Improving the Dynamics Performance of Fast Robot Manipulators

Own results and future challenges

Sébastien BRIOT

Chargé de recherche CNRS, HDR

Institut de Recherche en Communications et Cybernétique de Nantes

June 28, 2016

Fast Robot Manipulators?

Fast Robot Manipulators?

In the large majority \Rightarrow Parallel Robots

Fast Robot Manipulators?

In the large majority \Rightarrow Parallel Robots

Most of my work is on parallel robots (but not restricted to!)

Why parallel robots?

Known advantages

- high payload-to-weight ratio
- high intrinsic stiffness
- large number of architectures (versatility)
- high acceleration capacities

Why parallel robots?

Known advantages

- high payload-to-weight ratio
- high intrinsic stiffness
- large number of architectures (versatility)
- high acceleration capacities

Why parallel robots?

Known advantages

- high payload-to-weight ratio
- high intrinsic stiffness
- large number of architectures (versatility)
- high acceleration capacities

No concurrents Fastest robots

Introduction	
00000	

ynamics Degeneracy 0000000 ccurate & Fast Robots

Other Works & Next Challenge: 000000

Introduction

No concurrents Fastest robots

• Serial robot: Staübli's FAST Picker (about 10 G)

namics Degenerac

Accurate & Fast Robots

Other Works & Next Challenge: 000000

Introduction

No concurrents

Fastest robots

- Serial robot: Staübli's FAST Picker (about 10 G)
- Parallel Robot: R4 from LIRMM (> 100 G)

Main keywords in articles on parallel robots

Few works on dynamics of parallel robots

Is everything done?

Few works on dynamics of parallel robots

Is everything done?

DYNAMICS' NOT DEAD!

Few works on dynamics of parallel robots

Is everything done?

DYNAMICS' NOT DEAD!

- Dynamics vs. accuracy
- Dynamics singularities
- Vibrations
- Dynamics vs. energy consumption
- Dynamics vs. human safety
- Fast robots mounted on mobile, flying, swimming ... robots

Few works on dynamics of parallel robots

Is everything done?

DYNAMICS' NOT DEAD!

- Dynamics vs. accuracy
- Dynamics singularities
- Vibrations
- Dynamics vs. energy consumption
- Dynamics vs. human safety
- Fast robots mounted on mobile, flying, swimming ... robots

Outline of the presentation

- 1. Degeneracy conditions of the dynamic model of parallel robots
- 2. Design and control of high-speed and high-accuracy robots
- 3. Other works on dynamics
- 4. Future challenges and conclusions

Generic parallel robot

Inverse dynamic model

$$\begin{aligned} \boldsymbol{\tau} &= \mathbf{w}_b - \mathbf{B}_p^T \boldsymbol{\lambda} \\ \mathbf{A}_p^T \boldsymbol{\lambda} &= \mathbf{w}_p \end{aligned} \quad \text{with} \quad \mathbf{A}_p \dot{\mathbf{x}} + \mathbf{B}_p \dot{\mathbf{q}}_a = \mathbf{0} \Rightarrow \boldsymbol{\tau} = \mathbf{w}_b - \mathbf{B}_p^T \mathbf{A}_p^{-T} \mathbf{w}_p \quad (1) \end{aligned}$$

x: derivative of the platform configuration (NOT the platform twist) $\dot{\mathbf{q}}_a$: active joint velocities $\mathbf{w}_b = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\mathbf{q}}_a} \right) - \frac{\partial L}{\partial \mathbf{q}_a}$

$$\mathbf{w}_{p} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\mathbf{x}}} \right) - \frac{\partial L}{\partial \mathbf{x}}$$

Inverse dynamic model

$$\begin{aligned} \boldsymbol{\tau} &= \mathbf{w}_b - \mathbf{B}_p^T \boldsymbol{\lambda} \\ \mathbf{A}_p^T \boldsymbol{\lambda} &= \mathbf{w}_p \end{aligned} \quad \text{with} \quad \mathbf{A}_p \dot{\mathbf{x}} + \mathbf{B}_p \dot{\mathbf{q}}_a = \mathbf{0} \Rightarrow \boldsymbol{\tau} = \mathbf{w}_b - \mathbf{B}_p^T \mathbf{A}_p^{-T} \mathbf{w}_p \quad (1) \end{aligned}$$

 $\dot{\mathbf{x}}: \text{ derivative of the platform configuration (NOT the platform twist)}$ $\dot{\mathbf{q}}_{a}: \text{ active joint velocities}$ $\mathbf{w}_{b} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\mathbf{q}}_{a}} \right) - \frac{\partial L}{\partial \mathbf{q}_{a}}$ $\mathbf{w}_{p} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\mathbf{x}}} \right) - \frac{\partial L}{\partial \mathbf{x}}$

Thus,

The dynamic model is proportional to $\frac{1}{\det(\mathbf{A}_p)}$

Inverse dynamic model

$$\begin{aligned} \boldsymbol{\tau} &= \mathbf{w}_b - \mathbf{B}_p^T \boldsymbol{\lambda} \\ \mathbf{A}_p^T \boldsymbol{\lambda} &= \mathbf{w}_p \end{aligned} \quad \text{with} \quad \mathbf{A}_p \dot{\mathbf{x}} + \mathbf{B}_p \dot{\mathbf{q}}_a = \mathbf{0} \Rightarrow \boldsymbol{\tau} = \mathbf{w}_b - \mathbf{B}_p^T \mathbf{A}_p^{-T} \mathbf{w}_p \quad (1) \end{aligned}$$

 $\dot{\mathbf{x}}: \text{ derivative of the platform configuration (NOT the platform twist)}$ $\dot{\mathbf{q}}_{a}: \text{ active joint velocities}$ $\mathbf{w}_{b} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\mathbf{q}}_{a}} \right) - \frac{\partial L}{\partial \mathbf{q}_{a}}$ $\mathbf{w}_{p} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\mathbf{x}}} \right) - \frac{\partial L}{\partial \mathbf{x}}$

So, if det(\mathbf{A}_{ρ}) = 0, (Type 2 sing. [Gosselin & Angeles 1990])

- Near singularities, $au
 ightarrow \infty$
- Dynamic model degeneracy = Impossible to cross sing.

ccurate & Fast Robots

Other Works & Next Challenges

Collaborators

Why crossing Type 2 singularities is appealing?

Accurate & Fast Robots

Other Works & Next Challenges

Collaborators

Why crossing Type 2 singularities is appealing?

Inverse dynamic model

$$\boldsymbol{\tau} = \mathbf{w}_b - \mathbf{B}_p^T \mathbf{A}_p^{-T} \mathbf{w}_p \tag{2}$$

Contribution

Dynamics does not degenerate in Type 2 singularity iff

$$\mathbf{t}_{s}^{T}\mathbf{w}_{p}=0, \tag{3}$$

with
$$\mathbf{t}_s$$
 defined by $\mathbf{A}_p \mathbf{t}_s = \mathbf{0}$, (4)

Contribution

Dynamics does not degenerate in Type 2 singularity iff

$$\mathbf{t}_{s}^{T}\mathbf{w}_{p}=0, \qquad (2)$$

with
$$\mathbf{t}_s$$
 defined by $\mathbf{A}_p \mathbf{t}_s = \mathbf{0}$,

(3)

 \Rightarrow When the robot cross a Type 2 singularity, the wrenches applied on the platform (by the legs, the inertial effects, gravitation, external efforts) w_p must be reciprocal to the uncontrollable platform motion t_s

An illustrative example

In an arbitrary configuration

Equilibrium iff $\mathbf{w}_{p} = \mathbf{r}_{1} + \mathbf{r}_{2}$

An illustrative example

In singularity

$$\begin{split} \mathbf{w}_{p} &= \mathbf{r}_{1} + \mathbf{r}_{2} \text{ with} \\ \bullet & \mathbf{r}_{1} \times \mathbf{r}_{2} = \mathbf{0} \\ \bullet & \mathbf{t}_{s}^{T} \mathbf{r}_{1} = \mathbf{t}_{s}^{T} \mathbf{r}_{2} = 0 \text{ (} \mathbf{t}_{s} \text{ uncontrollable motion)} \end{split}$$

An illustrative example

In singularity

$$\begin{split} \mathbf{w}_{\rho} &= \mathbf{r}_{1} + \mathbf{r}_{2} \text{ with} \\ \bullet & \mathbf{r}_{1} \times \mathbf{r}_{2} = \mathbf{0} \\ \bullet & \mathbf{t}_{s}^{T} \mathbf{r}_{1} = \mathbf{t}_{s}^{T} \mathbf{r}_{2} = 0 \text{ (} \mathbf{t}_{s} \text{ uncontrollable motion)} \\ \textbf{Problem if } \mathbf{t}_{s}^{T} \mathbf{w}_{\rho} \neq \mathbf{0} \end{split}$$

ccurate & Fast Robots

Other Works & Next Challenges

Collaborators

Degeneracy of the dynamics in Type 2 singularities

An illustrative example In singularity

$$\begin{split} \mathbf{w}_{p} &= \mathbf{r}_{1} + \mathbf{r}_{2} \text{ with} \\ \bullet & \mathbf{r}_{1} \times \mathbf{r}_{2} = \mathbf{0} \\ \bullet & \mathbf{t}_{s}^{T} \mathbf{r}_{1} = \mathbf{t}_{s}^{T} \mathbf{r}_{2} = 0 \text{ (} \mathbf{t}_{s} \text{ uncontrollable motion)} \\ \textbf{No problem if } \mathbf{t}_{s}^{T} \mathbf{w}_{p} = 0 \end{split}$$

Trajectories through Type 2 singularities

Require to respect the criterion $\mathbf{t}_s^T \mathbf{w}_p = 0$ in singularity

Trajectories through Type 2 singularities Require to respect the criterion $\mathbf{t}_s^T \mathbf{w}_p = 0$ in singularity

Note that:

- \mathbf{t}_s depends on the robot configuration
- \mathbf{w}_p depends on the robot configuration, velocity and acceleration

Trajectories through Type 2 singularities Require to respect the criterion $\mathbf{t}_s^T \mathbf{w}_p = 0$ in singularity

Collaborato

Degeneracy of the dynamics in Type 2 singularities

Trajectories through Type 2 singularities Require to respect the criterion $\mathbf{t}_s^T \mathbf{w}_p = 0$ in singularity

Trajectories through Type 2 singularities Require to respect the criterion $\mathbf{t}_{s}^{T}\mathbf{w}_{p} = 0$ in singularity

Criterion is not respected

Trajectories through Type 2 singularities Require to respect the criterion $\mathbf{t}_{s}^{T}\mathbf{w}_{p} = 0$ in singularity

Criterion is respected

Robustness issues

Can be manage through a proper Computed Torque Controller (CTC) [Pagis et al 2015]

Robustness issues

Can be manage through a proper Computed Torque Controller (CTC) [Pagis et al 2015]

To develop it, we impose a trajectory with $\mathbf{w}_p = \mathbf{0}$ at singularity (respects $\mathbf{t}_s^T \mathbf{w}_p = 0$)

Robustness issues

Can be manage through a proper Computed Torque Controller (CTC) [Pagis et al 2015]

TRAVERSEE Type 2
Conclusions

• Definition of dynamic model degeneracy conditions...

- Definition of dynamic model degeneracy conditions...
- ... and of trajectories for avoiding this degeneracy

- Definition of dynamic model degeneracy conditions...
- ... and of trajectories for avoiding this degeneracy
- Definition of a dedicated controller (collaboration IFMA)

- Definition of dynamic model degeneracy conditions...
- ... and of trajectories for avoiding this degeneracy
- Definition of a dedicated controller (collaboration IFMA)
- Validation with several robots (planar: Five-bar mech. / spatial: PAMINSA)

- Definition of dynamic model degeneracy conditions...
- ... and of trajectories for avoiding this degeneracy
- Definition of a dedicated controller (collaboration IFMA)
- Validation with several robots (planar: Five-bar mech. / spatial: PAMINSA)
- Work extended to flexible robots

- Definition of dynamic model degeneracy conditions...
- ... and of trajectories for avoiding this degeneracy
- Definition of a dedicated controller (collaboration IFMA)
- Validation with several robots (planar: Five-bar mech. / spatial: PAMINSA)
- Work extended to flexible robots
- Ongoing works: automation / certification

- Definition of dynamic model degeneracy conditions...
- ... and of trajectories for avoiding this degeneracy
- Definition of a dedicated controller (collaboration IFMA)
- Validation with several robots (planar: Five-bar mech. / spatial: PAMINSA)
- Work extended to flexible robots
- Ongoing works: automation / certification
- Future works: Constraint sing. crossing, CDPM

Design of a 2T robot for *pick-and-place* operations

Advantages:

- Intrinsic stiffness
- Smaller number of legs than the Par2

Design of a 2T robot for *pick-and-place* operations

Advantages:

- Intrinsic stiffness
- Smaller number of legs than the Par2

Drawbacks:

- Architecture complexity
- Singularities

Design of a 2T robot for *pick-and-place* operations

Advantages:

- Intrinsic stiffness
- Smaller number of legs than the Par2

Drawbacks:

- Architecture complexity
- Singularities

Work done in the scope of the French ANR project ARROW

Specifications

Type of motion	2T 1R	
Repeatability ϵ_{lim} in (xOz)	$20 \ \mu \mathrm{m}$	
Resolution r _{lim}	$2 \ \mu \mathrm{m}$	
Max. acceleration	20 G	
Cycle time	200 ms	
Path dimension	25 mm $ imes$ 300 mm $ imes$ 25 mm	
Regular workspace size	800 mm $ imes$ 100 mm	
Deformation $\delta_{t lim}$ under a force $\mathbf{f}_s = [0, 20, 0]$ N and a moment $\mathbf{m}_s = [1, 1, 1]$ N.m	[0.2, 0.2, 0.2] mm, [0.1, 0.1, 0.1] deg	
Max. payload (including the embedded motor)	1.5 kg	

Optimisation results

Introduction

ynamics Degenerac

Accurate & Fast Robots

Other Works & Next Challenges

IRSBot-2 prototype

Introduction

namics Degenerac

Accurate & Fast Robots

Other Works & Next Challenge: 000000

IRSBot-2 prototype

Repeatability performance

30 microns in the dexterous regular workspace

Accurate & Fast Robots

Other Works & Next Challenges

Collaborators

Design / Control of fast and accurate robots

Static deformations

Static deformations

120 microns in the dexterous regular workspace under a load of 20 N along y_0

Accurate & Fast Robots

Other Works & Next Challenges

Collaborators

Design / Control of fast and accurate robots

Natural frequencies

Natural frequencies

Calculées par CAO		Obtenues par sonnage	
Frequency	Displacement mode	Frequency	Displacement mode
45 Hz	Perp. to motion	$40{\pm}1~\text{Hz}$	Perp. to motion
53 Hz	Plane of motion	$40{\pm}1~\text{Hz}$	Plan of motion
60 Hz	Perp. to motion	$48{\pm}1~\text{Hz}$	Perp. to motion

Accurate & Fast Robots

Other Works & Next Challenges

Collaborators

Design / Control of fast and accurate robots

Dynamic performance

20 G of acceleration, 6 m/s

Dynamic performance

Tracking error divided by 20 between PID and CTC

What is not mentioned

• Singularity analysis

What is not mentioned

- Singularity analysis
- Modeling / Identification issues

What is not mentioned

- Singularity analysis
- Modeling / Identification issues

Ongoing work

Vibration control

What is not mentioned

- Singularity analysis
- Modeling / Identification issues

- Vibration control
- 3rd axis

What is not mentioned

- Singularity analysis
- Modeling / Identification issues

- Vibration control
- 3rd axis
- Improving the absolute accuracy

What is not mentioned

- Singularity analysis
- Modeling / Identification issues

- Vibration control
- 3rd axis
- Improving the absolute accuracy
 - \circ Mapping of error and use in control (< 100 microns)

What is not mentioned

- Singularity analysis
- Modeling / Identification issues

- Vibration control
- 3rd axis
- Improving the absolute accuracy
 - Mapping of error and use in control (< 100 microns)
 - Sensor-based control

What is not mentioned

- Singularity analysis
- Modeling / Identification issues

- Vibration control
- 3rd axis
- Improving the absolute accuracy
 - Mapping of error and use in control (< 100 microns)
 - Sensor-based control

Vision-based control of fast and accurate robots

Different possible approaches

• direct observation of the end-effector [Paccot et al., 2008]

Vision-based control of fast and accurate robots Different possible approaches

• observation of legs [Özgür et al., 2011]

Vision-based control of fast and accurate robots Different possible approaches

• observation of legs [Özgür et al., 2011]

Leg-direction-based visual servoing

Issues / Questions

• the observation of *m* leg directions (*m* < *n*) among the *n* legs is enough,

Leg-direction-based visual servoing

Issues / Questions

- the observation of *m* leg directions (*m* < *n*) among the *n* legs is enough,
- convergence problems for the end-effector, even if there is convergence of the leg directions

Leg-direction-based visual servoing

Issues / Questions

- the observation of *m* leg directions (*m* < *n*) among the *n* legs is enough,
- convergence problems for the end-effector, even if there is convergence of the leg directions
- existence of local minima
Issues / Questions

- the observation of *m* leg directions (*m* < *n*) among the *n* legs is enough,
- convergence problems for the end-effector, even if there is convergence of the leg directions
- existence of local minima
- singularities of the model (between the leg space and the Cartesian space)

Possible to answer to these questions thanks to the concept of "Hidden Robot"

Possible to answer to these questions thanks to the concept of "Hidden Robot"

Basic idea

We must understand that, intrinsically, controlling the robot by observing its legs is equivalent to control another architecture

$$\mathbf{e} = \underline{\mathbf{u}} - \underline{\mathbf{u}}_{des} \tag{4}$$

$$\dot{\mathbf{e}} = -\lambda \mathbf{e} \Rightarrow \dot{\mathbf{u}} = -\lambda \mathbf{e}$$
 (5)

$$\boldsymbol{\tau} = -\lambda \mathbf{M}^{\mathcal{T}} + \mathbf{e} \Rightarrow \dot{\mathbf{q}} = -\lambda \mathbf{J}_{inv} \mathbf{M}^{\mathcal{T}} + \mathbf{e}$$
(6)

$$\dot{\mathbf{u}} = \mathbf{M}^T \boldsymbol{\tau} \tag{7}$$

Possible to answer to these questions thanks to the concept of "Hidden Robot"

Basic idea

We must understand that, intrinsically, controlling the robot by observing its legs is equivalent to control another architecture

$$\mathbf{e} = \underline{\mathbf{u}} - \underline{\mathbf{u}}_{des} \tag{4}$$

$$\dot{\mathbf{e}} = -\lambda \mathbf{e} \Rightarrow \dot{\mathbf{u}} = -\lambda \mathbf{e}$$
 (5)

$$\boldsymbol{\tau} = -\lambda \mathbf{M}^{T+} \mathbf{e} \Rightarrow \dot{\mathbf{q}} = -\lambda \mathbf{J}_{inv} \mathbf{M}^{T+} \mathbf{e}$$
(6)

$$\underline{\dot{\mathbf{u}}} = \mathbf{M}^T \boldsymbol{\tau}$$

Basic idea

We must understand that, intrinsically, controlling the robot by observing its legs is equivalent to control another architecture

Usual encoder-based controller

 $\mathbf{q} \Rightarrow \mathbf{x}$ (\mathbf{q} : measurement corresponding to the real actuators)

Basic idea

We must understand that, intrinsically, controlling the robot by observing its legs is equivalent to control another architecture

Leg-direction-based visual controller

 $\underline{u} \Rightarrow x \; (\underline{u}: \text{ corresponding to the virtual actuators of the hidden robot})$

Leg-direction-based visual controller

Gough-Stewart platform:

• Real robot $\Rightarrow 6-U\underline{P}S$

Leg-direction-based visual controller

Gough-Stewart platform:

- Real robot $\Rightarrow 6-U\underline{P}S$
- Hidden (virtual) robot \Rightarrow 3–<u>U</u>PS (case of the minimal observation)

Leg-direction-based visual controller

Gough-Stewart platform:

- Real robot $\Rightarrow 6-U\underline{P}S$
- Hidden (virtual) robot $\Rightarrow 3-\underline{U}PS$ (case of the minimal observation)

Leg-direction-based visual controller

Gough-Stewart platform:

- Real robot $\Rightarrow 6-U\underline{P}S$
- Hidden (virtual) robot \Rightarrow 3–<u>U</u>PS (case of the minimal observation)

Accurate & Fast Robots

Other Works & Next Challenges

Collaborators

Leg-direction-based visual servoing

By considering this analogy

	Accurate & Fast Robots	
	000000000000000000000000000000000000000	

By considering this analogy

 \Rightarrow Final (non-desired) platform location \equiv a solution of the FGM of the 3–<u>U</u>PS robot in the same aspect as the initial configuration

By considering this analogy

 \Rightarrow Able to explain why the observation of *m* leg directions (*m* < *n*) among the *n* legs is enough

- \Rightarrow Find the local minima
- \Rightarrow Find the singularities of the model used in the visual servoing

Planar robots

Example of the $3-\underline{R}RR$ robot

Planar robots

Example of the $3-\underline{R}RR$ robot

Planar robots

Spatial robots

Spatial robots

Spatial robots

Example of the Adept Quattro

Spatial robots

Experimental validation

Experimental validation

Definition of four main classes of robots for leg-direction-based controllers

- CI 1: Robots which are not controllable
- CI 2: Robots which are partially controllable in their whole workspace
- CI 3: Robots which are fully controllable in their whole workspace
- CI 4: Robots which becomes controllable by using additional measurements

Class 1: Robots which are not controllable

Class 2: Robots which are partially controllable in their whole workspace

 \Rightarrow because singularities of the hidden robot **always** divide the workspace into several aspects (unconnected areas)

Class 3: Robots which are fully controllable in their whole workspace

Class 4: Robots which becomes controllable by using additional measurements

Class 4: Robots which becomes controllable by using additional measurements

Conclusions

• New "spatial" 2T robot architecture

Conclusions

- New "spatial" 2T robot architecture
- Optimal design methodology for fast and accurate robots

Conclusions

- New "spatial" 2T robot architecture
- Optimal design methodology for fast and accurate robots
- Improving the accuracy of high-speed robots

Conclusions

- New "spatial" 2T robot architecture
- Optimal design methodology for fast and accurate robots
- Improving the accuracy of high-speed robots
- Definition of a tool for understanding the mapping characteristics of some visual servoing

Use of the concept of hidden robot for the visual servoing of multi-arm robots

Use of the concept of hidden robot for the visual servoing of geometric primitives

Use of the concept of hidden robot for the visual servoing of geometric primitives

Use of the concept of hidden robot for the visual servoing of geometric primitives

Ongoing and future works

Use of the concept of hidden robot for the visual servoing of geometric primitives

Ongoing and future works

Use of the concept of hidden robot for control-based design

ntroduction Dynamics Degeneracy Accurate & Fast Robots Other Works & Next Challenges Collaborators

Summary of other past works

Identification of dynamic parameters

Methodologies for the identification of dynamic parameters

- including the driving gains
- for overactuated robots

Elastodynamic modelling

Systematic / automatic procedure for the symbolic computation of the elastodynamic model of parallel robots

Balancing techniques

- dynamics (by optimal design, by optimal motion planning, etc.)
- statics (for high-load carrying robots)

Design of robots for high-load carrying

New parallel robot families with decoupled motions between

- planar platform motions
- vertical platform translations

Design of robots for high-load carrying

New parallel robot families with decoupled motions between

- planar platform motions
- vertical platform translations

	Other Works & Next Challenges	
	00000	

Flying parallel robots

Interests:

- Sharing the load
- Rigid links vs cables \Rightarrow work also in compression (apply forces on the environment)

	Other Works & Next Challenges	
	00000	

Flying parallel robots

Keypoints:

- Management of overconstraint (relative motion between drones = 2 dof)
- Dynamic reconfiguration 37 of 42

	Other Works & Next Challenges	
	00000	

Flying parallel robots

PhD Thesis of Damien Six (2015 - xxxx)

Drastic energy consumption reduction of high-speed robots

TRAVERSEE Type 2

- High energy consumption
- No "relevant" solution

Drastic energy consumption reduction of high-speed robots

• A first step made in that direction via the use of springs

Drastic energy consumption reduction of high-speed robots

- A first step made in that direction via the use of springs
- But
 - "Big" issues of accuracy
 - $\circ~$ Just for few trajectories
 - $\,\circ\,$ Slow motions (cycle times > 10 sec)

	Other Works & Next Challenges	
	000000	

Drastic energy consumption reduction of high-speed robots PhD Thesis of Rafael Balderas Hill (2016 ??- xxxx)

Design of a lightweight fast manipulator mounted on drones for grasping of moving objects

TRAVERSEE Type 2

Design of a lightweight fast manipulator mounted on drones for grasping of moving objects

Do the same with a manipulator mounted on a drone

- Issues of energy consumption
- Issues of drone stability when the manipulator is moving (at high speed)
- Issues of drone payload capacity

Design of a lightweight fast manipulator mounted on drones for grasping of moving objects

Work both on

- \Rightarrow Novel actuation systems (small powerless actuators vs high acceleration)
- \Rightarrow Topological optimization of robots

Design of a lightweight fast manipulator mounted on drones for grasping of moving objects

ANR DOS-COM ?? (IRCCyN, Heudiasyc, Gipsa-lab)

Other next works

- Eco-design of robots
- Singularity analysis for generic sensor-based controllers
- Control-based design

	Other Works & Next Challenges 00000●	

Two messages to leave

• Dynamics' not dead! (Especially for the design of fast robot manipulators)

Two messages to leave

- Dynamics' not dead! (Especially for the design of fast robot manipulators)
- Mechanics' not dead!

Two messages to leave

- Dynamics' not dead! (Especially for the design of fast robot manipulators)
- Mechanics' not dead!
 - Control cannot solve all issues

Two messages to leave

- Dynamics' not dead! (Especially for the design of fast robot manipulators)
- Mechanics' not dead!
 - Control cannot solve all issues
 - Many tools used by mechanical engineers can solve tricky issues of control engineering community

These works were done in collaboration with

Permanent researchers IRCCyN

 P. Martinet, M. Gautier, S. Caro, V. Arakelian, A. Chriette, W. Khalil

Other labs

• N. Bouton (SIGMA, ex IFMA), F. Chaumette (Irisa)

These works were done in collaboration with

Permanent researchers IRCCyN

 P. Martinet, M. Gautier, S. Caro, V. Arakelian, A. Chriette, W. Khalil

Other labs

• N. Bouton (SIGMA, ex IFMA), F. Chaumette (Irisa)

PhD students

- Past: C. Germain, G. Pagis, V. Rosenzveig
- Current: D. Six, L. Kaci, A. Koessler