Exploiting Dynamics Singularities for Increasing the Robot Capabilities

Sébastien Briot

Researcher at CNRS

Laboratoire des Sciences du Numérique de Nantes (LS2N)

ICRA 2017, May 29 - June 3

Introduction ●000			
Intro	oduction		

Dynamics singularities

Appear when the system of wrenches applied on the mechanism under control loses its rank (locally) and is no more able to sustain the efforts applied on the mechanism

Introduction ●000			
Intro	oduction		

Dynamics singularities

Appear when the system of wrenches applied on the mechanism under control loses its rank (locally) and is no more able to sustain the efforts applied on the mechanism

Singularities of the dynamics appear in many systems

• UAVs, ROVs

Introduction ●000			
Intro	oduction		

Dynamics singularities

Appear when the system of wrenches applied on the mechanism under control loses its rank (locally) and is no more able to sustain the efforts applied on the mechanism

Singularities of the dynamics appear in many systems

- UAVs, ROVs
- Parallel robots

Type 2 (parallel) singularities of PKM

Probably, most important drawback of PKM \Rightarrow Type 2 singularities

Singularities of a 3-RRR planar robot [Bonev 2001]

Implementation

ing further Conc

Type 2 (parallel) singularities of PKM

Probably, most important drawback of PKM \Rightarrow Type 2 singularities

• Divide the workspace into different aspects

Implementation 000 Going further Cor 000000 00

Type 2 (parallel) singularities of PKM

Probably, most important drawback of PKM \Rightarrow Type 2 singularities

- Divide the workspace into different aspects
- In their neighborhood, loss of performance

Implementation

ng further Concl 2000 00

Type 2 (parallel) singularities of PKM

Probably, most important drawback of PKM \Rightarrow Type 2 singularities

- Divide the workspace into different aspects
- In their neighborhood, loss of performance

Many strategies for avoiding this drawback

Implementation

ng further Concl 0000 <u>00</u>

Type 2 (parallel) singularities of PKM

Probably, most important drawback of PKM \Rightarrow Type 2 singularities

- Divide the workspace into different aspects
- In their neighborhood, loss of performance

Many strategies for avoiding this drawback

- Optimal design
- Redundancy
- Design of robots with variable actuation modes
- Working mode or Assembly mode changing

Implementation

ng further Concl 0000 <u>00</u>

Type 2 (parallel) singularities of PKM

Probably, most important drawback of PKM \Rightarrow Type 2 singularities

- Divide the workspace into different aspects
- In their neighborhood, loss of performance

Many strategies for avoiding this drawback

- Optimal design
- Redundancy
- Design of robots with variable actuation modes
- Working mode or Assembly mode changing

Implementation

Going further C

Conclusion

Assembly mode changing (AMC)

Two main methods

Assembly mode changing (AMC)

Two main methods

• Non-singular AMC: Encircling a cusp point

ossing Type 2 singular 00000

Assembly mode changing (AMC)

Two main methods

- Non-singular AMC: Encircling a cusp point
- Singular AMC: Trajectories respecting a dynamic criterion

[Briot et al. MUBO 2015]

Assembly mode changing (AMC)

Two main methods

- Non-singular AMC: Encircling a cusp point
- Singular AMC: Trajectories respecting a dynamic criterion

[Briot et al. MUBO 2015]

Inverse dynamic model of PKM

A general parallel robot

6 of 31

ssing Type 2 singular 0000 Implementatio

Going further Con

Inverse dynamic model of *PKM*

A general parallel robot

Three sets of variables:

- active joint coordinates and velocities: \mathbf{q}_a and $\dot{\mathbf{q}}_a$
- passive joint coordinates and velocities: q_d and q_d
- platform coordinates and twist: **x** and ${}^{0}\mathbf{t}_{r}$ (!! $\dot{\mathbf{x}} \neq {}^{0}\mathbf{t}_{r}$)

Inverse dynamic model of *PKM*

Starting from the loop-closure equations [Briot and Khalil 2015]

$$\mathbf{h}_{r}(\mathbf{x},\mathbf{q}_{a}) = \mathbf{0} \Rightarrow \mathbf{A}_{r}^{0}\mathbf{t}_{r} + \mathbf{B}\dot{\mathbf{q}}_{a} = \mathbf{0}$$
(1)
$$\mathbf{h}_{t}(\mathbf{x},\mathbf{q}_{a},\mathbf{q}_{d}) = \mathbf{0} \Rightarrow \mathbf{J}_{t}^{0}\mathbf{t}_{r} - \mathbf{J}_{ta}\dot{\mathbf{q}}_{a} = \mathbf{J}_{td}\dot{\mathbf{q}}_{d}$$
(2)

Inverse dynamic model of *PKM*

Starting from the loop-closure equations [Briot and Khalil 2015]

$$\mathbf{h}_{r}(\mathbf{x},\mathbf{q}_{a}) = \mathbf{0} \Rightarrow \mathbf{A}_{r}^{0}\mathbf{t}_{r} + \mathbf{B}\dot{\mathbf{q}}_{a} = \mathbf{0}$$
(1)
$$\mathbf{h}_{t}(\mathbf{x},\mathbf{q}_{a},\mathbf{q}_{d}) = \mathbf{0} \Rightarrow \mathbf{J}_{t}^{0}\mathbf{t}_{r} - \mathbf{J}_{ta}\dot{\mathbf{q}}_{a} = \mathbf{J}_{td}\dot{\mathbf{q}}_{d}$$
(2)

And using the Lagrange equations with multipliers, we get

$$\tau = \tau_{ta} + \mathbf{J}^{T0} \mathbf{w}_r + \mathbf{J}_d^T \tau_{td}$$
(3)

• au is the $(n_a imes 1)$ vector of the real robot input efforts

•
$$\tau_{ta,td} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\mathbf{q}}_{a,d}} \right)^T - \left(\frac{\partial L}{\partial \mathbf{q}_{a,d}} \right)^T$$
 in which L is the Lagrangian

8 of 31

And

 ⁰w_r is the reaction wrench of the platform when considered freely moving

And

- ⁰w_r is the reaction wrench of the platform when considered freely moving
- the matrix $\mathbf{J} = -\mathbf{A}_r^{-1}\mathbf{B}$ is the robot kinematic Jacobian matrix

And

- ⁰w_r is the reaction wrench of the platform when considered freely moving
- the matrix $\mathbf{J} = -\mathbf{A}_r^{-1}\mathbf{B}$ is the robot kinematic Jacobian matrix
- and

$$\mathbf{J}_{d} = \mathbf{J}_{td}^{-1} (\mathbf{J}_{t} \mathbf{J} - \mathbf{J}_{ta})$$
(4)

And

- ⁰w_r is the reaction wrench of the platform when considered freely moving
- the matrix $\mathbf{J} = -\mathbf{A}_r^{-1}\mathbf{B}$ is the robot kinematic Jacobian matrix
- and

$$\mathbf{J}_{d} = \mathbf{J}_{td}^{-1} (\mathbf{J}_{t} \mathbf{J} - \mathbf{J}_{ta})$$
(4)

(5)

Thus

$$\tau = \tau_{ta} - \mathbf{B}^T \mathbf{A}_r^{-T0} \mathbf{w}_r - (\mathbf{B}^T \mathbf{A}_r^{-T} \mathbf{J}_t^T + \mathbf{J}_{ta}^T) \mathbf{J}_{td}^{-T} \tau_{td}$$

Implementation

oing further 00000

Conclusions

Degeneracy of the inverse dynamic model of PKM

As a result

10 of 31

Degeneracy of the IDM 0000●0000		

As a result

• if det(\mathbf{A}_r) \rightarrow 0, then $\tau \rightarrow \infty$

10 of 31

As a result

- if det(\mathbf{A}_r) ightarrow 0, then $\tau
 ightarrow \infty$
- if det(\mathbf{J}_{td}) ightarrow 0, then $\tau
 ightarrow \infty$

As a result

- if det(\mathbf{A}_r) ightarrow 0, then $au
 ightarrow \infty$
- if det(\mathbf{J}_{td}) ightarrow 0, then $\tau
 ightarrow \infty$

Thus

• if $det(\mathbf{A}_r) = 0$: Type 2 singularities!

As a result

- if det(\mathbf{A}_r) ightarrow 0, then $au
 ightarrow \infty$
- if det(${\bf J}_{\it td}) \rightarrow 0,$ then $\tau \rightarrow \infty$

Thus

- if $det(\mathbf{A}_r) = 0$: Type 2 singularities!
- if det(**J**_{td}) = 0: LPJTS singularities!

	Degeneracy of the IDM 00000●000			
Reca	alls			
W/hat	t is a Type 2 sir	ogularity?		

vinat is a Type 2 singularity!

	Degeneracy of the IDM 00000●000		
Reca	lls		

What is a Type 2 singularity?

- A degeneracy condition of the I/O first-order kinematic model

$$\mathbf{A}_r^0 \mathbf{t}_r + \mathbf{B} \dot{\mathbf{q}}_a = \mathbf{0} \tag{6}$$

	Degeneracy of the IDM 00000●000		
Reca	alls		

What is a Type 2 singularity?

• A degeneracy condition of the I/O first-order kinematic model

$$\mathbf{A}_r^0 \mathbf{t}_r + \mathbf{B} \dot{\mathbf{q}}_a = \mathbf{0} \tag{6}$$

• If \mathbf{A}_r is rank-deficient, a twist $\mathbf{t}_s \neq \mathbf{0}$ exists such that

$$\mathbf{A}_r \, \mathbf{t}_s = 0 \Leftrightarrow \mathbf{t}_s^T \, \mathbf{A}_r^T = 0 \tag{7}$$

	Degeneracy of the IDM 00000●000		
Reca	alls		

What is a Type 2 singularity?

A degeneracy condition of the I/O first-order kinematic model

$$\mathbf{A}_r^0 \mathbf{t}_r + \mathbf{B} \dot{\mathbf{q}}_a = \mathbf{0} \tag{6}$$

• If \mathbf{A}_r is rank-deficient, a twist $\mathbf{t}_s \neq \mathbf{0}$ exists such that

$$\mathbf{A}_r \, \mathbf{t}_s = \mathbf{0} \Leftrightarrow \mathbf{t}_s^T \, \mathbf{A}_r^T = \mathbf{0} \tag{7}$$

• t_s defines the gained motion inside the Type 2 singularity

	Degeneracy of the IDM 000000000		
Reca	alls		

Example of Type 2 singularity

	Degeneracy of the IDM 0000000●0			
Reca	alls			
What is a LPJTS singularity?				

13 of 31

	Degeneracy of the IDM 0000000●0		
-			

Recalls

What is a LPJTS singularity?

• LPJTS singularity = Leg passive joint twist system singularity

As a result

As a result

• if det(\mathbf{A}_r) ightarrow 0 (Type 2 sing.), then $\tau
ightarrow \infty$

Degeneracy of the inverse dynamic model of PKM

As a result

- if det(${\boldsymbol{\mathsf{A}}}_r)\to 0$ (Type 2 sing.), then $\tau\to\infty$
- if det($\mathbf{J}_{\mathit{td}}) \rightarrow 0$ (LPJTS sing.), then $\tau \rightarrow \infty$

Degeneracy of the inverse dynamic model of PKM

As a result

- if det(${f A}_r$) ightarrow 0 (Type 2 sing.), then $au
 ightarrow \infty$
- if det($\mathbf{J}_{\mathit{td}}) \rightarrow 0$ (LPJTS sing.), then $\tau \rightarrow \infty$
- \Rightarrow Impossible to cross Type 2 and LPJTS singularities

Degeneracy of the inverse dynamic model of PKM

As a result

- if det(${f A}_r$) ightarrow 0 (Type 2 sing.), then $au
 ightarrow \infty$
- if det($\mathbf{J}_{\mathit{td}}) \rightarrow 0$ (LPJTS sing.), then $\tau \rightarrow \infty$
- \Rightarrow Impossible to cross Type 2 and LPJTS singularities

BUT THAT IS NOT TRUE!

	Crossing Type 2 singularities		
	00000		

Starting from the Lagrange equations

$$\tau = \tau_{ta} - \mathbf{B}^{T} \lambda_{1} - \mathbf{J}_{ta}^{T} \lambda_{2}$$

$$^{0} \mathbf{w}_{r} = \mathbf{A}_{r}^{T} \lambda_{1} - \mathbf{J}_{t}^{T} \lambda_{2}$$

$$(8)$$

$$(9)$$

$$\tau_{td} = \mathbf{J}_{td}^{T} \lambda_{2}$$

$$(10)$$

Starting from the Lagrange equations

$$\begin{aligned} \mathbf{\tau} &= \mathbf{\tau}_{ta} - \mathbf{B}^T \boldsymbol{\lambda}_1 - \mathbf{J}_{ta}^T \boldsymbol{\lambda}_2 & (8) \\ {}^0 \mathbf{w}_r &= \mathbf{A}_r^T \boldsymbol{\lambda}_1 - \mathbf{J}_t^T \boldsymbol{\lambda}_2 & (9) \\ \mathbf{\tau}_{td} &= \mathbf{J}_{td}^T \boldsymbol{\lambda}_2 & (10) \end{aligned}$$

11)

Assuming that $det(\mathbf{J}_{td}) \neq 0$

$$\lambda_2 = \mathbf{J}_{td}^{-\mathcal{T}} \mathbf{ au}_{td}$$

	Crossing Type 2 singularities		
	00000		

Introducing (11) into (9)

$$\mathbf{A}_r^T \mathbf{\lambda}_1 = \mathbf{w}_p$$

where $\mathbf{w}_{p} = {}^{0}\mathbf{w}_{r} + \mathbf{J}_{t}^{T}\mathbf{J}_{td}^{-T}\boldsymbol{\tau}_{td}$

	Crossing Type 2 singularities		
	00000		

Introducing (11) into (9)

$$\mathbf{A}_{r}^{T}\mathbf{\lambda}_{1}=\mathbf{w}_{p}$$

where $\mathbf{w}_{p} = {}^{0}\mathbf{w}_{r} + \mathbf{J}_{t}^{T}\mathbf{J}_{td}^{-T}\mathbf{\tau}_{td}$

In a Type 2 singularity, $det(\mathbf{A}_r) = 0$

 $\Rightarrow \text{ impossibility to compute } \lambda_1!$

	Crossing Type 2 singularities		
	00000		

Introducing (11) into (9)

$$\mathbf{A}_r^T \mathbf{\lambda}_1 = \mathbf{w}_p$$

where $\mathbf{w}_{p} = {}^{0}\mathbf{w}_{r} + \mathbf{J}_{t}^{T}\mathbf{J}_{td}^{-T}\mathbf{\tau}_{td}$

- \Rightarrow impossibility to compute $\lambda_1!$
- A non null vector λ_1 corresponding to a null value of \mathbf{w}_p can exist.

	Crossing Type 2 singularities		
	00000		

Introducing (11) into (9)

$$\mathbf{A}_r^T \mathbf{\lambda}_1 = \mathbf{w}_p$$

(12)

where $\mathbf{w}_{p} = {}^{0}\mathbf{w}_{r} + \mathbf{J}_{t}^{T}\mathbf{J}_{td}^{-T}\mathbf{\tau}_{td}$

\Rightarrow impossibility to compute $\lambda_1!$

- A non null vector λ_1 corresponding to a null value of \mathbf{w}_p can exist.
- There is an infinity of solutions for λ_1 and that the robot platform is not in equilibrium.

eracy of the IDIVI 🛛 🕻	rossing Type 2 singularities		
	00000		

In a Type 2 singularity, $det(\mathbf{A}_r) = 0$

	Crossing Type 2 singularities		

- In a Type 2 singularity, $det(\mathbf{A}_r) = 0$
- If A_r is rank-deficient, a twist t_s exists such that

$$\mathbf{A}_r \, \mathbf{t}_s = \mathbf{0} \Leftrightarrow \mathbf{t}_s^T \, \mathbf{A}_r^T = \mathbf{0}$$

	Crossing Type 2 singularities 00●000		

- In a Type 2 singularity, $det(\mathbf{A}_r) = 0$
- If A_r is rank-deficient, a twist t_s exists such that

$$\mathbf{A}_r \, \mathbf{t}_s = \mathbf{0} \Leftrightarrow \mathbf{t}_s^T \, \mathbf{A}_r^T = \mathbf{0}$$

• Left-multiplying $\mathbf{A}_r^T \mathbf{\lambda}_1 = \mathbf{w}_p$ by \mathbf{t}_s^T

$$\mathbf{t}_s^T \mathbf{A}_r^T \boldsymbol{\lambda}_2 = \mathbf{0} \Rightarrow \mathbf{t}_s^T \mathbf{w}_p = \mathbf{0}$$

	Crossing Type 2 singularities		
	000000		

If $\mathbf{t}_s^T \mathbf{w}_p = 0$

	Crossing Type 2 singularities		
	000000		

If $\mathbf{t}_s^T \mathbf{w}_p = 0$

 We can cross Type 2 sing. if t^T_s w_p = 0 (no more degeneracy of the dynamic model!)

racy of the iDivi Cross	sing Type 2 singularities		
0000 000	000		

If $\mathbf{t}_s^T \mathbf{w}_p = 0$

- We can cross Type 2 sing. if t^T_s w_p = 0 (no more degeneracy of the dynamic model!)
- w_p is a function of x, ⁰t_r and ⁰t_r, so an optimal trajectory planning can be used to respect the criterion

racy of the iDivi Cross	sing Type 2 singularities		
0000 000	000		

If $\mathbf{t}_s^T \mathbf{w}_p = 0$

- We can cross Type 2 sing. if t^T_s w_p = 0 (no more degeneracy of the dynamic model!)
- \mathbf{w}_p is a function of \mathbf{x} , ${}^{0}\mathbf{t}_r$ and ${}^{0}\dot{\mathbf{t}}_r$, so an optimal trajectory planning can be used to respect the criterion
- In order to avoid infinite input efforts while crossing a Type 2 singularity, the sum of the wrenches applied on the platform by the legs, inertia/gravitational effects and external environment must be reciprocal to the uncontrollable motion of the platform inside the singularity (in other words, the power of these wrenches along the platform uncontrollable motion must be null).

	Crossing Type 2 singularities		
	000000		

An illustrative example

A five-bar mechanism in a general configuration

Static equilibre iff $\mathbf{w}_p = \mathbf{r}_1 + \mathbf{r}_2$

	Crossing Type 2 singularities		
	000000		

An illustrative example

In a Type 2 singularity

	Crossing Type 2 singularities		
	000000		

An illustrative example

In a Type 2 singularity

Problem if $\mathbf{t}_{s}^{T}\mathbf{w}_{p} \neq \mathbf{0}$

	Crossing Type 2 singularities		
	000000		

An illustrative example

In a Type 2 singularity

No problem if $\mathbf{t}_s^T \mathbf{w}_p = 0$

LPJTS singularities

Possibility also to cross LPJTS singularities

But not detailed here (see [Briot et al. 2016 MUBO])

	Implementation	
	000	

Trajectories through Type 2 singularities

Request to respect the criterion $\mathbf{t}_s^T \mathbf{w}_p = 0$ when the robot is in singularity

	Implementation	
	000	

Trajectories through Type 2 singularities

Request to respect the criterion $\mathbf{t}_s^T \mathbf{w}_p = 0$ when the robot is in singularity

Note that:

- t_s depends on the robot configuration
- \mathbf{w}_p depends on the robot configuration, velocity and acceleration

	Implementation	
	000	

Trajectories through Type 2 singularities

Request to respect the criterion $\mathbf{t}_s^T \mathbf{w}_p = 0$ when the robot is in singularity

	Implementation	
	000	

Trajectories through Type 2 singularities

Request to respect the criterion $\mathbf{t}_s^T \mathbf{w}_p = 0$ when the robot is in singularity

	Implementation	
	000	

Trajectories through Type 2 singularities

Request to respect the criterion $\mathbf{t}_s^T \mathbf{w}_p = 0$ when the robot is in singularity

Criterion is not respected

	Implementation	
	000	

Trajectories through Type 2 singularities

Request to respect the criterion $\mathbf{t}_s^T \mathbf{w}_p = 0$ when the robot is in singularity

TRAVERSEE Type 2

Criterion is respected

	Implementation	
	000	

Practical implementation

Robustness issues

Multimodel controller with adaptive term [Pagis et al. 2015]

	Implementation	
	000	

Practical implementation

Robustness issues

Multimodel controller with adaptive term [Pagis et al. 2015]

Introduction 0000 ossing Type 2 singularit

Implementation

Going further •00000

Conclusions

Design and control of a dynamically reconfigurable aerial parallel robot

Since 2012, large development of aerial robotics

- Serial robot mounted on the drone
- Aerial cable robot

Since 2012, large development of aerial robotics

- Serial robot mounted on the drone
- Aerial cable robot

Why aerial parallel robots?

- The efforts applied on the tool are spread over the drones, enhancing the total payload
- The absence of additional embedded motors to actuate the effector reduces the load of the system itself and maintain the energetic autonomy of the drones
- The large choice of leg topology leading to a variety of physical properties of potential interest
- To deport actuators from the end-effector (no wind perturbation during inspection)

Why dynamically reconfigurable aerial parallel robots? Reconfiguration for landing on the ground

Why dynamically reconfigurable aerial parallel robots? Reconfiguration for landing on the ground

Why dynamically reconfigurable aerial parallel robots? Reconfiguration for landing on the ground

Why dynamically reconfigurable aerial parallel robots? Reconfiguration for landing on the ground

Why dynamically reconfigurable aerial parallel robots?

Reconfiguration for accessing larger aeras in constrained environment

27 of 31

First results

- Definition of a controller for trajectory tracking
- Dynamics modelling and dynamics parameter identification
- First experimentations

		Going further 0000●0	

First results

To come

- Experimentations with the two drones
- Dynamic reconfigurability
- Feedback on design (6 DOF, simpler controller, etc.)

Exploiting dynamics singularities?

Very usefull for enlarging the workspace size of parallel robots

Exploiting dynamics singularities?

Very usefull for enlarging the workspace size of parallel robots

Crossing LPJTS singularities?

Possible, but not presented here

Exploiting dynamics singularities?

Very usefull for enlarging the workspace size of parallel robots

Crossing LPJTS singularities?

Possible, but not presented here

Can we just compute an optimal trajectory and everything will be ok?

Requires also a specific controller

Exploiting dynamics singularities?

Very usefull for enlarging the workspace size of parallel robots

Crossing LPJTS singularities?

Possible, but not presented here

Can we just compute an optimal trajectory and everything will be ok?

Requires also a specific controller

What you have shown is transposable to other mechanisms like drones

30 of 31

Colleagues

100000