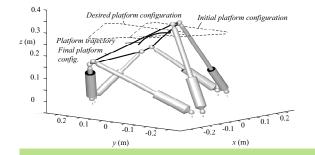
Advanced control of parallel robots and its extension to other research fields The concept of "Hidden Robot"

Speakers:

Dr. Sébastien BRIOT (IRCCyN Nantes, CNRS)

Prof. Philippe MARTINET (IRCCyN Nantes, École Centrale Nantes)


ICRA 2016, Stockholm, May 16, 2016

Issues / Questions

• the observation of *m* leg directions (*m* < *n*) among the *n* legs is enough,

Issues / Questions

- the observation of *m* leg directions (*m* < *n*) among the *n* legs is enough,
- convergence problems for the end-effector, even if there is convergence of the leg directions

Issues / Questions

- the observation of *m* leg directions (*m* < *n*) among the *n* legs is enough,
- convergence problems for the end-effector, even if there is convergence of the leg directions
- existence of local minima

Issues / Questions

- the observation of *m* leg directions (*m* < *n*) among the *n* legs is enough,
- convergence problems for the end-effector, even if there is convergence of the leg directions
- existence of local minima
- singularities of the model (between the leg space and the Cartesian space)

Leg-direction-based visual servoing

Possible to answer to these questions thanks to the concept of "Hidden Robot" $\ensuremath{\mathsf{Robot}}\xspace$

Possible to answer to these questions thanks to the concept of "Hidden Robot"

Basic idea

We must understand that, intrinsically, controlling the robot by observing its legs is equivalent to control another architecture

$$\mathbf{e} = \underline{\mathbf{u}} - \underline{\mathbf{u}}_{des} \tag{1}$$

$$\dot{\mathbf{e}} = -\lambda \mathbf{e} \Rightarrow \dot{\mathbf{u}} = -\lambda \mathbf{e}$$
 (2)

$$\boldsymbol{\tau} = -\lambda \mathbf{M}^{T+} \mathbf{e} \Rightarrow \dot{\mathbf{q}} = -\lambda \mathbf{J}_{inv} \mathbf{M}^{T+} \mathbf{e}$$
(3)

$$\dot{\mathbf{u}} = \mathbf{M}^T \boldsymbol{\tau} \tag{4}$$

(4)

Leg-direction-based visual servoing

Possible to answer to these questions thanks to the concept of "Hidden Robot"

Basic idea

We must understand that, intrinsically, controlling the robot by observing its legs is equivalent to control another architecture

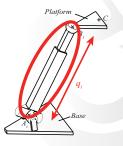
ι

$$\mathbf{e} = \underline{\mathbf{u}} - \underline{\mathbf{u}}_{des} \tag{1}$$

$$\dot{\mathbf{e}} = -\lambda \mathbf{e} \Rightarrow \dot{\mathbf{u}} = -\lambda \mathbf{e}$$
 (2)

$$\boldsymbol{\tau} = -\lambda \mathbf{M}^{T+} \mathbf{e} \Rightarrow \dot{\mathbf{q}} = -\lambda \mathbf{J}_{inv} \mathbf{M}^{T+} \mathbf{e}$$
(3)

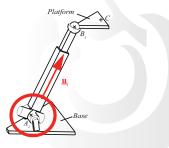
$$\mathbf{u} = \mathbf{M}^T \boldsymbol{\tau}$$


Basic idea

We must understand that, intrinsically, controlling the robot by observing its legs is equivalent to control another architecture

Usual encoder-based controller

 $\mathbf{q} \Rightarrow \mathbf{x}$ (\mathbf{q} : measurement corresponding to the real actuators)


Basic idea

We must understand that, intrinsically, controlling the robot by observing its legs is equivalent to control another architecture

Leg-direction-based visual controller

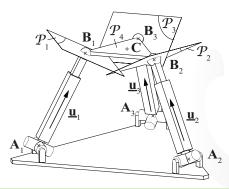
 $\underline{u} \Rightarrow x$ (\underline{u} : corresponding to the virtual actuators of the hidden robot)

Conclusion

Leg-direction-based visual servoing

Leg-direction-based visual controller

Gough-Stewart platform:

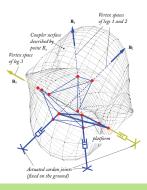

• Real robot \Rightarrow 6–U<u>P</u>S

Leg-direction-based visual servoing

Leg-direction-based visual controller

Gough-Stewart platform:

- Real robot $\Rightarrow 6-U\underline{P}S$
- Hidden (virtual) robot \Rightarrow 3–<u>U</u>PS (case of the minimal observation)

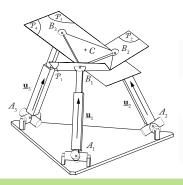


Leg-direction-based visual servoing

Leg-direction-based visual controller

Gough-Stewart platform:

- Real robot $\Rightarrow 6-U\underline{P}S$
- Hidden (virtual) robot $\Rightarrow 3-\underline{U}PS$ (case of the minimal observation)



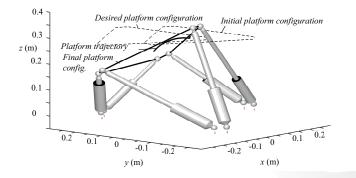
Leg-direction-based visual servoing

Leg-direction-based visual controller

Gough-Stewart platform:

- Real robot $\Rightarrow 6-U\underline{P}S$
- Hidden (virtual) robot \Rightarrow 3–<u>U</u>PS (case of the minimal observation)

Extension of the concept


Conclusion

Leg-direction-based visual servoing

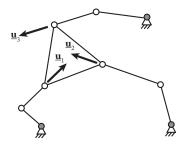
By considering this analogy

By considering this analogy

 \Rightarrow Final (non-desired) platform location \equiv a solution of the FGM of the 3–<u>U</u>PS robot in the same aspect as the initial configuration

By considering this analogy

 \Rightarrow Able to explain why the observation of *m* leg directions (*m* < *n*) among the *n* legs is enough

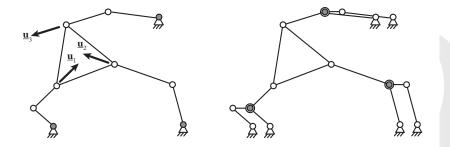

- \Rightarrow Find the local minima
- \Rightarrow Find the singularities of the model used in the visual servoing

Conclusion

Generalization of the concept and application to different robot classes

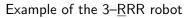
Planar robots

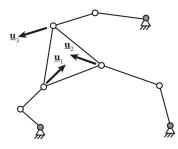
Example of the $3-\underline{R}RR$ robot

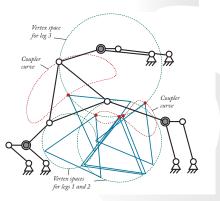


Conclusion

Generalization of the concept and application to different robot classes

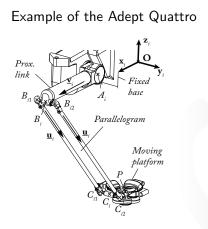

Planar robots


Example of the $3-\underline{R}RR$ robot

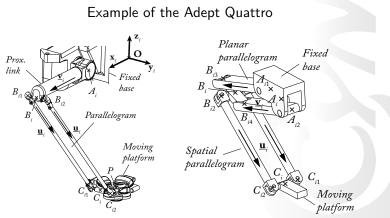


Generalization of the concept and application to different robot classes

Planar robots

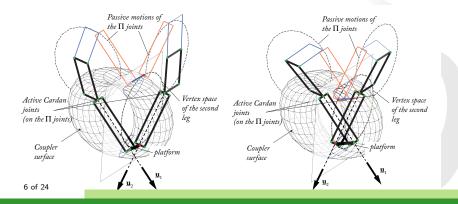


Conclusion


Generalization of the concept and application to different robot classes

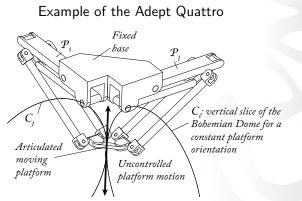
Spatial robots

Generalization of the concept and application to different robot classes


Spatial robots

Generalization of the concept and application to different robot classes

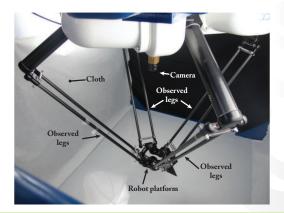
Spatial robots


Example of the Adept Quattro

Conclusion

Generalization of the concept and application to different robot classes

Spatial robots

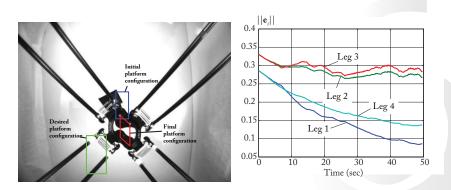


Extension of the concept

Conclusion

Generalization of the concept and application to different robot classes

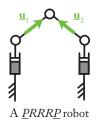
Experimental validation

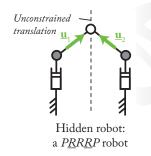


Extension of the concept

Conclusion

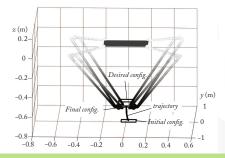
Generalization of the concept and application to different robot classes

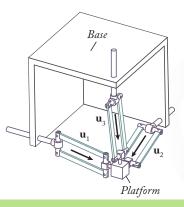

Experimental validation



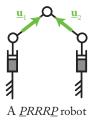
Definition of four main classes of robots for leg-direction-based controllers

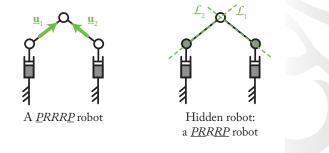
- **CI 1:** Robots which are not controllable
- CI 2: Robots which are partially controllable in their whole workspace
- CI 3: Robots which are fully controllable in their whole workspace
- CI 4: Robots which becomes controllable by using additional measurements


Class 1: Robots which are not controllable



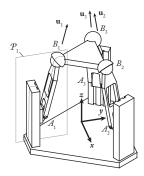
Class 2: Robots which are partially controllable in their whole workspace


 \Rightarrow because singularities of the hidden robot **always** divide the workspace into several aspects (unconnected areas)


Class 3: Robots which are fully controllable in their whole workspace

Class 4: Robots which becomes controllable by using additional measurements

Class 4: Robots which becomes controllable by using additional measurements

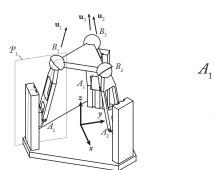


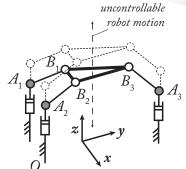
Extension of the concept

Conclusion

Case study

A 3-<u>PRS</u> robot

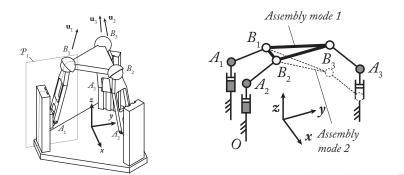




Extension of the concept

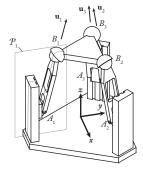
Case study

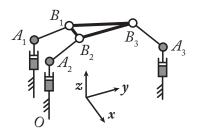
A 3-<u>PRS</u> robot



Extension of the concept

Case study

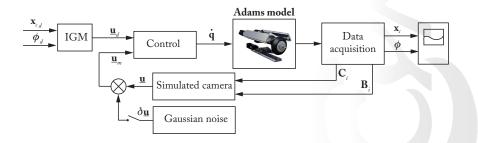

A 3-<u>PRS</u> robot



Extension of the concept

Case study

A 3-<u>PRS</u> robot


Controllability analysis

Extension of the concept

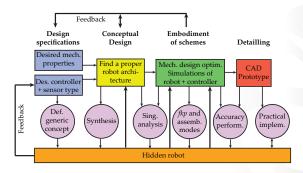
Case study

A 3-PRS robot

Results confirmed through simulations

Basic idea:

To modify the design of robots in order to improve their performance when controlled by using leg-based visual servoing


Basic idea:

To modify the design of robots in order to improve their performance when controlled by using leg-based visual servoing

Why?

- For robot of Class 2: in order to allow the full controllability in the whole workspace
- Even if the robot is fully controllable, avoid performance issues (accuracy) near singularities of hidden robot

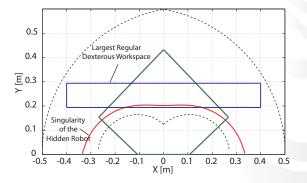
Modification of the French design process

Preliminary results: Optimization of a Five-bar mechanism Objective: minimize the robot footprint Constraints:

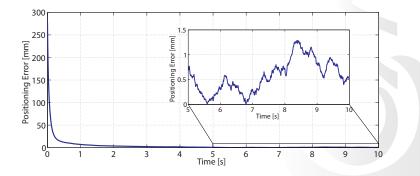
- no singularities of the real robot
- velocity and effort transmission performance
- accuracy performance < 0.5 mm

Preliminary results: Optimization of a Five-bar mechanism Objective: minimize the robot footprint Constraints:

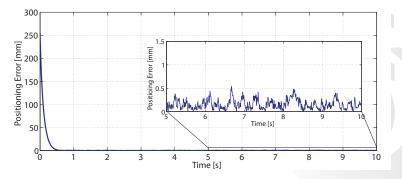
- no singularities of the real robot
- velocity and effort transmission performance
- accuracy performance < 0.5 mm

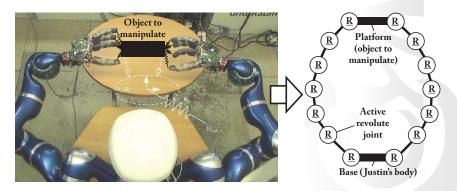

Accuracy performance depends on the controller

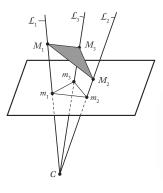
- on the encoder accuracy in encoder-based control
- on the camera accuracy in leg-based visual servoing

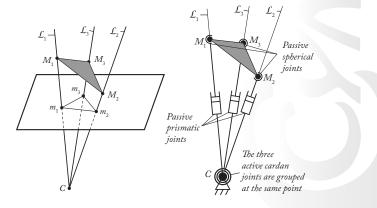

Table: Optimal design parameters and value of the objective function

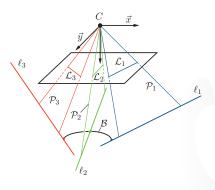
Encoder-based controller		Direction-based controller $(^{c}\underline{\mathbf{u}}_{i})$	
ℓ_0 [m]	0.1071	∥ ℓ ₀ [m]	0.1092
ℓ_1 [m]	0.2219	ℓ_1 [m]	0.2291
ℓ_2 [m]	0.3863	ℓ_2 [m]	0.3750
<i>y_c</i> [m]	N/A	<i>y_c</i> [m]	0.4340
<i>z_c</i> [m]	N/A	<i>z_c</i> [m]	0.5908
<i>A</i> [m ²]	0.1144	<i>A</i> [m ²]	0.1156

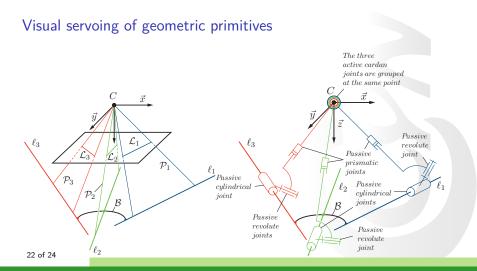

If we apply a direction-based controller on the robot optimized for encoder-based controller (Adams/Matlab co-simulation)


If we apply a direction-based controller on the robot optimized for encoder-based controller (Adams/Matlab co-simulation)


If we apply a direction-based controller on the robot optimized for leg-direction-based controller


Visual servoing of multi-arm robots


Visual servoing of geometric primitives



Visual servoing of geometric primitives

Visual servoing of geometric primitives

The hidden robot concept

Is a tool coming from the mechanical engineering community for solving problems of the visual servoing community Allowed first to understand, for leg-based controller of pkm, following issues:

The hidden robot concept

Is a tool coming from the mechanical engineering community for solving problems of the visual servoing community Allowed first to understand, for leg-based controller of pkm, following issues:

- the observation of *m* leg directions (*m* < *n*) among the *n* legs is enough,
- convergence problems for the end-effector, even if there is convergence of the leg directions
- singularities of the controller model

Controllability analysis

Extension of the concept

Conclusion

The hidden robot concept

Was generalized and applied to

Extension of the concept

The hidden robot concept

Was generalized and applied to

- different pkm families,
- for certifying the controllability analysis

Extension of the concept

The hidden robot concept

Was generalized and applied to

- different pkm families,
- for certifying the controllability analysis

Is currently extended to

Extension of the concept

The hidden robot concept

Was generalized and applied to

- different pkm families,
- for certifying the controllability analysis

Is currently extended to

- for control-based design of robots
- for controllability analysis of more generic controllers (not dedicated to parallel robots)