How theory on parallel robot singularities was used in order to solve sensor-based control problems

Laboratoire des Sciences du Numérique de Nantes (LS2N)

IFAC WC 2017, July 9

 Singularities appearing when observing image features (e.g. with a camera) = a huge challenge in visual servoing

 Introduction
 Hidden robot model for image points
 Hidden robot model for image lines
 Other cases
 Conclusions / Discussions

 •••••
 •••••
 •••••
 •••••
 •••••
 •••••

Introduction

- Singularities appearing when observing image features (e.g. with a camera) = a huge challenge in visual servoing
- To the best of our knowledge, only known for three 3-D image points (*singularity cylinder*)
- Issue with singularities: interaction matrix cannot be inverted anymore = loss of controllability

In order to avoid singularities

Increased number of image features (redundancy):

- Pb of local minima
- Proof that there is no singularity?

Determining the singularity cases stays an open problem

 Introduction
 Hidden robot model for image points
 Hidden robot model for image lines
 Other cases
 Conclusions / Discussions

 0000
 00000000
 000000000000
 00000
 00000

Introduction

Recently, the "Hidden Robot Concept" was developped

- A tool made first for analyzing the singularities in visual servoing dedicated to PKMs
- Basic idea \Rightarrow Interaction matrix \equiv Inv. Jacobian matrix of a virtual PKM

Recently, the "Hidden Robot Concept" was developped

- A tool made first for analyzing the singularities in visual servoing dedicated to PKMs
- Basic idea \Rightarrow Interaction matrix \equiv Inv. Jacobian matrix of a virtual PKM

For instance, when observing the **leg directions** of the GS platform

Real robot = 6–U<u>P</u>S

Recently, the "Hidden Robot Concept" was developped

- A tool made first for analyzing the singularities in visual servoing dedicated to PKMs
- Basic idea \Rightarrow Interaction matrix \equiv Inv. Jacobian matrix of a virtual PKM

For instance, when observing the **leg directions** of the GS platform

- Real robot = 6–UPS
- Virtual robot = 6–<u>U</u>PS

Here

We show how we used the hidden robot concept in order to solve, for the first time, the singularity in

- 1. the observation of *n* image points $(n \ge 3)$
- 2. the observation of three lines
- 3. the leg-based visual servoing of parallel robots

Observation of an image point

Observation of an image point

A <u>UPS</u> kinematic chain which allows for the same motion of the point M_i

Observation of three image points

Observation of three image points

A 3-<u>U</u>PS robot which is the virtual robot architecture with its inverse kinematic Jacobian matrix similar to the interaction matrix

$$\dot{ extbf{s}} = extbf{L} au \; // \; \dot{ extbf{q}} = extbf{J}_{\textit{inv}} au$$

Hidden robot model for image points		
0000000		

Hidden robot model for image points		
0000000		

Hidden robot model for image points		
0000000		

Hidden robot model for image points		
000000		

Hidden robot model for image points		
000000		

Singularities

Thanks to the hidden robot analogy

Singularities of the interaction matrix = singularities of the virtual parallel robot

Singularities of parallel robots

Can be studied by using several (complementary) tools

• Screw Theory [Merlet 2006], Grassmann geometry [Merlet 2006], Grassmann-Cayley algebra [Ben-Horin and Shoham, 2006]

Singularities

Thanks to the hidden robot analogy

Singularities of the interaction matrix = singularities of the virtual parallel robot

Singularities of parallel robots

Can be studied by using several (complementary) tools

 Screw Theory [Merlet 2006], Grassmann geometry [Merlet 2006], Grassmann-Cayley algebra [Ben-Horin and Shoham, 2006]

In our case (3 points), it can be proven that The planes \mathcal{P}_i (i = 1, 2, 3) and \mathcal{P}_4 (containing all 3-D points) have a non-null intersection

 Introduction
 Hidden robot model for image points
 Hidden robot model for image lines
 Other cases
 Conclusions / Discussions

 0000
 00000000
 00000
 00000
 00000
 00000

Singularities when observing 3 points

Singularities when observing 3 points

 Hidden robot model for image points
 Hidden robot model for image lines
 Other cases
 Conclusions / Discussions

 0000
 000000000
 00000
 00000
 00000
 00000

Singularities when observing 3 points

Singularities when observing 3 points

Singularities when observing *n* points (n > 3)

Possible if and only if

- All singularity cylinders associated with any subset of 3 points have a common intersection
- AND all kernels of the interaction matrices are identical

After (more complex) mathematical derivations, we proved that

The conditions of singularity when n coplanar points are observed only appear if and only if all 3-D points and the optical center are located on the same circle
 Introduction
 Hidden robot model for image points
 Hidden robot model for image lines
 Other cases
 Conclusions / Discussions

 0000
 00000000
 00000
 00000
 00000
 00000

Singularities when observing *n* points (n > 3)

Simulations

Simulations

Observation of an image line

Observation of an image line

O \vec{x} \vec{y} \vec{z} l; m_i \mathcal{P}_i $\mathcal{L}_i??$ image plane

Observation of an image line

 $\vec{y} \neq \vec{z} \quad \ell_i$ $\vec{u}_i \quad \ell_i$ $\vec{u}_i \quad \mu_i$ $\vec{u}_i \quad \mu_i$ $\vec{u}_i \quad \mu_i$

 \mathcal{L}_i ??

Observation of an image line

 \vec{y} \vec{z} ℓ_i \vec{u}_i ℓ_i \vec{u}_i \vec{r}_i ℓ_i \vec{r}_i \vec{r}_i

 \mathcal{L}_i ??

Observation of an image line

O \vec{x} \vec{y} \vec{z} ℓ_i m_i $\mathcal{L}_i??$ image plane
Observation of an image line

A <u>UPRC</u> kinematic chain which allows for the same motion of the line \mathcal{L}_i

Observation of three image lines

Observation of three image lines

A $3-\underline{U}PRC$ robot which is the virtual robot architecture with its inverse kinematic Jacobian matrix similar to the interaction matrix

$$\dot{ extbf{s}} = extbf{L} au \; // \; \dot{ extbf{q}} = extbf{J}_{\textit{inv}} au$$

Singularities

Thanks to the hidden robot analogy

Singularities of the interaction matrix = singularities of the virtual parallel robot

Singularities of parallel robots

Can be studied by using several (complementary) tools

• Screw Theory [Merlet 2006], Grassmann geometry [Merlet 2006], Grassmann-Cayley algebra [Ben-Horin and Shoham, 2006]

Singularities

Thanks to the hidden robot analogy

Singularities of the interaction matrix = singularities of the virtual parallel robot

Singularities of parallel robots

Can be studied by using several (complementary) tools

• Screw Theory [Merlet 2006], Grassmann geometry [Merlet 2006], Grassmann-Cayley algebra [Ben-Horin and Shoham, 2006]

In our case (3 lines), singu. cond. iff

$$f_1 = \mathbf{f}_{11}^T(\mathbf{f}_{21} \times \mathbf{f}_{31}) = 0$$
 or
 $f_2 = \mathbf{m}_{12}^T(\mathbf{m}_{22} \times \mathbf{m}_{32}) = 0$
where $\boldsymbol{\xi}_{ij} = [\mathbf{f}_{ij}^T \mathbf{m}_{ij}^T]^T$

Singularities

In order to simplify the problem

- Consider the "zero" platform orientation
- General case obtained by a simple rotation

$$\begin{bmatrix} X & Y & Z \end{bmatrix}^{T} = \mathcal{R} \begin{bmatrix} X' & Y' & Z' \end{bmatrix}^{T}$$
(1)

where

X, Y and Z: position of the origin of the object frame \mathcal{F}_b in the camera frame when considering the "zero" platform orientation X', Y' and Z': position of the origin of the object frame for the considered "non-zero" platform orientation \mathcal{R} the rotation matrix between the two cases

Three coplanar lines with no common intersection point

 $f_1 = 0 \Leftrightarrow Z = 0 \Rightarrow \text{Lines} + \text{optical center in the same plane}$ $f_2 = 0 \Leftrightarrow Z(X^2 + Y^2 - \rho^2) = 0 \Rightarrow \text{ Singularity cylinder!}$

Three coplanar lines with a common intersection point

(3)

 $f_1 = 0 \Rightarrow$ Singular for any object configuration $f_2 = 0 \Leftrightarrow Z(X^2 + Y^2) = 0$

 \Rightarrow Camera center *O* lies on the line which passes through *Q* and which is perpendicular to all vectors **U**_i

 Introduction
 Hidden robot model for image points
 Hidden robot model for image lines
 Other cases
 Conclusions / Discussions

 0000
 000000
 000000
 00000
 00000

Three lines in space with a common intersection point

$$\overrightarrow{OQ} = [X Y Z]^T, \mathbf{U}_1 = [1 0 0]^T$$
$$\mathbf{U}_2 = [a b 0]^T, \mathbf{U}_3 = [c d e]^T$$

(4)

(5)

 $f_1 = 0 \Rightarrow \text{ For any object configuration}$ $f_2 = 0 \Leftrightarrow b(adeY^3 + ((-ad^2 + bcd + ae^2)Z + (ac - bd)eX)Y^2 - e(bcX^2 + (ad - bc)Z^2 + 2beXZ)Y + ((-ad^2 + bcd - ae^2)X^2Z + (bd + ac)eXZ^2)) = 0$

 \Rightarrow The origin of the body frame belongs to a cubic surface parameterized by $f_2 = 0$.

 Introduction
 Hidden robot model for image points
 Hidden robot model for image lines
 Other cases
 Conclusions / Discussions

 0000
 0000000
 000000
 00000
 00000
 00000

Three orthogonal lines in space

$$f_1 = 0 \Leftrightarrow aXY + bYZ - cXZ - abc = 0$$

$$f_2 = 0 \Leftrightarrow acX - abY + bcZ - XYZ = 0$$
(6)

 \Rightarrow Expression f_1 represents a quadric surface while expression f_2 is a cubic surface

Three lines, two of them being parallel

$$f_1 = 0 \Leftrightarrow Z(dZ - eY) = 0$$

$$f_2 = 0 \Leftrightarrow Z(X(d^2 + e^2) - cYd - cZe) = 0$$
(7)

- Z = 0, which occur when the plane \mathcal{P} containing \mathcal{L}_1 and $\mathcal{L}2$ also contains the optical center,
- eY dZ = 0 is the plane containing U_1 , U_3 and the optical center,
- $X(d^2 + e^2) cdY ceZ = 0$ is the plane containing $(\mathbf{U}_1 \times \mathbf{U}_3)$, \mathbf{U}_3 and the optical center.

Three general lines in space

Condition $f_1 = 0$ provides the expression of a quadric surface while $f_2 = 0$ leads to a cubic surface.

Example for three general lines in space

ntroduction Hidden robot model for image points Hidden robot model for image lines Other cases Conclusions / Discussions

Simulation 1 (general case)

ntroduction Hidden robot model for image points Hidden robot model for image lines Other cases Conclusions / Discussions

Simulation 1 (general case)

Introduction Hidden robot model for image points Hidden robot model for image lines Other cases Conclusions / Discussions

Simulation 2 (lines are perpendicular)

Simulation 2 (lines are perpendicular)

Many approaches, among which

• Direct observation of the end-effector [Paccot et al., 2008]

Many approaches, among which

• Leg observation [Özgür et al., 2011]

Problems / Questions

• The observation of *m* leg directions (*m* < *n*) among the *n* legs is enough,

Problems / Questions

- The observation of *m* leg directions (*m* < *n*) among the *n* legs is enough,
- End-effector convergence issues, even if all leg directions did converge

Problems / Questions

- The observation of *m* leg directions (*m* < *n*) among the *n* legs is enough,
- End-effector convergence issues, even if all leg directions did converge
- Existence of local minima

Problems / Questions

- The observation of *m* leg directions (*m* < *n*) among the *n* legs is enough,
- End-effector convergence issues, even if all leg directions did converge
- Existence of local minima
- Interaction model singularities

Answers thanks to the hidden robot concept

Answers thanks to the hidden robot concept

Idea

We control a virtual robot architecture corresponding to the interaction model (different from the real robot)

Idea

We control a virtual robot architecture corresponding to the interaction model (different from the real robot)

Usual encoder-based control

 $\mathbf{q} \Rightarrow \mathbf{x} \; (\mathbf{q}: \; \text{motor encoder measurements})$

Idea

We control a virtual robot architecture corresponding to the interaction model (different from the real robot)

Leg-based visual servoing $\underline{u} \Rightarrow \mathbf{x} (\underline{u}: \text{ virtual actuator measurements})$

Leg-observation-based control

Gough-Stewart platform

• Real robot $\Rightarrow 6-U\underline{P}S$

Leg-observation-based control

Gough-Stewart platform

- Real robot $\Rightarrow 6-U\underline{P}S$
- Hidden (virtual) robot \Rightarrow 3–<u>U</u>PS (case of the minimal observation)

Leg-observation-based control

Gough-Stewart platform

- Real robot $\Rightarrow 6-U\underline{P}S$
- Hidden (virtual) robot \Rightarrow 3–<u>U</u>PS (case of the minimal observation)

Leg-observation-based control

Gough-Stewart platform

- Real robot $\Rightarrow 6-U\underline{P}S$
- Hidden (virtual) robot \Rightarrow 3–<u>U</u>PS (case of the minimal observation)

Generalisation to families of parallel robots

Planar robots: Example of the 3-RR robot

Generalisation to families of parallel robots

Spatial robots: Example of the Quattro

Generalisation to families of parallel robots

Experimental validation

Use of the hidden robot concept for analyzing the controllability **Class 1:** Robots which are uncontrollable with the observation of the leg directions

Use of the hidden robot concept for analyzing the controllability **Class 2:** Robots which are partially controllable (in their workspace) with the observation of the leg directions

Leg-based visual servoing of parallel robots

Use of the hidden robot concept for analyzing the controllability **Class 3:** Robots which are fully controllable (in their workspace) with the observation of the leg directions

Leg-based visual servoing of parallel robots

Use of the hidden robot concept for analyzing the controllability **Class 4:** Robots which are fully controllable (in their workspace) thanks to additional measurements

In this talk,

- I presented a tool named the "hidden robot concept" able to solve the determination of the singularity cases visual servoing based on the observation of geometric features
- we rigorously proved the conditions of singularity for *n* coplanar points and 3 lines
- we discussed about the generalization of the "hidden robot concept" to other case studies

The hidden robot concept

- a tangible visualization of the mapping between the observation space and the Cartesian space
- allowed to change the way we defined the problem (visual servoing community / mechanical engineering community ⇒ dual problems)

The hidden robot concept

- a tangible visualization of the mapping between the observation space and the Cartesian space
- allowed to change the way we defined the problem (visual servoing community / mechanical engineering community ⇒ dual problems)

Tools used here

- Easily extendable to the rigidity-based control theory
- But useful for you?

Singularity when using bearing measurements

Singularity when using bearing measurements

Singularity when using bearing measurements

Uniqueness? \Rightarrow up to 8 solutions

Adding more measurements? \Rightarrow Bad choice still leads to singularities

Concluding remarks

Students

36 of 36