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Introduction

Serial robots vs. Parallel robots
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Introduction

Singularities of serial robots

TRAVERSEE Type 2
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Introduction
Singularities of parallel robots
Much more complex because of the
architecture made of both active and
passive joints
• Leg singularities:
◦ “Usual” Leg (or Type 1)

Singularities

◦ Leg Active Joint Twist System
Singularities (LAJTS)

◦ Leg Passive Joint Twist System
Singularities (LPJTS)

• Platform singularities:

◦ Type 2 singularities
◦ Constraint singularities
◦ Other (not detailed because

extremely rare)

Robot moving platform

Robot fixed base

Loss of motion
ability along this
direction
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Introduction

Special types of singularities
In Type 2, constraint and LPJTS singularities
• Loss of stiffness (uncontrollable / gained motions)
• Considerable decrease of performance (deformation, vibration,
effort transmission, dynamics, positionning error, etc.)

• Singularities located IN the workspace (not on the boundaries)
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Type 2 (parallel) singularities of PKM

Probably, the most important drawback of PKM
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Type 2 Singularities of a 3–RRR planar robot [Bonev 2001]
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Type 2 (parallel) singularities of PKM

Normally, impossible to cross these singularities
Because near these singularities, the input torques tend to infinity

TRAVERSEE Type 2
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Type 2 (parallel) singularities of PKM

But...
By proper trajectory planning respecting a dynamics criterion [Briot
et Arakelian 2008] and an adequate controller [Pagis et al, 2015]

TRAVERSEE Type 2
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Singularities of parallel robots
How to find Type 2 or constraint singularities?
In the late 80’s
• Type 2 singularities
◦ Compute the I/O kinematic relationship:

A(qa, x)0tp + B(qa, x)q̇a = 0 (1)

◦ Compute the determinant of A and find the conditions for which it is
equal to 0

⇒ Limited to simple cases

• Constraint singularities:

◦ Discovered at the early 2000’s
◦ Cannot be found using the previous method
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How to find Type 2 or constraint singularities?
In the late 80’s / early 90’s, a
method based on the Grassmann
geometry
Type 2 or constraint sing. ≡
singularities of the system of (static)
wrenches applied by the legs on the
platform

• Find the system of wrenches applied by
the legs on the platform using the Screw
Theory

• Analyze the degeneracy of this system of
wrenches using the Grassmann geometry
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Determination of the system of wrenches
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Determination of the system of wrenches

For serial leg (the ith leg of the parallel robot)
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Moving platform
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tp = Ji(qi)q̇i where Ji =
[
$i1 . . . $imi

]
(2)

$ij is unit a twist representing the twist of the platform when joint ij
is moving only
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Determination of the system of wrenches

We group, for the leg i ,
• in a sub-matrix 0$ia the unit twists corresponding to the active
joints of velocities q̇ai ,

• in a sub-matrix 0$id the unit twists corresponding to the passive
joints of velocities q̇di

and we express all equations in the base frame F0 (superscript “0”
before the variables)
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Determination of the system of wrenches

For the leg i ,
• The constraint wrenches (i.e. the wrenches applied by the leg even
if it is not actuated) are the wrenches ζid which are reciprocal to
both 0$ia and 0$id , i.e. they are defined such that

ζid ◦
0$ia = 0, ζid ◦

0$id = 0 (4)

• The actuation wrenches (i.e. the wrenches applied by the leg
because of the presence of the actuator) are the wrenches ζia
which are reciprocal to 0$id and are not included in the system of
constraint wrenches ζid , i.e. they are defined such that

ζia ◦
0$id = 0, ζia * ζid (5)
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Determination of the system of wrenches
Example of a RR leg with R axes along z0
• Motion is represented by two unit twists:

0$R1 =
[
−(y2 − y1) x2 − x1 0 0 0 1

]T

(6)
0$R2 =

[
0 0 0 0 0 1

]T
(7)

• If both joints are passive:
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Determination of the system of wrenches

Then,
• Stack all constraint wrenches ζid in a matrix ζd
• Stack all actuation wrenches ζia in a matrix ζa
• Analyze the degeneracy of ζa and ζd thanks to the Grassmann
geometry
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Singularities of parallel robots

Grassmann geometry
• Gives conditions on degeneracy of systems of lines
• Plücker representation of a line L : [uT (

−→
PQ × u)T ]T

◦ A direction u
◦ Moment of the direction u wrt a given point P

L

Q

u

P
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Singularities of parallel robots

A pure force wrench is given by (at point P, if f is applied at
point Q)

ζi =
[

f
−→
PQ × f

]
(10)

A pure moment wrench is given by, for any application point

ζi =
[
0
m

]
(11)

These expressions are Plücker representations of lines
• the pure force wrench: a line of direction f passing through point P
• the pure moment wrench: a line of direction m but in the
projective plane at infinity
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Singularities of parallel robots

Thanks to Grassmann geometry
Possibility to analyze the conditions of deficiency of a system whose
basis is represented by a set of lines

It is still quite complicated
However for 2 and 3DOF planar robots, the conditions are quite
simple to analyze

For planar robots
• 2 DOF: degeneracy if the two lines are parallel
• 3 DOF: degeneracy if the three (coplanar) lines intersect in the
same point (that may be at infinity) ⇒ instantaneous center of
rotation

18 of 55
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Singularities of parallel robots

A few notations
• a, b: two points located at the position a and b in the Cartesian
space (if applying coordinates, using the Plücker representation
with 4 coordinates, the last one is equal to w 6= 0)

• A, B: two points located at the position A and B in the projective
plane at infinity (if applying coordinates, using the Plücker
representation with 4 coordinates, the last one is equal to w = 0)

• ab, the line passing through points a and b
• abc, the plane passing through points a, b and c
• [abcd]: the determinant of the (4× 4) matrix whose columns are
the expressions of the points a, b, c and d (in other words, the
volume of the tetrahedron)

•
∧
: the “meet operator”
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Singularities of parallel robots

Superbracket decomposition

[ab, cd, ef, gh, ij, kl] =
24∑

i=1
yi (12)

where
y1 = −[abcd][efgi][hjkl] y2 = [abcd][efhi][gjkl] y3 = [abcd][efgj][hikl]
y4 = −[abcd][efhj][gikl] y5 = [abce][dfgh][ijkl] y6 = −[abde][cfgh][ijkl]
y7 = −[abcf][degh][ijkl] y8 = [abdf][cegh][ijkl] y9 = −[abce][dghi][fjkl]
y10 = [abde][cghi][fjkl] y11 = [abcf][dghi][ejkl] y12 = [abce][dghj][fikl]
y13 = −[abdf][cghi][ejkl] y14 = −[abde][cghj][fikl] y15 = −[abcf][dghj][eikl]
y16 = [abdf][cghj][eikl] y17 = [abcg][defi][hjkl] y18 = −[abdg][cefi][hjkl]
y19 = −[abch][defi][gjkl] y20 = −[abcg][defj][hikl] y21 = [abdh][cefi][gjkl]
y22 = [abdg][cefj][hikl] y23 = [abch][defj][gikl] y24 = −[abdh][cefj][gikl]

(13)
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Determination of the system of wrenches
By an adequate choice of the points for
representing the lines (intersection points,
points are infinity, etc)
Many monomials yi can be deleted

Example [Ben Horin and Shoham 2006]
[ab, ac, de, df, gh, gi] =
[adḟg][abcḋ][ėigh] = edf

∧
igh

∧
abc

∧
adg

Geometric interpretation
Intersection of four planes
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Singularities of parallel robots

Remarks
• These tools for singularity analysis are difficult to be used by non
expert

• But a lot of scientific litterature ⇒ If we know the general
formulation of the system of wrenches, for instance
◦ 3 forces + 3 moments
◦ 6 forces, but only three points of applications, two forces by points
geometric interpretation of results are already given (see the next
slides)

• Sometimes, we still must do the analysis
• These tools were primarly used for singularities of PKM, we will
show now that they can be used for other singularity analyses
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What is visual servoing?

TRAVERSEE Type 2
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What is visual servoing?

• to 3D features observed ⇒ measures in the camera frame s

• we can set a kinematic relationship between the twist τ of the
relative motion between the object and camera frames and the
velocity of the measurements s:

ṡ = Lτ (14)

• L = L(s, x) is called the interaction matrix, in which x: relative
configuration between the object and camera frames

• standard controller (wishing an exponential decay ė = −λe of error
e = s− s∗ ⇒ ṡ = −λe):

τ = Lτ = −λL+e (15)
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Introduction to singularities in visual servoing
• Singularities appearing when observing
image features (e.g. with a camera) =
a huge challenge in visual servoing

• To the best of our knowledge, only
known for three 3-D image points
(singularity cylinder)

• Issue with singularities: interaction
matrix cannot be inverted anymore =
loss of controllability
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Introduction to singularities in visual servoing

In order to avoid singularities
Increased number of image features (redundancy):
• Pb of local minima
• Proof that there is no singularity?

Determining the singularity cases stays an open problem

26 of 55



Introduction Singularities of PKM Singularities in visual servoing Singularities of other controllers Conclusions

Introduction to singularities in visual servoing

Recently, the “Hidden Robot Concept”
was developped
• A tool made first for analyzing the
singularities in visual servoing
dedicated to PKMs

• Basic idea ⇒ Interaction matrix ≡ Inv.
Jacobian matrix of a virtual PKM

For instance, when observing the leg
directions of the GS platform
• Real robot = 6–UPS

• Virtual robot = 6–UPS

27 of 55
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Introduction to singularities in visual servoing

Here
I show how we used the hidden robot concept in order to solve, for
the first time, the singularities in
1. the observation of n image points (n ≥ 3)
2. the observation of three lines
3. the leg-based visual servoing of parallel robots
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Observation of an image point

C

m
1

L
1

Image plane

Camera center

(x,y)

M
1

(X,Y,Z)

29 of 55



Introduction Singularities of PKM Singularities in visual servoing Singularities of other controllers Conclusions

Observation of an image point

C

m
1

L
1

Image plane

Camera center

(x,y)

z
1

29 of 55



Introduction Singularities of PKM Singularities in visual servoing Singularities of other controllers Conclusions

Observation of an image point

C

m
1

L
1

Image plane

Camera center

(x,y)

M
1 
??

z
1

29 of 55



Introduction Singularities of PKM Singularities in visual servoing Singularities of other controllers Conclusions

Observation of an image point

C

m
1

L
1

Image plane

Camera center

(x,y)

M
1 
??

z
1

29 of 55



Introduction Singularities of PKM Singularities in visual servoing Singularities of other controllers Conclusions

Observation of an image point

C

m
1

L
1

Image plane

Camera center

(x,y)

M
1 
??

z
1

29 of 55



Introduction Singularities of PKM Singularities in visual servoing Singularities of other controllers Conclusions

Observation of an image point
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Observation of three image points
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Observation of three image points
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 e three
active cardan
joints are grouped
at the same point

Passive
prismatic
joints

Passive
spherical
joints

A 3–UPS robot which is the virtual robot architecture with its inverse
kinematic Jacobian matrix similar to the interaction matrix

ṡ = Lτ // q̇ = Jinv τ
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Singularities

Thanks to the hidden robot analogy
Singularities of the interaction matrix =
singularities of the virtual parallel robot

Singularities of parallel robots
Can be studied by using several (complementary)
tools
• Screw Theory [Merlet 2006], Grassmann

geometry [Merlet 2006], Grassmann-Cayley
algebra [Ben-Horin and Shoham, 2006]

In our case (3 points), it can be proven
that
The planes Pi (i = 1, 2, 3) and P4 (containing all
3-D points) have a non-null intersection
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Singularities when observing 3 points
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Singularities when observing 3 points

C (camera center)
Image plane

A: Cylinder of
singularities
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Singularities when observing n points (n > 3)

Possible if and only if
• All singularity cylinders associated with any subset of 3 points have
a common intersection

• AND all kernels of the interaction matrices are identical

After (more complex) mathematical derivations, we proved that
The conditions of singularity when n coplanar points are observed
only appear if and only if all 3-D points and the optical center are
located on the same circle
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Singularities when observing n points (n > 3)
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Simulations

0 0.5 1 1.5
−1−0.500.51

−1.8
−1.6
−1.4
−1.2
−1

−0.8
−0.6
−0.4
−0.2

0
0.2

X [m]Y [m]

Z
 [

m
]

M
4

M
3

M
2

M
1

C (s=0)

C (s=1)

C (s=1.4)

Circumcircle to

M
1
, M

2
, M

3
 and M

4

35 of 55



Introduction Singularities of PKM Singularities in visual servoing Singularities of other controllers Conclusions

Simulations
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Observation of an image line
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Observation of an image line
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A UPRC kinematic chain which allows for the same motion of the
line Li
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Observation of three image lines
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Observation of three image lines
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A 3–UPRC robot which is the virtual robot architecture with its
inverse kinematic Jacobian matrix similar to the interaction matrix

ṡ = Lτ // q̇ = Jinv τ
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Singularities

Thanks to the hidden robot analogy
Singularities of the interaction matrix =
singularities of the virtual parallel robot

Singularities of parallel robots
Can be studied by using several (complementary)
tools
• Screw Theory [Merlet 2006], Grassmann

geometry [Merlet 2006], Grassmann-Cayley
algebra [Ben-Horin and Shoham, 2006]

In our case (3 lines), singu. cond. iff
f1 = fT

11(f21 × f31) = 0 or
f2 = mT

12(m22 ×m32) = 0
where ξij = [fT

ij mT
ij ]T
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Singularities

In order to simplify the problem
• Consider the “zero” platform orientation
• General case obtained by a simple rotation[

X Y Z
]T

= R
[
X ′ Y ′ Z ′

]T
(16)

where
X , Y and Z : position of the origin of the object frame Fb in the
camera frame when considering the “zero” platform orientation
X ′, Y ′ and Z ′: position of the origin of the object frame for the
considered “non-zero” platform orientation
R the rotation matrix between the two cases
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Three coplanar lines with no common intersection
point

1M
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bx

by
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)XYZ(Q

φ

ψ

ρ

f1 = 0⇔Z = 0⇒ Lines + optical center in the same plane
f2 = 0⇔Z (X 2 + Y 2 − ρ2) = 0⇒ Singularity cylinder!

(17)
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Three lines in space with a common intersection point

−→
OQ = [X Y Z ]T , U1 = [1 0 0]T ,
U2 = [a b 0]T , U3 = [c d e]T

(18)

f1 = 0⇒ For any object configuration
f2 = 0⇔b(adeY 3 + ((−ad2 + bcd + ae2)Z

+ (ac − bd)eX )Y 2 − e(bcX 2 + (ad − bc)Z 2

+ 2beXZ )Y + ((−ad2 + bcd − ae2)X 2Z
+ (bd + ac)eXZ 2)) = 0

(19)

⇒ The origin of the body frame belongs to a cubic surface
parameterized by f2 = 0.
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Three orthogonal lines in space

bx

by

bz

a

a
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b

b
)XYZ(

Q

1U

2U
3U

1L

3L

2L

f1 = 0⇔aXY + bYZ − cXZ − abc = 0
f2 = 0⇔acX − abY + bcZ − XYZ = 0

(20)

⇒ Expression f1 represents a quadric surface while expression f2 is a
cubic surface
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Three lines, two of them being parallel

)XYZ(Q

bx

by

1U

2U

3U
bz

a
b

1L

3L

2L

f1 = 0⇔Z (dZ − eY ) = 0
f2 = 0⇔Z (X (d2 + e2)− cYd − cZe) = 0

(21)

• Z = 0, which occur when the plane P containing L1 and L2 also
contains the optical center,

• eY − dZ = 0 is the plane containing U1, U3 and the optical center,
• X (d2 + e2)− cdY − ceZ = 0 is the plane containing (U1 ×U3),
U3 and the optical center.
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Three general lines in space
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Condition f1 = 0 provides the expression of a quadric surface while
f2 = 0 leads to a cubic surface.
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Example for three general lines in space
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Simulation 1 (general case)
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Simulation 1 (general case)
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Leg-based visual servoing of parallel robots

Generalisation to families of parallel robots
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Leg-based visual servoing of parallel robots

Generalisation to families of parallel robots

Planar robots: Example of the 3–RRR robot

Vertex space of
leg 1

Coupler
curve

Vertex space for
legs 1 and 2

Coupler
curve
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Leg-based visual servoing of parallel robots

Generalisation to families of parallel robots

Spatial robots: Example of the GS Platform
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Leg-based visual servoing of parallel robots

Generalisation to families of parallel robots

Spatial robots: Example of the Quattro
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Leg-based visual servoing of parallel robots

Generalisation to families of parallel robots

Experimental validation
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Leg-based visual servoing of parallel robots

Use of the hidden robot concept for analyzing the controllability
Class 1: Robots which are uncontrollable with the observation of the
leg directions

A PRRRP robot
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Hidden robot:

a PRRRP robot

u
1
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2
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Leg-based visual servoing of parallel robots

Use of the hidden robot concept for analyzing the controllability
Class 2: Robots which are partially controllable (in their workspace)
with the observation of the leg directions
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Leg-based visual servoing of parallel robots

Use of the hidden robot concept for analyzing the controllability
Class 3: Robots which are fully controllable (in their workspace) with
the observation of the leg directions
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Leg-based visual servoing of parallel robots

Use of the hidden robot concept for analyzing the controllability
Class 4: Robots which are fully controllable (in their workspace)
thanks to additional measurements

A PRRRP robot
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Singularities appear in many systems

Fleets of agents

TRAVERSEE Type 2
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Singularities appear in many systems

UAVs, ROVs
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Singularities appear in many systems

UAVs, ROVs
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Singularities appear in many systems

Reconfigurable drones

TRAVERSEE Type 2
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Singularities appear in many systems

GG and AGC needs adaption
Because propellers apply force and torque which are linked (non zero
and non infinite pitch screws)
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Conclusions
A new Theorem (to be proven)
The World IS a Parallel Robot!

In this talk,
• I presented a tool named the “hidden robot concept” able to solve
the determination of the singularity cases visual servoing based on
the observation of geometric features

• we proved the conditions of singularity for n coplanar points and 3
lines

• we discussed about the generalization of the “hidden robot
concept” to other case studies
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Conclusions
The hidden robot concept
• a tangible visualization of the mapping between the observation
space and the Cartesian space

• allowed to change the way we defined the problem (control
community / mechanical engineering community ⇒ dual problems)

Tools used here
• Easily extendable to the rigidity-based control theory
• And maybe other problems
• But useful for you?
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Concluding remarks
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