How theory on parallel robot singularities was used in order to solve sensor-based control problems

$\leqslant_{2} \mathrm{~N}$
LABORATOIRE
des sciences
du numérique
DE NANTES

Sébastien Briot

Laboratoire des Sciences du Numérique de Nantes (LS2N)

IFAC WC 2017, July 9

Introduction

- Singularities appearing when observing image features (e.g. with a camera) $=$ a huge challenge in visual servoing

Introduction

- Singularities appearing when observing image features (e.g. with a camera) $=$ a huge challenge in visual servoing
- To the best of our knowledge, only known for three 3-D image points (singularity cylinder)
- Issue with singularities: interaction matrix cannot be inverted anymore $=$ loss of controllability

Introduction

In order to avoid singularities
Increased number of image features (redundancy):

- Pb of local minima
- Proof that there is no singularity?

Determining the singularity cases stays an open problem

Introduction

Recently, the "Hidden Robot Concept"

 was developped- A tool made first for analyzing the singularities in visual servoing dedicated to PKMs
- Basic idea \Rightarrow Interaction matrix \equiv Inv. Jacobian matrix of a virtual PKM

Introduction

Recently, the "Hidden Robot Concept"

 was developped- A tool made first for analyzing the singularities in visual servoing dedicated to PKMs
- Basic idea \Rightarrow Interaction matrix \equiv Inv.
 Jacobian matrix of a virtual PKM

For instance, when observing the leg directions of the GS platform

- Real robot $=6-U \underline{P S}$

Introduction

Recently, the "Hidden Robot Concept"

 was developped- A tool made first for analyzing the singularities in visual servoing dedicated to PKMs
- Basic idea \Rightarrow Interaction matrix \equiv Inv.
 Jacobian matrix of a virtual PKM

For instance, when observing the leg directions of the GS platform

- Real robot $=6-U \underline{P S}$
- Virtual robot $=6-\underline{U} P S$

Introduction

Here
We show how we used the hidden robot concept in order to solve, for the first time, the singularity in

1. the observation of n image points $(n \geq 3)$
2. the observation of three lines
3. the leg-based visual servoing of parallel robots

Observation of an image point

A UPS kinematic chain which allows for the same motion of the point M_{i}

Observation of three image points

Observation of three image points

A 3-U्UPS robot which is the virtual robot architecture with its inverse kinematic Jacobian matrix similar to the interaction matrix

$$
\dot{\mathbf{s}}=\mathbf{L} \boldsymbol{\tau} / / \dot{\mathbf{q}}=\mathbf{J}_{i n v} \boldsymbol{\tau}
$$

P3P

P3P

P3P

[Tischler et al., 1998]

P3P

[Tischler et al., 1998]

P3P

[Tischler et al., 1998]

Singularities

Thanks to the hidden robot analogy

Singularities of the interaction matrix $=$ singularities of the virtual parallel robot

Singularities of parallel robots

Can be studied by using several (complementary) tools

- Screw Theory [Merlet 2006], Grassmann geometry [Merlet 2006], Grassmann-Cayley algebra [Ben-Horin and Shoham, 2006]

Singularities

Thanks to the hidden robot analogy

Singularities of the interaction matrix $=$ singularities of the virtual parallel robot

Singularities of parallel robots

Can be studied by using several (complementary) tools

- Screw Theory [Merlet 2006], Grassmann geometry [Merlet 2006], Grassmann-Cayley algebra [Ben-Horin and Shoham, 2006]

In our case (3 points), it can be proven that
The planes $\mathcal{P}_{i}(i=1,2,3)$ and \mathcal{P}_{4} (containing all 3-D points) have a non-null intersection

Singularities when observing 3 points

Singularities when observing n points $(n>3)$

Possible if and only if

- All singularity cylinders associated with any subset of 3 points have a common intersection
- AND all kernels of the interaction matrices are identical

After (more complex) mathematical derivations, we proved that The conditions of singularity when n coplanar points are observed only appear if and only if all 3-D points and the optical center are located on the same circle

Singularities when observing n points $(n>3)$

Simulations

Simulations

Observation of an image line

Observation of an image line

\mathcal{L}_{i} ??

Observation of an image line

$\mathcal{L}_{i} ? ?$

Observation of an image line

Observation of an image line

\mathcal{L}_{i} ??

Observation of an image line

A $\underline{U} P R C$ kinematic chain which allows for the same motion of the line \mathcal{L}_{i}

Observation of three image lines

Observation of three image lines

A 3- $\underline{U} P R C$ robot which is the virtual robot architecture with its inverse kinematic Jacobian matrix similar to the interaction matrix

$$
\dot{\mathbf{s}}=\mathbf{L} \boldsymbol{\tau} / / \dot{\mathbf{q}}=\mathbf{J}_{i n v} \boldsymbol{\tau}
$$

Singularities

Thanks to the hidden robot analogy

Singularities of the interaction matrix $=$ singularities of the virtual parallel robot

Singularities of parallel robots

Can be studied by using several (complementary) tools

- Screw Theory [Merlet 2006], Grassmann geometry [Merlet 2006], Grassmann-Cayley algebra [Ben-Horin and Shoham, 2006]

Singularities

Thanks to the hidden robot analogy

Singularities of the interaction matrix $=$ singularities of the virtual parallel robot

Singularities of parallel robots

Can be studied by using several (complementary) tools

- Screw Theory [Merlet 2006], Grassmann geometry [Merlet 2006], Grassmann-Cayley algebra [Ben-Horin and Shoham, 2006]

In our case (3 lines), singu. cond. iff
$f_{1}=\mathbf{f}_{11}^{T}\left(\mathbf{f}_{21} \times \mathbf{f}_{31}\right)=0$ or
$f_{2}=\mathbf{m}_{12}^{T}\left(\mathbf{m}_{22} \times \mathbf{m}_{32}\right)=0$
where $\boldsymbol{\xi}_{i j}=\left[\mathbf{f}_{i j}^{T} \mathbf{m}_{i j}^{T}\right]^{T}$

Singularities

In order to simplify the problem

- Consider the "zero" platform orientation
- General case obtained by a simple rotation

$$
\left[\begin{array}{lll}
X & Y & Z
\end{array}\right]^{T}=\mathcal{R}\left[\begin{array}{lll}
X^{\prime} & Y^{\prime} & Z^{\prime} \tag{1}
\end{array}\right]^{T}
$$

where
X, Y and Z : position of the origin of the object frame \mathcal{F}_{b} in the camera frame when considering the "zero" platform orientation X^{\prime}, Y^{\prime} and Z^{\prime} : position of the origin of the object frame for the considered "non-zero" platform orientation \mathcal{R} the rotation matrix between the two cases

Three coplanar lines with no common intersection point

$f_{1}=0 \Leftrightarrow Z=0 \Rightarrow$ Lines + optical center in the same plane
$f_{2}=0 \Leftrightarrow Z\left(X^{2}+Y^{2}-\rho^{2}\right)=0 \Rightarrow$ Singularity cylinder!

Three coplanar lines with a common intersection point

$f_{1}=0 \Rightarrow$ Singular for any object configuration $f_{2}=0 \Leftrightarrow Z\left(X^{2}+Y^{2}\right)=0$
\Rightarrow Camera center O lies on the line which passes through Q and which is perpendicular to all vectors \mathbf{U}_{i}

Three lines in space with a common intersection point

$$
\begin{gather*}
\overrightarrow{O Q}=[X Y Z]^{T}, \mathbf{U}_{1}=\left[\begin{array}{lll}
10 & 0
\end{array}\right]^{T}, \\
\mathbf{U}_{2}=[a b 0]^{T}, \mathbf{U}_{3}=[c d e]^{T} \tag{4}\\
f_{1}=0 \Rightarrow \text { For any object configuration }^{f_{2}=} 0 \Leftrightarrow b\left(a d e Y^{3}+\left(\left(-a d^{2}+b c d+a e^{2}\right) Z\right.\right. \\
+(a c-b d) e X) Y^{2}-e\left(b c X^{2}+(a d-b c) Z^{2}\right. \\
+2 b e X Z) Y+\left(\left(-a d^{2}+b c d-a e^{2}\right) X^{2} Z\right. \\
\left.\left.+(b d+a c) e X Z^{2}\right)\right)=0
\end{gather*}
$$

\Rightarrow The origin of the body frame belongs to a cubic surface parameterized by $f_{2}=0$.

Three orthogonal lines in space

$$
\begin{align*}
& f_{1}=0 \Leftrightarrow a X Y+b Y Z-c X Z-a b c=0 \tag{6}\\
& f_{2}=0 \Leftrightarrow a c X-a b Y+b c Z-X Y Z=0
\end{align*}
$$

\Rightarrow Expression f_{1} represents a quadric surface while expression f_{2} is a cubic surface

Three lines, two of them being parallel

$$
\begin{align*}
& f_{1}=0 \Leftrightarrow Z(d Z-e Y)=0 \\
& f_{2}=0 \Leftrightarrow Z\left(X\left(d^{2}+e^{2}\right)-c Y d-c Z e\right)=0 \tag{7}
\end{align*}
$$

- $Z=0$, which occur when the plane \mathcal{P} containing \mathcal{L}_{1} and $\mathcal{L} 2$ also contains the optical center,
- $e Y-d Z=0$ is the plane containing $\mathbf{U}_{1}, \mathbf{U}_{3}$ and the optical center,
- $X\left(d^{2}+e^{2}\right)-c d Y-c e Z=0$ is the plane containing $\left(\mathbf{U}_{1} \times \mathbf{U}_{3}\right)$, \mathbf{U}_{3} and the optical center.

Three general lines in space

Condition $f_{1}=0$ provides the expression of a quadric surface while $f_{2}=0$ leads to a cubic surface.

Example for three general lines in space

Simulation 1 (general case)

Simulation 1 (general case)

Simulation 2 (lines are perpendicular)

Simulation 2 (lines are perpendicular)

Leg-based visual servoing of parallel robots

Many approaches, among which

- Direct observation of the end-effector [Paccot et al., 2008]

Leg-based visual servoing of parallel robots

Many approaches, among which

- Leg observation [Özgür et al., 2011]

Leg-based visual servoing of parallel robots

Problems / Questions

- The observation of m leg directions $(m<n)$ among the n legs is enough,

Leg-based visual servoing of parallel robots

Problems / Questions

- The observation of m leg directions $(m<n)$ among the n legs is enough,
- End-effector convergence issues, even if all leg directions did converge

Leg-based visual servoing of parallel robots

Problems / Questions

- The observation of m leg directions $(m<n)$ among the n legs is enough,
- End-effector convergence issues, even if all leg directions did converge
- Existence of local minima

Leg-based visual servoing of parallel robots

Problems / Questions

- The observation of m leg directions $(m<n)$ among the n legs is enough,
- End-effector convergence issues, even if all leg directions did converge
- Existence of local minima
- Interaction model singularities

Leg-based visual servoing of parallel robots

Answers thanks to the hidden robot concept

Leg-based visual servoing of parallel robots

Answers thanks to the hidden robot concept

Idea
We control a virtual robot architecture corresponding to the interaction model (different from the real robot)

Leg-based visual servoing of parallel robots

Idea
We control a virtual robot architecture corresponding to the interaction model (different from the real robot)

Usual encoder-based control
$\mathbf{q} \Rightarrow \mathbf{x}$ (\mathbf{q} : motor encoder measurements)

Leg-based visual servoing of parallel robots

Idea
We control a virtual robot architecture corresponding to the interaction model (different from the real robot)

Leg-based visual servoing
$\underline{\mathbf{u}} \Rightarrow \mathbf{x}$ ($\underline{\mathbf{u}}$: virtual actuator measurements)

Leg-based visual servoing of parallel robots

Leg-observation-based control
Gough-Stewart platform

- Real robot $\Rightarrow 6$-UPS

Leg-based visual servoing of parallel robots

Leg-observation-based control
Gough-Stewart platform

- Real robot $\Rightarrow 6$-UPS
- Hidden (virtual) robot $\Rightarrow 3$ - $\underline{U P S}$ (case of the minimal observation)

Leg-based visual servoing of parallel robots

Leg-observation-based control
Gough-Stewart platform

- Real robot $\Rightarrow 6$-UPS
- Hidden (virtual) robot $\Rightarrow 3$ - $\underline{U P S}$ (case of the minimal observation)

Leg-based visual servoing of parallel robots

Leg-observation-based control
Gough-Stewart platform

- Real robot $\Rightarrow 6$-UPS
- Hidden (virtual) robot $\Rightarrow 3$ - $\underline{U P S}$ (case of the minimal observation)

Leg-based visual servoing of parallel robots

Generalisation to families of parallel robots
Planar robots: Example of the 3-RRR robot

Leg-based visual servoing of parallel robots

Generalisation to families of parallel robots
Spatial robots: Example of the Quattro

Leg-based visual servoing of parallel robots

Generalisation to families of parallel robots

Experimental validation

Leg-based visual servoing of parallel robots

Use of the hidden robot concept for analyzing the controllability
Class 1: Robots which are uncontrollable with the observation of the leg directions

A $\underline{P} R R R \underline{P}$ robot

Hidden robot:
a $P \underline{R} R \underline{R} P$ robot

Leg-based visual servoing of parallel robots

Use of the hidden robot concept for analyzing the controllability
Class 2: Robots which are partially controllable (in their workspace) with the observation of the leg directions

Leg-based visual servoing of parallel robots

Use of the hidden robot concept for analyzing the controllability
Class 3: Robots which are fully controllable (in their workspace) with the observation of the leg directions

Leg-based visual servoing of parallel robots

Use of the hidden robot concept for analyzing the controllability
Class 4: Robots which are fully controllable (in their workspace) thanks to additional measurements

A $\underline{P R R R} \underline{P}$ robot

Hidden robot:
a $\underline{P R R R P}$ robot

Conclusions

In this talk,

- I presented a tool named the "hidden robot concept" able to solve the determination of the singularity cases visual servoing based on the observation of geometric features
- we rigorously proved the conditions of singularity for n coplanar points and 3 lines
- we discussed about the generalization of the "hidden robot concept" to other case studies

Conclusions

The hidden robot concept

- a tangible visualization of the mapping between the observation space and the Cartesian space
- allowed to change the way we defined the problem (visual servoing community / mechanical engineering community \Rightarrow dual problems)

Conclusions

The hidden robot concept

- a tangible visualization of the mapping between the observation space and the Cartesian space
- allowed to change the way we defined the problem (visual servoing community / mechanical engineering community \Rightarrow dual problems)

Tools used here

- Easily extendable to the rigidity-based control theory
- But useful for you?

Conclusions

Singularity when using bearing measurements

Conclusions

Singularity when using bearing measurements

Conclusions

Singularity when using bearing measurements

Uniqueness? \Rightarrow up to 8 solutions
Adding more measurements? \Rightarrow Bad choice still leads to singularities

Concluding remarks

Colleagues

Students

