moment
balancing conditions for a five-bar planar manipulator is
obtained. These conditions are expressed as a system of
seven equations and three inequalities with twelve param-
eters. Then, the parameters are solved as an optimum
design problem, under nonlinear equality constraints. A
similar study has been discussed in [95]. An approach
to optimally locate a given trajectory profile and path,
permitting to minimize the shaking force of parallel kine-
matics machines, has been proposed in [96]. The proposed
methodology has been applied to the Orthoglide.

However, without reducing of usefulness and effi-
ciency of all mentioned optimization methods, it should
be noticed that they are nevertheless based on numerical
approaches and don’t reveal details of general properties
of balancing solutions.

4, Conclusions

The survey of investigations into the shaking force and
shaking moment balancing of robot manipulators showed
that not only were the known methods of linkage bal-
ancing found further development, but proposed new
approaches. The counter-rotation balancing, which
seemed to be an essential technique in linkage balanc-
ing, was not so indispensable in robotics. Other solutions
can be emphasized, such as the design of reactionless
manipulators with dynamically balanced modules. For
the moment, there is not a large choice of these modules,
but the development of new balanced modules seems to
be a promising technique, with genuinely potential. An
interesting technique that should also be noted is the bal-
ancing by generation optimal motions of moving links of
robot manipulators. Indeed, the input control laws gen-
erating optimized motions of moving masses can be a
useful source to minimize the shaking force and shaking
moment on the frame of a robot manipulator. It is impor-
tant to note that often the balancing of robot manipulators
leads to the increase of moving masses and as a result, to
the increase of input torques. On one hand, the added
masses help to reduce the variable dynamic loads on the
frame. On the other hand, they increase inertia of moving
masses and as a result input torques. From this point of
view, the balancing via optimal motion generation of mov-
ing links of robot manipulators is more efficient because it
is carried out without modification of the initial structure
or masses of the robot manipulator.

With regard to the various optimization techniques,
it is obvious that they can be useful tools for designers.
However, it is important to pay attention to the physical
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interpretation of the obtained results in order to avoid
possible errors.

It is to be hoped that this overview will be useful for
the readers and provide a global view on the problem of
shaking force and shaking moment balancing of robot
manipulators.
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