Behavioural Verification of Service Composition

Pascal André, Gilles Ardourel, Christian Attiogbé

LINA - CNRS FRE 2729, University of Nantes
Gilles.Ardourel@univ-nantes.fr

Abstract. In this work, we present a model for the definition, the com-
position and the verification of services. In this model, the services are
bound to components. The composition of components results in the
interaction of services. An inconsistency in this interaction foretells the
failure of the service composition. The contributions of this work are: i) a
formalism that allows a flexibility in the description and the composition
of services: optional behaviours, optional sub-services and renaming; i)
service interfaces enriched with behavioural informations that contribute
to the early detection of service incompatibilities; 4ii) the verification of
the behavioural compatibility of service composition. The verification
process is based on LTS techniques; we reuse existing verification tools.

1 Introduction

The development of large scale applications requires modular approaches such as
Service Oriented Computing [11,12] or Component Based Software Engineering
[9]. In both approaches, the success depends on the availability of: expressive
languages for the elements (services and components) and their composition [2,
11], tools for checking the correct usage of the elements, and tools for managing
reliable element libraries. As a partial answer, we propose a component model to
describe services and service composition. One component offers services which
may be called by another component service. We also study the means for ver-
ifying the correct usage of these services. Indeed, it is important to detect the
defects which could lead to a faulty behaviour of a developed system early in
the development. A bad interaction between a called service and the calling one
may lead to a blocking of the whole system. To ensure the desired properties
(correctness, compatibility, composability...) we need formal descriptions of the
services. In our model, the service providers are explicitly represented as com-
ponents but service implementation is left out. The use of an abstract formal
model makes it possible to hide the implementation details of the components
in order to have general reasoning techniques which are adaptable to various
implementation environments. The EJB and CORBA-based approaches [6] are
not dealt with.

Our approach is based on a simple formalism for modelling and composing
services and components. A component is viewed and used only through its ser-
vices which constitute its behavioural interface. The use of service is central to

the verification of compatibility when assembling components because the com-
ponents are “connected” by their services. The contributions of this work are:
a formalism that allows a flexibility in the description and the composition of
component and services: optional behaviours, optional sub-services and renam-
ing; service interfaces enriched with behavioural informations that contribute to
the early detection of service incompatibilities; the verification of behavioural
compatibility of service composition.

This article is organised as follows. Section 2 overviews the kmelia formal-
ism. Section 3 describes the composition of services in our formalism and the
desired properties. Section 4 details the verifications that are done during the
composition. We conclude by a short discussion in Section 5.

2 The Kmelia Model

The Kmelia model is a component model based on services. A Kmelia speci-
fication describes services, components and compositions. A service encodes a
functionality. A component provides services and may require other services (to
supply the provided services). A composition links a set of components by their
services.

The main features of Kmelia are: the encapsulation of services in components;
the enrichment of interfaces that allows an early detection of service composition
errors; the flexible description of the service behaviour.

2.1 Component, Services and Sub-services

In Kmelia the service is the basic concept (services perform functions) while the
component is a modular structuring unit that encapsulates services and allows
a fine control of when and by which services they can be called. The separation
between services and components allows system models with partially supported
services (some services work and others do not). The component defines a shared
entity for services (namespace, data, sub-services, constraints). The component
provides an interface made of provided services and required services (from some
abstract service provider). Consequently the component defines internal services.

Kmelia defines some minor services (called sub-services) that can only (and
optionally) be called during a transaction with another service. These sub-
services can be shared in a component. Sub-services can be used in place of
parameters or to introduce some flexibility in a service protocol. For instance in
Figure 1, the main service requires a chat service that can ask for a password.
The use of a passw sub-service has several benefits:

— it separates the password protocol from the main service protocol, enhancing
readability and reuse;

— it allows the control of the points where the password can be asked;

— it can be easily replaced by another password protocol;

— it allows the service to work even if the password is not asked.

2.2 Enriching Interfaces of Services

The interface of a service serv is made of a signature, a precondition, a post-
condition and sets of service names (subprovides, extrequires, calrequires...). The
subprovides set contains the names of the sub-services. The two others are two
kinds of required services names. In Kmelia we distinguish two kinds of service
dependencies: external and caller dependencies. The former (extrequires) is quite
usual and establishes that a service needs other ones in order to work. The former
(calrequires) is explicitly required from the caller of the service serv.

Following is the code of the interfaces of the service main which requires a
chat service and provides a sub-service passw, which in turn needs an identifi-
cation service (idserver) from its caller.

Service main Service passw : String()
Interface Interface
subprovides : {passw} calrequire : {idserver}

extrequires : {chat}
end
end

2.3 Specifying Flexible Behaviours with eLTS

A service is formally specified with a 5-uple (o, P, @, V, B) where o is the service
signature, P is the precondition, @ is the postcondition, V is the set of local vari-
ables and B is the extended labelled transition system (eLTS) which describes
the service behaviour.

The service behaviour B provides details on the interactions between services
and the order in which these interactions may occur. Formally B = (S, L,)
where S is the set of states, £ is the set of transition labels and § € S x L — S is
the transition relation. The labels on transitions (which concrete form is: is--
lab-->fs) are combinations of actions which may be internal actions or interac-
tions. An internal action is a computation (elementary action or a composition
of internal actions) that does not involve other services. An interaction denotes
an exchange on the service link (service channel). In Figure 1, the composition
defines such a link between the required service Client.chat and the provided
service Server.chat.

The syntax of an interaction is: channel (?7]!!|!|?)message (param#*); it is
inspired by the Hoare’s CSP language. The message can be a service call (77),
a service result (I!) or a synchronous communication (send !, receive 7). When
writing a behaviour, one does not know which components will communicate,
but one has to know the channel on which it will take place. The channel is
defined when the components are composed but its name depends on the service
interface. The placeholder keyword CALLER is a special channel that stands for
the channel opened for a service call, otherwise it is the required service name.
The following descriptions are the behaviours of the services main and passw in
the Kmelia syntax.

Service main

Variables # local to the service
c:Boolean

Behavior

init e0 # e0 is the initial state

final e6 # e6 is a final state

{ e0 -- _chat!!chat --> el,

invocation of the chat service on its channel (named chat)
el -- _chat!login(myLogin) --> e2, # sending the login
e2 <passw>, # specifies callable sub-services on node e2
e2 -- c:=_chat?cnx --> e3,

#ask for the result of the connection

e3 —- [not c] nop --> eb,

e3 -- [c] _chat!message("hello world") --> e4,

e4 -- _chat!message("\stop") --> e5,

eb -- _chat??chat --> e6 #wait for end of service chat
}
end

Service passw () : String
gives the client’s password to a trusted server
Variables # local to the service

trustserv : boolean, #is the server a trusted one 7?7
id : integer
Behavior
init e0 # e0 is the initial state
final f # f is a final state
{ e0 -- __CALLER!!idserver --> e2,
e2 -- __CALLER??7idserver(id) --> e3,
calls the identification service of the caller
e3 —- trustserv:=isTrusted(id) --> e4,

isTrusted is an elementary action here
e4 -- [trustserv]__CALLER!!passw(myPwd) --> f,
e4 -- [not trustserv]__CALLER!!passw("") --> f
sends the code as a result of the service

}

end

The _chat!!chat is a (required) service call on the implicit chat channel.
The __CALLER! ! passw(myPwd) is a result of service. You can see a notable differ-
ence between the above code and the eLTS of Figure 1: all channels are explicit.
In many cases, channels can be omitted and deduced either from the context
or from default rules. This syntactic sugar is not currently implemented in our
prototype.

In an eL'TS the states may be annotated with sub-services. It means the sub-
services may be launched from this state and the control returns to this state
when the launched sub-service is terminated; for example calls to the service
passw are enabled only in the third state of the start service. Such a notation
allows flexibility (optional sub-services), service sharing and LTS size reduction.

CLIENT Component SERVER Component

Client.main= Server.chat=

chat

chat 2uid=login

Ipassw

main

-0

. 1
main lichat

llogin(myld) passw
<idserver>

20~0

<passw> p:=??passw

idserver
c:=?cnx

L

=checkpassw(p)

" " -
(a [c]'message("hello world") [v]ienx(false [vitenx(true)
Imessage("/stop"”)
?msg=message

o

Client.passw=
% 27chat Passw [Jmus\gfflstoplsend(msg)
msg="\stop
llidserver
¢ lichat
id:=??idserver

dserver

2]

trusted:=isTrusted(id) Server.idserver=

idserver

llidserver(myid)

©)

Fig. 1. Composition of chat services of two components

3 Service Composition

In Kmelia we distinguish two kinds of composition. The first one encapsulates
services in a single unit while the second one composes services from different
components.

Encapsulation of Services in a Component A component that encapsulates sev-
eral services should have the following properties: at least one service should be
provided and it should be visible; every service of the unit should be callable,
either directly or indirectly (via another service); every sub-service in a service
interface must be callable at some point during the service evolution; no service
can have itself as a sub-service; the sets of external required services and caller
required services of a service must be disjoint.

Composition of Components Two or more components may be composed by
linking their provided and required services to build larger components. There-
fore a composition of services is the result of the link of the required services
and provided services from different components. The composition of services is
the support for interaction between the components. It is only at composition
time that the channels are resolved according to the links declared between the
components. Each linked service is then defined as the communication context
of an other.

For the composition to be effective, several properties should be satisfied:
(Static) Interoperability properties: compatibility of signatures and interfaces
(naming, typing and compatibility of pre and post conditions); Behavioural com-
patibility: absence of deadlocks in the communication.

4 Behavioural Verification of Services

Formal verification of services may be performed according to various aspects.
We generalise the three levels of interoperability of Yellin&Strom [13] to four
levels of conformity: service signatures, enhanced service signatures (sub-services
may be participant of a service), contracts (pre/post conditions) and behaviours
(the correct interactions between the caller service and the called service). In the
following, we focus the verification on static interoperability (level 1 and 2) and
behavioural compatibility (level 4).

4.1 Interface Compatibility

The first step of the verification of the behavioural compatibility is a pairwise
comparison of behavioural interfaces. In Kmelia the interface of a component
contains the sets of provided and required services (with the naming and typ-
ing informations); additionally, informations on required or called sub-services
are attached to the service interfaces. In a similar way, these informations are
available for the service descriptions. Accordingly, the static analysis of the in-
terface of a component is achieved by using: i) simple correspondence checking
algorithms and possibly standard typing algorithms; ;) deep investigation on
the availability of required or called sub-services. At this stage, we can detect
several incompatibilities such as missing sub-services, signature mismatch. . .

4.2 Behavioural Compatibility

The behavioural compatibility between services is a widely studied topic [13,
7,3]. Behavioural introspection (discovering the component behaviour) is one
way to deal with behavioural compatibility; but one has to prove compatibility.
Checking behavioural compatibility often relies on checking the behaviour of a
(component-based) system through the construction of a finite state automaton.
However the state explosion limitation is a flaw of this approach [3].

In Kmelia the behaviour of the component relies on the behaviours of its
services. Therefore the component interacts correctly with its environment if its
services are compatible with the other services. The main concern is to check that
a given service interacts correctly with another one (which may be provided by
a third party developer). The interaction between services may involve not only
two but many services. But we consider only one caller service and one called ser-
vice at time. Remind that each service is described with a transition system; the
transitions are labelled with: service calls, elementary actions, guarded actions
and communication actions (messages).

A service is behaviourally compatible with another one if their eLTSs are
matching: they evolve independently or they perform complementary commu-
nication actions. That is the basis of our compatibility analysis approach. This
approach is the widely used one [13,3,4]; but we adapt it to a more expressive
LTS used in our model. A complete interaction between the services of several
components results in a pairwise local analysis between the eL.TS of a caller and
that of the called service. Indeed, two eL'TS interact until a terminal state if their
labels are in correspondence according to a protocol that we have defined. The
protocol is a set of rules based on the labels of the transitions available from a
current state. The rules indicate the correct evolutions according to the current
states of involved services and the labels of the transition: either independent
evolution or a communication involving complementary actions from the peers.
After a final state of a called service, the caller may continue with independent
transitions or with transitions that imply other (sub-)services.

The ideas presented here are put into practice with the LOTOS/CADP Tool-
box [8]. We defined a policy to translate our service behaviours into LOTOS
processes. In this translation, all interactions are considered as communications
between processes. Thereafter we use the LOTOS communication facilities to
deal with behavioural compatibility. A similar experiment has been conducted
with the MEC[1] tool.

5 Discussion and Perspectives

We have presented an abstract component model and a formalism that per-
mit the flexible description of interacting services which are defined as extended
labelled transition systems. This model supports service composition and com-
ponent composition. A chat example involving two components is presented and
it illustrates an interaction between composed services and their accompanying
sub-services.

Unlike most of existing approaches [13,3,5] where a component has a be-
haviour (called a protocol), we argue for a model were the provided services,
defined as LTS, have their own behaviour. This moves up the granularity for the
use of components and increases the usability of components by considering a
service level. When our service behaviours are reduced to combinations of mes-
sages, we get the low level of usability found in the aforementioned approaches.

The study of compatibility at the component behaviour level is central to
CBSE approaches and has motivated number of works [13,7,3,5] and applica-
tions to web-services [4]. We build on these works but we extend the study to
encompass the granularity considered here for services and components. Our ap-
proach allows for a local verification of the behavioural compatibility between
composed services. Experiments are performed with the approach using existing
toolboxes. Compared to related works [3, 10], our approach works at the abstract
specification level, it offers a more flexible formalism than the ones proposed by
[13,3,4] for the description of interacting services. We adopt a pairwise verifi-
cation approach that avoids state explosion like in [3]. We can extract several

collaborations a la Yellin&Strom [13] from a single of our service behaviours
which interweaves collaborations on different channels and allows optional calls
of services.

The perspectives of this work are: to reinforce the correctness properties of
component with supplementary study of correctness of components and services
with regard to their environment; to extend the COSTO (Component Study
Toolbox) prototype under development to cover mechanised analysis concerns.
The prototype already integrates parsers, translators to LOTOS and MEC, static
and dynamic interoperability checkers. However we lack a graphical interface to
guide and assist the user. Then we will propose an open source delivery of the
toolbox.

References

1. P. Crubillé A. Arnold and D. Bégay. Construction and Analysis of Transition
Systems with MEC. AMAST Series in Computing: Vol. 3. World Scientific, 1994.
ISBN 981-02-1922-9.

2. M. Aiello, M. Aoyama, F. Curbera, and M. P. Papazoglou, editors. Service-Oriented
Computing. ACM, 2004.

3. P. Attie and D. H. Lorenz. Correctness of Model-based Component Composition
without State Explosion. In ECOOP 2008 Workshop on Correctness of Model-
based Software Composition, 2003.

4. L. Bordeaux, G. Salaiin, D. Berardi, and M. Mecella. When are Two Web Services
Compatible? In TES, pages 15-28, 2004.

5. A. Bracciali, A. Brogi, and C. Canal. A Formal Approach to Component Adapta-
tion. Journal of Systems and Software, 74(1):45-54, 2005.

6. C. Canal, L. Fuentes, E. Pimentel, J. M. Troya, and A. Vallecillo. Adding roles to
corba objects. IEEE Trans. Softw. Eng., 29(3):242-260, 2003.

7. L. de Alfaro and T. A. Henzinger. Interface Automata. In Proceedings of the
Ninth Annual Symposium on Foundations of Software Engineering (FSE), pages
109-120. ACM Press, 2001.

8. J-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and M. Sighire-
anu. CADP: A Protocol Validation and Verification Toolbox. In R. Alur and T. A.
Henzinger, editors, Proc. of the 8th Conference on Computer-Aided Verification
(CAV’96), volume 1102 of LNCS, pages 437-440. Springer Verlag, 1996.

9. G. T. Heineman, I. Crnkovic, H. W. Schmidt, J. A. Stafford, C. A. Szyperski, and
K. C. Wallnau, editors. Component-Based Software Engineering, 8th International
Symposium, CBSE 2005, USA, May, 2005, volume 3489 of LNCS. Springer, 2005.

10. P. Inverardi, A. L. Wolf, and D. Yankelevich. Static Checking of System Behaviors
using Derived Component Assumptions. ACM Transactions on Software Engineer-
ing and Methodology, 9(3):239-272, 2000.

11. M. P. Papazoglou. Service-Oriented Computing: Concepts, Characteristics and
Directions. In WISE, pages 3—12. IEEE Computer Society, 2003.

12. M. P. Papazoglou and D. Georgakopoulos. Introduction to service-oriented com-
puting. Commun. ACM, 46(10):24-28, 2003.

13. D.M. Yellin and R.E. Strom. Protocol Specifications and Component Adaptors.
ACM Transactions on Programming Languages and Systems, 19(2):292-333, 1997.

