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Introduction
Eco-design in Robotics

Interest?

stock : 1 500 000 stock : 1 000 000 000

But
• Sales of robots increase by 20 % per year
• Political context: lowering by 40 % the GG emitted and by 27 %
our electrical cons. for 2030 in EU

• Lowering the electrical invoice / “Green washing”
• Why impacting the environment if we can do differently?
2 of 39
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Introduction
Factors of environmental impact for an industrial robot (process
disreg.)

Baie de puissance Interface (composants)

Chassis (matériaux,
peintures, etc.)

Corps (matériaux,
peintures, etc.)Moteurs + 

capteurs
(pertes éner-
gétiques, mat.
polluants, etc.)

(pertes énergétiques, 
matériaux polluants, etc.)
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Introduction
A few data
Study made on a Kuka KR270 achieved by Fizians Env. – Do not
take into account the achievement of the electrical cabinet
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Introduction
Eco-design in Robotics
Two main directions for improvements (excepting process)

• Decrease of the electrical consumption (99 % of the actual
research works)
Eco-design?! (not necessarily guided by this concept)
◦ Re design (robot, electrical cabinet, robot cell, etc.)
◦ Motion planning
◦ New types of actuators
◦ Series of robots Eco-Bot

• Decrease of the use of impacting materials
◦ Lightweight robots
◦ Design by using materials with low environmental impacts
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Introduction
Eco-design in Robotics
Two main directions for improvements (excepting process)

• Decrease of the electrical consumption (99 % of the actual
research works)
Eco-design?! (not necessarily guided by this concept)
◦ Re design (robot, electrical cabinet, robot cell, etc.)
◦ Motion planning
◦ New types of actuators
◦ Series of robots Eco-Bot

• Decrease of the use of impacting materials
◦ Lightweight robots
◦ Design by using materials with low environmental impacts
⇒ Project RobEcolo

5 of 39



Introduction Objectives of RobEcolo Material Elastic modeling Optimal design Prototype Conclusions

Environmental impact of several materials
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Ratio stiffness / mass of several materials
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Choice of the material

Bio-sourced materials
+ low environmental impact
+ good ratio stiffness-to-mass
+ widely used in the past (XIXth

century, planes up to WW2, ...)
– dispersion of mechanical properties
– non-isotropic materials
– variability of the dimension with
the change of humidity

– durability of certain composites
– aspect “old-fashioned”

Already some robots made of wood
Few of them are eco-designed
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Eco-design or “Not eco-design” ?
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Not eco-design!
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Eco-design or “Not eco-design” ?

Are we able to achieve an accurate and stiff robot made of
bio-sourced materials? (five-bar mechanism)
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Methodology adopted in RobEcolo

LS2N + ESB

243 k€

1

2

3
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Choice of the material
Which type of wood?
• Raw wood
• Treated raw wood
• Ply wood
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Choice of the material
Which type of wood?
• Raw wood
• Treated raw wood
• Ply wood

Choice of Accoya
• Acetylated wood: treatment but no
pb of end-of-life

• Good dimensional stability
• Two different species: beech
(hardwood) and pine (softwood)

• Mechanical properties not
well-known

Bridge, Accoya, ply wood 

Sneek, The Netherlands
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Accoya properties
Characterization of
• Stiffness properties (3 Young’s
moduli, 6 Poisson ratios!!)

• Density properties
• Dilatation (humidity +
temperature)
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Accoya properties
Characterization of
• Stiffness properties (3 Young’s
moduli, 6 Poisson ratios!!)

• Density properties
• Dilatation (humidity +
temperature)

⇒ Accoya is a good choice for our
purpose

1

2
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Choice of the model
Compromise between
• Accuracy
• Simplicity
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Choice of the model
Compromise between
• Accuracy
• Simplicity
⇒ Bernoulli model for beams and
MSA

First mockups in order to validate
the models
⇒ Problem (both for deformations
and frequencies)
Why??
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Choice of the model
After a time-consuming
investigation
⇒ Considerable loss of stiffness due to
the holes in wood for joint insertion
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Choice of the model
After a time-consuming
investigation
⇒ Considerable loss of stiffness due to
the holes in wood for joint insertion

Correction of the material
parameters
• Weighting of the material moduli
• Definition of a law of evolution
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Work is still under progress (almost finished)
The results shown here are a brief
summary of what we did
Wood properties are dispersed
• Selection of 8 links with 8 different
Young’s moduli all along the
dispersion

• Experiments (deformations and
natural frequencies)
◦ for a 2R serial robot (4 robot

configs.)
◦ for a five-bar parallel robot (5 robot

configs.)
• Comparison with a model of the
dispersion of the deformations and
natural frequencies for the robot
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Preliminary results shown in L. Kaci, C. Boudaud, S.

Briot, P. Martinet, “Elastostatic Modelling of a

Wooden Parallel Robot,” Proceedings of the 7th

IFToMM International Workshop on Computational

Kinematics (CK2017), May 22-24, 2017

Futuroscope-Poitiers, France.
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Design specifications
Data
• Positioning accuracy of 500 µm
• Deformations lower than of 500 µm under a load of 10 N along z ,
100 N along x and y

• For a five-bar mechanism (planar robot with 2 dof)
• With a workspace of 800 mm × 200 mm
• Performance must be guaranteed in this workspace

Strategy

• For dealing with variation of the wood parameters (how to ensure
a threshold for max. deformations) ⇒ Robust design

• For dealing with variation of the wood dimension (how to ensure a
threshold for max. accuracy) ⇒ Sensor-based control (visual
servoing)
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Issues with visual servoing
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Issues with visual servoing
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Optimal design process
Design of an Industrial Wooden Robot

Control-based

Design

Reliable Topology

Op!misa!on

Dimensions of the 

Robot Links

Shape of the Robot 

Links

Reach the desired accuracy and s!ffness performances
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Control-based design
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subject to `WL ≥ `W0

hWL ≥ hW0
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Control-based design
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Results

Links Lengths
l0 [m] 0.125
l1 [m] 0.280
l2 [m] 0.400

Pos/Ori Camera 3 Camera 4
xc [m] 0.010 0.020
yc [m] 0.500 0.100
zc [m] 0.750 0.100
rot2(x) [rad] π π
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Reliable topology optimization

Link shape optimization
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Reliable topology optimization

Problem statement
min f (x) subject to x ∈ [−1, 1]n, g(x) ≤ 0, h(x) = 0 (1)

• Decision variables: xi density of i th elements
(in fact ρij ≡ j th element of the i th body)

• f , g and h: performance indices or structure constraints

x
0

y
0

z
0

O
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x
i

y
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z
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O
i

M
ij

m
ij

Body i

Problem specificities
• Highly nonlinear
• Large number of variables
• Evaluation of function and gradients
expensive
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Performance criteria

Example of technology-oriented performance criteria
• grouped inertia terms (robot mass, grouped inertia of links) ⇒
linear functions

• actuator maximal / RMS torques, energy consumption ⇒ linear
functions, but depend on the trajectory

• robot static deformations ⇒ depend on the trajectory
• natural frequencies ⇒ direct link with the controller performance
(cutoff frequency), and with the mechanical performance. Depend
on the trajectory

Amplitude of vibrations is disregarded because it can be managed
through advanced controllers
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Performance criteria

Elastic performance
High computational cost
⇒ We propose to use model reduction techniques applied to robot
links in order to decrease the computational cost
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Problem formulation
Modeling of the linkage elastic behavior
Modified Finite Element model:
• Meshing
• The presence or absence of an element ij parameterized with a
material density variable ρij ∈ [0 1]

• Solid Isotropic Material with Penalization (SIMP, [Bendsoe and
Sigmund 1999])

Eij = Emin + ρp
ij(E0 − Emin), with ρij ∈ [0, 1] (2)

• Elementary stiffness matrix

Kij = EijK(0)
ij =

(
Emin + ρp

ij(E0 − Emin)
)
K(0)

ij (3)
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Problem formulation
Modeling of the linkage elastic behavior
• Elementary mass matrix

Mij = ρijM0
ij (4)

• Use standard techniques for assembling mass and stiffness
matrices:
◦ for each link
◦ for the linkage

• Compute the performance (deformations and natural frequencies)
• TO algorithms needs the performance AND their derivatives wrt
the decision variables!

• Speed up the computation by using model reduction techniques
[Craig and Bampton, 1968]
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Problem formulation
Recall: Bienaymé-Tchebichev theorem

P [|‖ue‖ − E (‖ue‖)| ≥ kσ(‖ue‖)] ≤
1
k2 (5)

where
• E (.): expectation operator
• σ(.): standard deviation operator
• k: a positive real
• ue : deformation vector at given nodes, for a fixed nodal loading f

Criterion used for dealing with reliability of performance

E (‖ue‖) + kσ(‖ue‖) ≤ umax (6)
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Problem formulation
Skipping the details
Approximate formulas for E (‖ue‖) and σ(‖ue‖) (and their
derivatives) are provided in

Alireza Asadpoure, Mazdak Tootkaboni, James K. Guest, “Robust
topology optimization of structures with uncertainties in stiffness –
Application to truss structures,” Computers and Structures 89 (2011)
1131–1141.

⇒ Valuable when the variation of the parameters is lower than 15 %
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Optimal design of a five-bar mechanism

Optimization problem
• objective: to minimize the actuator torques RMS for any trajectory
• constraints:
◦ to ensure that δC < δmax = 0.5 mm under f1 = [0 N 100 N 1 Nm]T

and f2 = [100 N 0 N − 1 Nm]T
◦ δC = E (‖ue‖) + kσ(‖ue‖)
wherever in the dextrous workspace (discretized with 231 points).

min
ρ

F = τ21(T ∗)
under g1 = (δ2C (f1,q∗)− δ2max)/δ2max ≤ 0

g2 = (θ2C (f1,q∗)− θ2max)/θ2max ≤ 0
g3 = (δ2C (f2,q∗)− δ2max)/δ2max ≤ 0
g4 = (θ2C (f2,q∗)− θ2max)/θ2max ≤ 0

(7)
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Optimal design of a five-bar mechanism

Optimization problem
We developed a method for the selection of the optimal test
trajectories and configurations in:
S. Briot and A. Goldsztejn, “Topology Optimization of Industrial
Robots: Application to a Five-bar Mechanism,” Mechanism and
Machine Theory, 2018, Vol. 120, pp. 30-56.
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Initial link design

Finite elements
• steel: E0 = 12.772 GPa, ν = 0.3, cv = 0.15
• 24132 elements for the proximal links, 22608 elements for the
distal links of dimension 1× 1 mm (planar elements)

• thickness of 5 cm
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(a) Design of the proximal links: initial
design domain

(b) Design of the distal links: initial
design domain

(c) Design of the proximal links: final
design

(d) Design of the distal links: final de-
sign

Figure: Evolution of the design of the five-bar links: the links are shown in
gray-scale (black elements correspond to ρi = 1, white elements to ρi = 0,
and gray elements to 0 < ρi < 1)
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CAD
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CAD
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CAD
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CAD

Video
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Prototype
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Conclusions
• Objectives of RobEcolo:
◦ how to design robots with low environmental impact by using

bio-sourced materials
◦ how to make them accurate and stiff

• An integrated approach
◦ Sensor-based control
◦ Optimal design

• control-based design
• robust design

• A multidisciplinary project
◦ Modeling of wood for robotics
◦ Wood machining!!

• A lot of experimental work to be done now
◦ Robot commissionning
◦ Implementation of controllers
◦ Characterization of the robot properties
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