
SC’06, Vienna, March 28-29, 2006

Checking Component Composability

Christian ATTIOGBÉ, P. ANDRÉ, G. ARDOUREL

University of Nantes, CNRS
LINA FRE CNRS 2729, COLOSS Team

� � � � � �� �

Outline of the Talk

1. Introduction

2. The

� � � ���� Component Model

3. Service and Component Composability

4. Behavioural Verification of Service Composability

5. The COSTO Toolbox

6. Conclusion and Perspectives

� � � � � �� �

1. Introduction

The motivation for this work: sound basis

� to develop correct software within CBSE
(components, composition)

� to propose techniques for property verification.

The goal:

� to provide developers with component models
and guidance,

� to build practical toolbox.

The article:

� to check the composability of components in
assemblies.

� � � � � �� �

1. Introduction - cont’d.

To Check Component Composability

1. formal descriptions for

� components: state, interfaces, rules

� services: static and dynamic features

� composition: components linked by their
services

� � � � � �� �

1. Introduction - cont’d.

To Check Component Composability

1. formal descriptions for

� components: state, interfaces, rules

� services: static and dynamic features

� composition: components linked by their
services

2. a formal definition for Composability
correctness of component assemblies according
to the service specifications.
as a layered property to support progressive
check and Interoperability (e.g IDL, BIDL...)

� � � � � �� �

1. Introduction - cont’d.

To Check Component Composability

1. formal descriptions for

� components: state, interfaces, rules

� services: static and dynamic features

� composition: components linked by their
services

2. a formal definition for Composability
as a layered property to support progressive
check and Interoperability (e.g IDL, BIDL...)

3. verification techniques and tools

� � � � � �� �

Outline of the Talk

1. Introduction

2. The

� � � ���� Component Model

3. Service and Component Composability

4. Behavioural Verification of Service Composability

5. The COSTO Toolbox

6. Conclusion and Perspectives

� � � � � �� �

2. The � � � ��� Component Model

� � � ���� : a simple and abstract component model
based on services.

� A component is a structuring unit that
encapsulates a state and services in an interface
with usage constraints.

� A component interface: interactions on provided
services and required services.

� A service encodes a functionality; it has a
behaviour.

� A service interface: subservices and
requirements.

� � � � � �� �

2. The � � � ��� Component Model

A

� � � ���� assembly for the ATM - components, interfaces

AAC
authorization

LOCAL_BANK

balance ask_
account_balance

withdrawal

account_query

USER_INTERFACE

behaviour

ask_for_money

ATM_CORE

account_update

ask_
authorization

query_account

deposit

transfer

provided service required service

� � � � � �� �

2. The � � � ��� Component Model

A

� � � ���� assembly for the ATM - service calls

AAC
authorization

LOCAL_BANK

balance ask_
account_balance

withdrawal

account_query

USER_INTERFACE

behaviour

ask_for_money

ATM_CORE

codeask_code

amountask_amount
account_update

ask_
authorization

debit
eject_card
swallow_card
display

query_account

deposit

transfer

provided service required service service call

� � � � � �� �

2. The � � � ��� Component Model

A

� � � ���� assembly for the ATM - links

AAC
authorization

LOCAL_BANK

balance ask_
account_balance

withdrawal

account_query

USER_INTERFACE

behaviour

ask_for_money

ATM_CORE

codeask_code

amountask_amount
account_update

ask_
authorization

debit
eject_card
swallow_card
display

query_account

deposit

transfer

provided service required service
link

service call

� � � � � �� �

2. The � � � ��� Component Model

A

� � � ���� assembly for the ATM - sublinks, subservices

AAC
authorization

LOCAL_BANK

balance ask_
account_balance

withdrawal

account_query

USER_INTERFACE

behaviour

ask_for_money

ATM_CORE

codeask_code

amountask_amount
account_update

ask_
authorization

debit
eject_card
swallow_card
display

query_account

deposit

transfer

provided service required service
link

service call
sublink

subprovided

� � � � � �� �

2. The � � � ��� Component Model

A

� � � ���� assembly for the ATM - composition

AAC
authorization

LOCAL_BANK

balance ask_
account_balance

withdrawal

account_query

USER_INTERFACE

behaviour

ask_for_money

ATM_CORE

codeask_code

amountask_amount
account_update

ask_
authorization

debit
eject_card
swallow_card
display

query_account

deposit

transfer

provided service required service
link

service call
sublink

promotion link

ATM_SYSTEM

subprovided

� � � � � �� �

2. The � � � ��� Component Model

A composition links components via their services.

� Horizontal:

� assembly links structure service interactions

� assembly sublinks support the structuring of
larger services

� Vertical: promotion links denote the structuring of
larger components

The service concept is central to

� � � �� � :

� Support for component connection and interaction

� First class elements and not only messages

� Service composition

� � � � � �� �

2. Service description

� Signature

� Local variables

� Assertions

� Interface: required
services, provided
services

� Behaviour:
extended Labelled
Transition System

<code, amount>

ask_for_money(b)

ask_for_money(myCard)

USER_INTERFACE.behaviour() =

e0

e1

e2

<code>

e10

ask_for_money!!

ask_for_money??

annotation: possible service calls

� � � � � �� �

2. Service description: eLTS

� States, initial state, final states

� Transitions: � � � � �� � � �	�
� � � � �� � �
� �

� � ��� � � � � ��� � �� � � �� � � � ! " #

An action is:

� An elementary action

� A communication:
a service call/response or
a message communication.

$ �% % � & ' � � � ' � & (() � *� & &� � +, -. - , , -. . / % � � � �
� +10 � �� % 2 /

$ *� & &� � (() 34 56 - $7 5 54 8 - 8� 9 � ' �� : 3� �; ' �� <� % �

� Extensions (branching states and transitions)

� � � � �= �� �

Outline of the Talk

1. Introduction

2. The

� � � ���� Component Model

3. Service and Component Composability

4. Behavioural Verification of Service Composability

5. The COSTO Toolbox

6. Conclusion and Perspectives

� � � � � � �� �

3. Service/Component Composability

The scope is the correctness of components and their
compositions:

� availability of components and services,

� compatibility of linked interfaces,

� correct interaction between services,

� diagnosis on mismatching.

Flexibility:

� partial use of components,

� incomplete description of services.

� � � � � � �� �

3. Composability (Service level)

A provided service � � ��� � � ��� 	
 � 	
 � 	

�� 	
 � � 	
�

 � � 	

�

of a component
��� and a

required service �� ��� � � �� �
 � �
 � �

�� �
 � � � �
 � � �
�

of a component
��� are

s-composable (noted s-composable

� � � ��
 �� ��
�

) when � � �� is required in the behaviour

� � of a service � of

��� if:

1. the interfaces of � � �� and �� �� are compatible; that is,

� � � � � � �� �

3. Composability (Service level)

A provided service � � ��� � � ��� 	
 � 	
 � 	

�� 	
 � � 	
�

 � � 	

�

of a component
��� and a

required service �� ��� � � �� �
 � �
 � �

�� �
 � � � �
 � � �
�

of a component
��� are

s-composable (noted s-composable

� � � ��
 �� ��
�

) when � � �� is required in the behaviour

� � of a service � of

��� if:

1. the interfaces of � � �� and �� �� are compatible; that is,

(a) their signatures are matching (no type conflict: � 	 and � � are identical),

� � � � � � �� �

3. Composability (Service level)

A provided service � � ��� � � ��� 	
 � 	
 � 	

�� 	
 � � 	
�

 � � 	

�

of a component
��� and a

required service �� ��� � � �� �
 � �
 � �

�� �
 � � � �
 � � �
�

of a component
��� are

s-composable (noted s-composable

� � � ��
 �� ��
�

) when � � �� is required in the behaviour

� � of a service � of

��� if:

1. the interfaces of � � �� and �� �� are compatible; that is,

(a) their signatures are matching (no type conflict: � 	 and � � are identical),

(b) the assertions (pre/post) are consistent (�� � � � � � ��
� � �� � � � � � ��
�

) and

� � � � � � �� �

3. Composability (Service level)

A provided service � � ��� � � ��� 	
 � 	
 � 	

�� 	
 � � 	
�

 � � 	

�

of a component
��� and a

required service �� ��� � � �� �
 � �
 � �

�� �
 � � � �
 � � �
�

of a component
��� are

s-composable (noted s-composable

� � � ��
 �� ��
�

) when � � �� is required in the behaviour

� � of a service � of

��� if:

1. the interfaces of � � �� and �� �� are compatible; that is,

(a) their signatures are matching (no type conflict: � 	 and � � are identical),

(b) the assertions (pre/post) are consistent (�� � � � � � ��
� � �� � � � � � ��
�

) and

(c) their mutually dependent services
� � 	
 � � � are not conflicting: the inner

required-provided relationship is preserved: that means they involve a
well-formed assembly.

� � � � � � �� �

3. Composability (Service level)

A provided service � � ��� � � ��� 	
 � 	
 � 	

�� 	
 � � 	
�

 � � 	

�

of a component
��� and a

required service �� ��� � � �� �
 � �
 � �

�� �
 � � � �
 � � �
�

of a component
��� are

s-composable (noted s-composable

� � � ��
 �� ��
�

) when � � �� is required in the behaviour

� � of a service � of

��� if:

1. the interfaces of � � �� and �� �� are compatible; that is,

(a) their signatures are matching (no type conflict: � 	 and � � are identical),

(b) the assertions (pre/post) are consistent (�� � � � � � ��
� � �� � � � � � ��
�

) and

(c) their mutually dependent services
� � 	
 � � � are not conflicting: the inner

required-provided relationship is preserved: that means they involve a
well-formed assembly.

2. the behaviour

� � 	 of � � �� and
� � are compatible: �� � �� � � ���� � � � 	
 � � �

; that is,
their eLTSs are matching; either they evolve independently or they perform
complementary communication actions until a termination without a deadlock.

� � � � � � �� �

3. Composability (Service level)

A provided service � � ��� � � ��� 	
 � 	
 � 	

�� 	
 � � 	
�

 � � 	

�

of a component
��� and a

required service �� ��� � � �� �
 � �
 � �

�� �
 � � � �
 � � �
�

of a component
��� are

s-composable (noted s-composable

� � � ��
 �� ��
�

) when � � �� is required in the behaviour

� � of a service � of

��� if:

1. the interfaces of � � �� and �� �� are compatible; that is,

(a) their signatures are matching (no type conflict: � 	 and � � are identical),

(b) the assertions (pre/post) are consistent (�� � � � � � ��
� � �� � � � � � ��
�

) and

(c) their mutually dependent services
� � 	
 � � � are not conflicting: the inner

required-provided relationship is preserved: that means they involve a
well-formed assembly.

2. the behaviour

� � 	 of � � �� and
� � are compatible: �� � �� � � ���� � � � 	
 � � �

; that is,
their eLTSs are matching; either they evolve independently or they perform
complementary communication actions until a termination without a deadlock.

4 levels of s-composability

� coarse/fine grain, interoperability

� � � � � � �� �

3. Composability (Component level)

Two components

��� and

��� are c-composable according to a set of
service pairs � �, if all the pairs

� � ��� � � �

of � � are s-composable:

c-composable

� ���	� �� � � � �
 � � � �	� � � �
� � � � s-composable

� � �	� � � �
� � � � � � �� �

3. Composability (Component level)

Two components

��� and

��� are c-composable according to a set of
service pairs � �, if all the pairs

� � ��� � � �

of � � are s-composable:

c-composable

� ���	� �� � � � �
 � � � �	� � � �
� � � � s-composable

� � �	� � � �

To check an assembly

� carry out pairwise verifications (link oriented),

� check the completeness of used services,

� support composition and promotion.

� � � � � � �� �

Outline of the Talk

1. Introduction

2. The

� � � ���� Component Model

3. Service and Component Composability

4. Behavioural Verification of Service Composability

5. The COSTO Toolbox

6. Conclusion and Perspectives

� � � � � � �� �

4. Behavioural Compatibility

A verification context =

� a caller (provided) service

� a required service

� a called (provided) service

� dependent subservices

A (contextual) behavioural compatibility results in the
simultaneous state-based examination of two (or
more) flattened services

During the flattening, the channels may be renamed according to the
verification context.

� � � � � � �� �

4. Behavioural Compatibility - cont’d.

The current output transitions are checked �

� Independent actions

� Matching actions (with identical channel):

send(!) receive(?)
call service(!!) start service(??),

emit service result(!!) get service result(??)

until final states without blocking(deadlock)

� � � � � � �� �

4. Behavioural Compatibility (ATM)

A verification context =
a caller service / a required service / a called service /
dependent subservices

ask_
account_balance

withdrawal

account_query

USER_INTERFACE

behaviour

ask_for_money

ATM_CORE

codeask_code

amountask_amount

ask_
authorization

debit
eject_card
swallow_card
display

query_account

deposit

transfer

SELF

CALLER

CALLER

ask_authorization

ask_for_
money

ask_for_money

� � � � � � �� �

4. Behavioural Compatibility (ATM)

!result(myCode)

<code>

ask_code?result(c:Integer)

ask_code()

!result(false)

ask_for_money?result(b)

ask_for_money(myCard)

ATM_CORE.withdrawal(card : CashCard) =

USER_INTERFACE.code () =

USER_INTERFACE.behaviour() =

e0

e1

e2

e0

e1

e2

e4

f

nbt := 3
i

; nbt := nbt - 1

[c<>card.code
& nbt >0]
display(...)

e3

[c=card.code]
rep:=ask_authorization
(card.id, c)

[not rep] display(...) ;
eject_card()

e5

[rep] display(...)

e6

ask_amount()

e8

[m <= card.limit]
debit(c,m);eject_card() !result(true)

[m > cart.limit]
display(...)

!result(a)

USER_INTERFACE.amount () =

a := acceptAmount()
e7

 ask_amount?result(m:Integer)

<code>
e10

[c<>card.code & nbt = 0]
display(...) ; swallow_Card()

<amount>

� � � � � � �� �

4. Behavioural Compatibility (ATM)

!result(myCode)

<code>

ask_code?result(c:Integer)

ask_code()

!result(false)

ask_for_money?result(b)

ask_for_money(myCard)

ATM_CORE.withdrawal(card : CashCard) =

USER_INTERFACE.code () =

USER_INTERFACE.behaviour() =

e0

e1

e2

e0

e1

e2

e4

f

nbt := 3
i

; nbt := nbt - 1

[c<>card.code
& nbt >0]
display(...)

e3

[c=card.code]
rep:=ask_authorization
(card.id, c)

[not rep] display(...) ;
eject_card()

e5

[rep] display(...)

e6

ask_amount()

e8

[m <= card.limit]
debit(c,m);eject_card() !result(true)

[m > cart.limit]
display(...)

!result(a)

USER_INTERFACE.amount () =

a := acceptAmount()
e7

 ask_amount?result(m:Integer)

<code>
e10

[c<>card.code & nbt = 0]
display(...) ; swallow_Card()

<amount>

� � � � � � �� �

4. Behavioural Compatibility (ATM)

!result(myCode)

<code>

ask_code?result(c:Integer)

ask_code()

!result(false)

ask_for_money?result(b)

ask_for_money(myCard)

ATM_CORE.withdrawal(card : CashCard) =

USER_INTERFACE.code () =

USER_INTERFACE.behaviour() =

e0

e1

e2

e0

e1

e2

e4

f

nbt := 3
i

; nbt := nbt - 1

[c<>card.code
& nbt >0]
display(...)

e3

[c=card.code]
rep:=ask_authorization
(card.id, c)

[not rep] display(...) ;
eject_card()

e5

[rep] display(...)

e6

ask_amount()

e8

[m <= card.limit]
debit(c,m);eject_card() !result(true)

[m > cart.limit]
display(...)

!result(a)

USER_INTERFACE.amount () =

a := acceptAmount()
e7

 ask_amount?result(m:Integer)

<code>
e10

[c<>card.code & nbt = 0]
display(...) ; swallow_Card()

<amount>

� � � � � � �� �

4. Behavioural Compatibility (ATM)

!result(myCode)

<code>

ask_code?result(c:Integer)

ask_code()

!result(false)

ask_for_money?result(b)

ask_for_money(myCard)

ATM_CORE.withdrawal(card : CashCard) =

USER_INTERFACE.code () =

USER_INTERFACE.behaviour() =

e0

e1

e2

e0

e1

e2

e4

f

nbt := 3
i

; nbt := nbt - 1

[c<>card.code
& nbt >0]
display(...)

e3

[c=card.code]
rep:=ask_authorization
(card.id, c)

[not rep] display(...) ;
eject_card()

e5

[rep] display(...)

e6

ask_amount()

e8

[m <= card.limit]
debit(c,m);eject_card() !result(true)

[m > cart.limit]
display(...)

!result(a)

USER_INTERFACE.amount () =

a := acceptAmount()
e7

 ask_amount?result(m:Integer)

<code>
e10

[c<>card.code & nbt = 0]
display(...) ; swallow_Card()

<amount>

� � � � � � �� �

4. Behavioural Compatibility (ATM)

!result(myCode)

<code>

ask_code?result(c:Integer)

ask_code()

!result(false)

ask_for_money?result(b)

ask_for_money(myCard)

ATM_CORE.withdrawal(card : CashCard) =

USER_INTERFACE.code () =

USER_INTERFACE.behaviour() =

e0

e1

e2

e0

e1

e2

e4

f

nbt := 3
i

; nbt := nbt - 1

[c<>card.code
& nbt >0]
display(...)

e3

[c=card.code]
rep:=ask_authorization
(card.id, c)

[not rep] display(...) ;
eject_card()

e5

[rep] display(...)

e6

ask_amount()

e8

[m <= card.limit]
debit(c,m);eject_card() !result(true)

[m > cart.limit]
display(...)

!result(a)

USER_INTERFACE.amount () =

a := acceptAmount()
e7

 ask_amount?result(m:Integer)

<code>
e10

[c<>card.code & nbt = 0]
display(...) ; swallow_Card()

<amount>

Possible failures...

� � � � � � �� �

4. Experimentation with Lotos/CADP

The behavioural compatibility coincides with the Lotos
|[L]| composition operator

� Translation of

� � � � ��� services (s1, s2) into Lotos
processes (s1Process, s2Process).

� Synchronisation of the Lotos processes

" � � � � � � " " �
� � �

�

� � � � � ! !� � " � �

" � � � � � � " " �
� � �

�

Lotos/CADP tools

diagnosis+feedback

� � � � � = �� �

Outline of the Talk

1. Introduction

2. The

� � � ���� Component Model

3. Service and Component Composability

4. Behavioural Verification of Service Composability

5. The COSTO Toolbox

6. Conclusion and Perspectives

� � � � � � �� �

5. The COSTO Toolbox

�

� � � ���� compiler (Antlr, Java)

� Architectural correctness checker

� Translators into Lotos (and Mec)

� Behavioural compatibility checker

� Graphical visualisation with dot

� GUI under work

� � � � � � �� �

7. Conclusion and Perspectives

Summary

�

� � � ���� component model: Services, components,
assemblies

� Composability

� Experimentations with COSTO + existing tools.

Perspectives

� Correctness: functional properties

� Protocols, N-ary links

� Refinement

� Improving the COSTO tool

� � � � � � �� �

	{scriptsize centerline {SC'06, Vienna, March 28-29, 2006}}
	Outline of the Talk
	1. Introduction
	1. Introduction - cont'd.
	Outline of the Talk
	2. The kmelia Component Model
	2. The kmelia Component Model
	2. The kmelia Component Model
	2. Service description
	2. Service description: eLTS
	Outline of the Talk
	3. Service/Component Composability
	3. Composability (Service level)
	3. Composability (Component level)
	Outline of the Talk
	4. Behavioural Compatibility
	4. Behavioural Compatibility - cont'd.
	4. Behavioural Compatibility (ATM)
	4. Behavioural Compatibility (ATM)
	4. Experimentation with Lotos/CADP
	Outline of the Talk
	5. The COSTO Toolbox
	7. Conclusion and Perspectives

