SC’'06, Vienna, March 28-29, 2006
o ——

Checking Component Composability

Christian ATTIOGBE, P. ANDRE, G. ARDOUREL
University of Nantes, CNRS
LINA FRE CNRS 2729, COLOSS Team

|| g

. — p.1/23

Outline of the Talk

A A

Introduction
The Kmelia Component Model

Service and Component Composability
Behavioural Verification of Service Composability

The COSTO Toolbox
Conclusion and Perspectives

. — p.2/23

1. Introduction

The motivation for this work: sound basis

* to develop correct software within CBSE
(components, composition)

* to propose techniques for property verification.
The goal:

* to provide developers with component models
and guidance,

* to build practical toolbox.
The article:

* to check the composability of components in
assemblies.

. . — p.3/23

1. Introduction - cont’d.

To Check Component Composability

1. formal descriptions for
° components: state, interfaces, rules
* services: static and dynamic features

e composition: components linked by their
services

. — p.4/23

1. Introduction - cont’d.

To Check Component Composability

1. formal descriptions for
° components: state, interfaces, rules
* services: static and dynamic features

* composition.: components linked by their
services

2. a formal definition for Composability
correctness of component assemblies according
to the service specifications.
as a layered property to support progressive
check and Interoperabillity (e.g IDL, BIDL...)

. — p.4/23

1. Introduction - cont’d.

To Check Component Composability

1. formal descriptions for
° components: state, interfaces, rules
* services: static and dynamic features

* composition.: components linked by their
services

2. a formal definition for Composability
as a layered property to support progressive
check and Interoperabillity (e.g IDL, BIDL...)

3. verification techniques and tools

. — p.4/23

Outline of the Talk

A A

Introduction
The Kmelia Component Model

Service and Component Composability
Behavioural Verification of Service Composability
The COSTO Toolbox

Conclusion and Perspectives

. — p.5/23

2. The Kmelia Component Model

Kmelia: a simple and abstract component model
based on services.

A component is a structuring unit that

encapsulates a state and services in an interface
with usage constraints.

A component interface: interactions on provided
services and required services.

A service encodes a functionality; it has a
behaviour.

A service Interface: subservices and
reguirements.

. — p.6/23

2. The Kmelia Component Model
o ——

A Kmelia assembly for the ATM - components, interfaces

ATM_CORE

USER_INTERFACE

o v [] ask
authorization :l ask_ o withdrawa ask_for_money
authorization

account_update D

behaviou :l

LOCAL_BANK
account_query :l D query_account
balance D ask_
account_balance deposit :l
transfer[l
provided service D D required service

. — p.7/23

2. The Kmelia Component Model
o ——

A Kmelia assembly for the ATM - service calls

ATM_CORE
USER_INTERFACE
AAC ithd | k_f
authorization :l ask_ _ _<-"""":—-:‘-'-::",Wlt e D I:las = o
authorization ~ _,-=" o r‘\
account_update D /" ; ask%mountD D amount R

. N “behaviou |
1
))

debit L'/ . R

eject_card "% L] I: P -”
LOCAL_BANK swallow_card ol fammm N 2
- B ‘ uery_account
display accountjquery :l |:|q y_
balance ask_ . ’
D account_balance < deposit :l

transfer| D

provided service D D required service <------ service call

. — p.7/23

2. The Kmelia Component Model

A Kmelia assembly for the ATM - links

AAC
authorization

account_update

LOCAL_BANK

balance

ask_

authorization . R

A
'¢¢' R ask_%mounD

L4
4

debit L'/

eject_card) '%]
swallow_card ReEAPTEE Y)
display account_query

D ask_

account_balance

D GhEb bbb liviry »yvithdrawal

ATM_CORE

-
-
-
- *
- 4
‘f

-
-
-
==
--

deposit

transfer

USER_INTERFACE

Ll

ask_for_money

r\\
]
‘Q
D amount .~

“Bbehaviou

A}
AY
.
-

LI L HJ

D link

provided service

‘I | required service

query_account

< ------ service call

. — p.7/23

2. The Kmelia Component Model
o ——

A Kmelia assembly for the ATM - sublinks, subservices

ATM_CORE

USER_INTERFACE

. ithdrawal |_] K f
authorization :l—:l ask_ <''''''''_'_'_'_'-'-::*‘,"W't rawa ask_for_money

authorization . R r\\
]

A3
account update D . . N N
it a ¢ askZamount_f--------- -D amount .

* 1
’ L}
]
)

debit L'/

"“pehaviou :l

eject_card - '% I R |: -

LOCAL_BANK swallow_card 2l : — query lgcount
display accountjquery e —
balance ask_ .- ’
<_ - -
D account_balance deposit :l
transfer[l

: . link sublink
provided service | I ﬂ required service @~ = =s=s=Ssfsses----- < ------- service call

subprovided

. — p.7/23

2. The Kmelia Component Model
e —

A Kmelia assembly for the ATM - composition

ATM_SYSTEM
ATM_CORE

USER_INTERFACE

AAC
N ask & --=-==========yithdrawal D—I:l ask_for_money
authorization |———‘ |=%' - % - =
j authorization . R r‘\

‘NA
g /" askTamoun{ _}--------- -D amount N

’

account_update

'," :' “Behaviou }:l
debit l‘/ \ 4

eject_card - '3 I SESEEREEES I: L -

LOCAL_BANK swallow_card ‘- N ¢
display account_query :I—_D query_accoun

balance ask_ PPE
< _____
:|=E| account_balance deposit :l

transfer D

, . link sublink
provided service | I j'j required service = ===Se=s=sese---- <------ service call

promotion link subprovided

. — p.7/23

2. The Kmelia Component Model
o ————

A composition links components via their services.

Horizontal:
e assembly links structure service interactions

e assembly sublinks support the structuring of
larger services

Vertical: promotion links denote the structuring of
larger components

The service concept is central to Kmelia:
Support for component connection and interaction
First class elements and not only messages
Service composition

. . — p.8/23

2. Service description
L —

* Signature USER_INTERFACE.behaviour() =

* Local variables

» Assertions el

ask for_money!!
ask for_money(myCard)

* Interface: required
services, provided

el0 el <code, amount>
_ =code> : ask_for_money??
Services v ask_for_money(b)

» Behaviour: &2
|

extended Labelled g
Transition System

annotation: possible service calls

. — p.9/23

2. Service description: eLTS

» States, Initial state, final states
* Transitions: source--label-->target

label ::= [guard] actionsx

An action Is:
 An elementary action

e A communication:
a service call/response or
a message communication.

Communication ::= channel(!|?[!!]|?77)message(param*)
Channel ::= SELF | CALLER | RequiredServiceName
* Extensions (branching states and transitions)

. — p.10/23

Outline of the Talk

A R o

Introduction
The Kmelia Component Model

Service and Component Composability
Behavioural Verification of Service Composability

The COSTO Toolbox
Conclusion and Perspectives

. — p.11/23

3. Service/Component Composability

The scope Is the correctness of components and their
compositions:

* availability of components and services,
» compatibility of linked interfaces,

* correct interaction between services,

» diagnosis on mismatching.

Flexibility:
» partial use of components,
* Incomplete description of services.

. — p.12/23

3. Composability (Service level)

A provided service spc, = ((op, Pp, Qp, Vsp, Ssp), Bsp) 0f a component C; and a
required service sro; = ((or, Pr,Qr,Vsy,Ssr), Bs,) 0f a component C; are

s-composable (noted s-composable(spc;, STC;)) when STC; IS required in the behaviour
B of a service s of C; if:

1. the interfaces of spc, and src; are compatible; that is,

. — p.13/23

3. Composability (Service level)

A provided service spc, = ((op, Pp, Qp, Vsp, Ssp), Bsp) 0f a component C; and a
required service sro; = ((or, Pr,Qr,Vsy,Ssr), Bs,) 0f a component C; are

s-composable (noted s-composable(spc;, STC;)) when STC; IS required in the behaviour
B of a service s of C; if:

1. the interfaces of spc, and src; are compatible; that is,
(a) their signatures are matching (no type conflict: o, and o, are identical),

. — p.13/23

3. Composability (Service level)

A provided service spc, = ((op, Pp, Qp, Vsp, Ssp), Bsp) 0f a component C; and a
required service sro; = ((or, Pr,Qr,Vsy,Ssr), Bs,) 0f a component C; are

s-composable (noted s-composable(spc;, STC;)) when STC; IS required in the behaviour
B of a service s of C; if:

1. the interfaces of spc, and src; are compatible; that is,
(a) their signatures are matching (no type conflict: o, and o, are identical),
(b) the assertions (pre/post) are consistent (post(spc,) ~ post(srcj)) and

. — p.13/23

3. Composability (Service level)

A provided service spc, = ((op, Pp, Qp, Vsp, Ssp), Bsp) 0f a component C; and a
required service src¢, = ({(or, Pr,Qr, Vsr, Ssr), Bs,) of a component C; are
s-composable (noted s-composable(spc;, STC;)) when STC; is required in the behaviour
B of a service s of C; if:

1. the interfaces of spc, and src; are compatible; that is,
(a) their signatures are matching (no type conflict: o, and o, are identical),
(b) the assertions (pre/post) are consistent (post(spc,) ~ post(srcj)) and

(c) their mutually dependent services Ss,, Ss, are not conflicting: the inner
required-provided relationship is preserved: that means they involve a
well-formed assembly.

. — p.13/23

3. Composability (Service level)

A provided service spc, = ((op, Pp, Qp, Vsp, Ssp), Bsp) 0f a component C; and a
required service sro; = ({or, PryQr,Vsy,Ssy), Bsy) of a component C; are
s-composable (noted s-composable(spc;, STC;)) when src; is required in the behaviour
B of a service s of C; if:

1. the interfaces of spc, and src; are compatible; that is,
(a) their signatures are matching (no type conflict: o, and o, are identical),
(b) the assertions (pre/post) are consistent (post(spc,) ~ post(srcj)) and

(c) their mutually dependent services Ss,, Ss, are not conflicting: the inner
required-provided relationship is preserved: that means they involve a
well-formed assembly.

2. the behaviour B, of spc, and B, are compatible: compatible(Bs,, Bs); that is,
their eLTSs are matching; either they evolve independently or they perform
complementary communication actions until a termination without a deadlock.

. — p.13/23

3. Composability (Service level)

A provided service spc, = ({(0p, Pp, @p, Vsp, Ssp), Bsp) 0f a component C; and a
required service sro; = ({or, PryQr,Vsy,Ssy), Bsy) of a component C; are
s-composable (noted s-composable(spc;, src;)) when sr¢, is required in the behaviour
B of a service s of C; if:
1. the interfaces of spc, and src; are compatible; that is,
(a) their signatures are matching (no type conflict: o, and o, are identical),
(b) the assertions (pre/post) are consistent (post(spc,) ~ post(srcj)) and

(c) their mutually dependent services Ss,, Ss, are not conflicting: the inner
required-provided relationship is preserved: that means they involve a
well-formed assembly.

2. the behaviour B, of spc, and B, are compatible: compatible(Bs,, Bs); that is,
their eLTSs are matching; either they evolve independently or they perform
complementary communication actions until a termination without a deadlock.

4 levels of s-composability
~ coarse/fi ne grain, interoperability

. — p.13/23

3. Composability (Component level)

Two components C; and C; are c-composable according to a set of

service pairs ss, if all the pairs (s;, s;) of ss are s-composable:

c-composable(C;,Cj,ss) & V(s;, s;) € ss e sS-composable(s;, s;)

. — p.14/23

3. Composability (Component level)

Two components C; and C; are c-composable according to a set of

service pairs ss, if all the pairs (s;, s;) of ss are s-composable:

c-composable(C;,Cj,ss) & V(s;,s;) € ss e sS-composable(s;, s;)

To check an assembly

 carry out pairwise verifications (link oriented),

* check the completeness of used services,
* support composition and promotion.

. — p.14/23

Outline of the Talk

A A

Introduction

The Kmelia Component Model

Service and Component Composability
Behavioural Verification of Service Composability
The COSTO Toolbox

Conclusion and Perspectives

. — p.15/23

4. Behavioural Compatibility

e ——
A verification context =
* a caller (provided) service
° areqguired service

* a called (provided) service
* dependent subservices

A (contextual) behavioural compatibility results in the
simultaneous state-based examination of two (or
more) flattened services

During the flattening, the channels may be renamed according to the
verification context.

. — p.16/23

4. Behavioural Compatibility - cont’d.
O ——

The current output transitions are checked =
* Independent actions
* Matching actions (with identical channel):
send(!) receive(?)

call service(!!) start service(??),
emit service result(!!) get service result(??)

until final states without blocking(deadlock)

. — p.17/23

4. Behavioural Compatibility (ATM)

A verification context =
a caller service / a required service / a called service /
dependent subservices

ATM_CORE

ask
authorization

account_balance

ask authorization
<.--------------_-,»w|thdrawal

-
-

-
-
-
“
-

,*" SELF ask amounli
b CALLER
debit el:l
eject_card "*+> ask_cod
swallow_card
display account_query
ask

USER_INTERFACE

. CALLER

I:l ask_ for __money

N

amount

“Behaviou

ask_for_shoney
code :

query_account

deposit

transfer

. — p.18/23

4. Behavioural Compatibility (ATM)

USER_INTERFACE.behaviour() = ATM_CORE.withdrawal(card : CashCard) =
e0 /
ask_for_money(myCard)
el0 el e0
|
|
\4
e2
|
|
\

USER_INTERFACE.code () = \
e3 () U/ €4
e5

USER_INTERFACE.amount () =
e6
e7

es O

. — p.19/23

4. Behavioural Compatibility (ATM)

USER_INTERFACE.behaviour() = ATM_CORE.withdrawal(card : CashCard) =

e0 :
el0 el <code>
|
\‘I7 [c<>card.cod€
e2 _

USER_INTE E.code () =
\gresult(myCode)
e5
e6
e7
e8

nbt :=3

ask_code()

ask code?result(c:Integer)
;nbt:=nbt-1

. — p.19/23

4. Behavioural Compatibility (ATM)

USER_INTERFACE.behaviour() = ATM_CORE.withdrawal(card : CashCard) =

el
ask_for_money(myCard)

el0 el <code> <amount>

e2

[c=card.code]

rep:=ask_authorizatior]
USER_INTERFACE.code () = (card.id, ¢) \)
e3 () / e4
e5

USER_INTERFACE.amount () =
AN

€6

e’

e8 O «

O
O
©

4. Behavioural Compatibility (ATM)

USER_INTERFACE.behaviour() =

e0 i
el0 el <amount> €0
|
Vlf el
e2
: e2
v
e3
[rep] display(...)
e5
ask_amount()
USER_INTERFACE.amount () = >
€6

ask_amount?result(m:Integer)

a:= acceptAmy o7

!
Iresult(a) o8

N

\\

ATM_CORE.withdrawal(card : CashCard) =

; [not rep] display(...) ;
U/ e

eject_card()

[m > cart.limit]
display(...)

. — p.19/23

4. Behavioural Compatibility (ATM)

USER_INTERFACE.behaviour() = ATM_CORE.withdrawal(card : CashCard) =
eo M
ask_for_money(myCard)
210 el e0
s : ask_for_money?result(b)
v el
e2
|
|
v
\C))
N
\ Iresult(falge)
Iresult(true)
p.
@ O ¢

. Possible failures...

4. Experimentation with Lotos/CADP
o —

The behavioural compatibility coincides with the Lotos
I[L]| composition operator

* Translation of Kmelia services (s1, s2) into Lotos
processes (s1Process, s2Process).

* Synchronisation of the Lotos processes

s1Process [...]
| [channels] |
s?2Process [...]

Lotos/CADP tools
diagnosis+feedback

. — p.20/23

Outline of the Talk

o 0k wwhE

Introduction
The Kmelia Component Model

Service and Component Composability
Behavioural Verification of Service Composability

The COSTO Toolbox
Conclusion and Perspectives

. — p.21/23

5. The COSTO Toolbox

Kmelia compiler (Antlr, Java)
Architectural correctness checker
Translators into Lotos (and Mec)
Behavioural compatibility checker
Graphical visualisation with dot
GUI under work

. — p.22/23

/. Conclusion and Perspectives
O —

Summary

* Kmelia component model: Services, components,
assemblies

* Composability
* Experimentations with COSTO + existing tools.

Perspectives
» Correctness: functional properties
* Protocols, N-ary links
* Refinement
* Improving the COSTO tool

. . — p.23/23

	{scriptsize centerline {SC'06, Vienna, March 28-29, 2006}}
	Outline of the Talk
	1. Introduction
	1. Introduction - cont'd.
	Outline of the Talk
	2. The kmelia Component Model
	2. The kmelia Component Model
	2. The kmelia Component Model
	2. Service description
	2. Service description: eLTS
	Outline of the Talk
	3. Service/Component Composability
	3. Composability (Service level)
	3. Composability (Component level)
	Outline of the Talk
	4. Behavioural Compatibility
	4. Behavioural Compatibility - cont'd.
	4. Behavioural Compatibility (ATM)
	4. Behavioural Compatibility (ATM)
	4. Experimentation with Lotos/CADP
	Outline of the Talk
	5. The COSTO Toolbox
	7. Conclusion and Perspectives

