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Fast Robot Manipulators?

In the large majority ⇒ Parallel Robots

Most of my work is on parallel robots
(but not restricted to!)
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Known advantages
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No concurrents
Fastest robots

• Serial robot: Staübli’s FAST Picker (about 10 G)
• Parallel Robot: R4 from LIRMM (> 100 G)
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Main keywords in articles on parallel robots
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Is everything done?

DYNAMICS’ NOT DEAD!

• Dynamics vs. accuracy
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Outline of the presentation

1. Degeneracy conditions of the dynamic model of
parallel robots

2. Design and control of high-speed and high-accuracy
robots

3. Other works on dynamics

4. Future challenges and conclusions
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Degeneracy of the dynamics in Type 2 singularities

Generic parallel robot

base fixe

plate-forme mobile
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Degeneracy of the dynamics in Type 2 singularities

Inverse dynamic model

τ = wb − BT
p λ

AT
p λ = wp

with Ap ẋ + Bpq̇a = 0⇒ τ = wb −BT
p A−T

p wp (1)

ẋ: derivative of the platform configuration (NOT the platform twist)
q̇a: active joint velocities
wb = d

dt

(
∂L
∂q̇a

)
− ∂L

∂qa

wp = d
dt

(
∂L
∂ẋ

)
− ∂L

∂x
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p λ
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with Ap ẋ + Bpq̇a = 0⇒ τ = wb −BT
p A−T

p wp (1)

ẋ: derivative of the platform configuration (NOT the platform twist)
q̇a: active joint velocities
wb = d

dt

(
∂L
∂q̇a

)
− ∂L

∂qa

wp = d
dt

(
∂L
∂ẋ

)
− ∂L

∂x

Thus,
The dynamic model is proportional to 1

det(Ap)
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Degeneracy of the dynamics in Type 2 singularities

Inverse dynamic model

τ = wb − BT
p λ

AT
p λ = wp

with Ap ẋ + Bpq̇a = 0⇒ τ = wb −BT
p A−T

p wp (1)

ẋ: derivative of the platform configuration (NOT the platform twist)
q̇a: active joint velocities
wb = d

dt

(
∂L
∂q̇a

)
− ∂L

∂qa

wp = d
dt

(
∂L
∂ẋ

)
− ∂L

∂x

So, if det(Ap) = 0, (Type 2 sing. [Gosselin & Angeles 1990])
• Near singularities, τ →∞
• Dynamic model degeneracy = Impossible to cross sing.
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Why crossing Type 2 singularities is appealing?
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[Bonev 2002]
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Degeneracy of the dynamics in Type 2 singularities

Inverse dynamic model
τ = wb − BT

p A−T
p wp (2)

Contribution
Dynamics does not degenerate in Type 2 singularity iff

tT
s wp = 0, (3)

with ts defined by Apts = 0, (4)
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Degeneracy of the dynamics in Type 2 singularities

Contribution
Dynamics does not degenerate in Type 2 singularity iff

tT
s wp = 0, (2)

with ts defined by Apts = 0, (3)

⇒ When the robot cross a Type 2 singularity, the wrenches applied
on the platform (by the legs, the inertial effects, gravitation, external
efforts) wp must be reciprocal to the uncontrollable platform motion
ts
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Degeneracy of the dynamics in Type 2 singularities

An illustrative example
In an arbitrary configuration
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Equilibrium iff wp = r1 + r2
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Degeneracy of the dynamics in Type 2 singularities

An illustrative example
In singularity
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wp = r1 + r2 with
• r1 × r2 = 0
• tT

s r1 = tT
s r2 = 0 (ts uncontrollable motion)
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Degeneracy of the dynamics in Type 2 singularities

An illustrative example
In singularity
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s r2 = 0 (ts uncontrollable motion)

Problem if tT
s wp 6= 0
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Degeneracy of the dynamics in Type 2 singularities

An illustrative example
In singularity
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wp = r1 + r2 with
• r1 × r2 = 0
• tT

s r1 = tT
s r2 = 0 (ts uncontrollable motion)

No problem if tT
s wp = 0
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Degeneracy of the dynamics in Type 2 singularities

Trajectories through Type 2 singularities
Require to respect the criterion tT

s wp = 0 in singularity
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Degeneracy of the dynamics in Type 2 singularities

Trajectories through Type 2 singularities
Require to respect the criterion tT

s wp = 0 in singularity

Note that:
• ts depends on the robot configuration
• wp depends on the robot configuration, velocity and acceleration
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Degeneracy of the dynamics in Type 2 singularities

Trajectories through Type 2 singularities
Require to respect the criterion tT

s wp = 0 in singularity
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Degeneracy of the dynamics in Type 2 singularities

Trajectories through Type 2 singularities
Require to respect the criterion tT

s wp = 0 in singularity
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Degeneracy of the dynamics in Type 2 singularities

Trajectories through Type 2 singularities
Require to respect the criterion tT

s wp = 0 in singularity

TRAVERSEE Type 2

Criterion is not respected12 of 42
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Degeneracy of the dynamics in Type 2 singularities

Robustness issues
Can be manage through a proper Computed Torque Controller (CTC)
[Pagis et al 2015]
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Degeneracy of the dynamics in Type 2 singularities

Robustness issues
Can be manage through a proper Computed Torque Controller (CTC)
[Pagis et al 2015]
To develop it, we impose a trajectory with wp = 0 at singularity
(respects tT

s wp = 0)
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Degeneracy of the dynamics in Type 2 singularities

Robustness issues
Can be manage through a proper Computed Torque Controller (CTC)
[Pagis et al 2015]

TRAVERSEE Type 2
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Degeneracy of the dynamics in Type 2 singularities

Conclusions
• Definition of dynamic model degeneracy conditions...

• ... and of trajectories for avoiding this degeneracy
• Definition of a dedicated controller (collaboration IFMA)
• Validation with several robots (planar: Five-bar mech. / spatial:
PAMINSA)

• Work extended to flexible robots
• Ongoing works: automation / certification
• Future works: Constraint sing. crossing, CDPM
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Design / Control of fast and accurate robots

Design of a 2T robot for pick-and-place operations

Advantages:
• Intrinsic stiffness
• Smaller number of legs than the
Par2
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proximale

Partie
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Design / Control of fast and accurate robots

Design of a 2T robot for pick-and-place operations

Advantages:
• Intrinsic stiffness
• Smaller number of legs than the
Par2

Drawbacks:
• Architecture complexity
• Singularities

Work done in the scope of the
French ANR project ARROW
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Design / Control of fast and accurate robots

Specifications

Type of motion 2T 1R
Repeatability εlim in (xOz) 20 µm

Resolution rlim 2 µm
Max. acceleration 20 G

Cycle time 200 ms
Path dimension 25 mm × 300 mm × 25 mm

Regular workspace size 800 mm × 100 mm

Deformation δt lim under a force
fs = [0, 20, 0] N and a moment
ms = [1, 1, 1] N.m

[0.2, 0.2, 0.2] mm,
[0.1, 0.1, 0.1] deg

Max. payload (including the
embedded motor)

1.5 kg
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Optimisation results
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IRSBot-2 prototype

Tecnalia
• δty < 0.17 mm
• f 1

IRS = 44.9 Hz (in
the plane)

• f 2
IRS = 55 Hz (out
the plane)
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IRSBot-2 prototype
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Design / Control of fast and accurate robots

Repeatability performance
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30 microns in the dexterous regular workspace
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Design / Control of fast and accurate robots

Static deformations

120 microns in the dexterous regular workspace under a load of
20 N along y0
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Design / Control of fast and accurate robots

Static deformations

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.57

−0.56
−0.55

−0.54
−0.53

−0.52
−0.51

−0.5
−0.49

90

95

100

105

110

115

120

D
ef

or
m

at
io

n
s 

(µ
m

)

x (m)

z (m)

120 microns in the dexterous regular workspace under a load of
20 N along y0

20 of 42



Introduction Dynamics Degeneracy Accurate & Fast Robots Other Works & Next Challenges Collaborators

Design / Control of fast and accurate robots

Natural frequencies
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Design / Control of fast and accurate robots

Natural frequencies

Calculées par CAO Obtenues par sonnage
Frequency Displacement mode Frequency Displacement mode
45 Hz Perp. to motion 40±1 Hz Perp. to motion
53 Hz Plane of motion 40±1 Hz Plan of motion
60 Hz Perp. to motion 48±1 Hz Perp. to motion
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Design / Control of fast and accurate robots

Dynamic performance

TRAVERSEE Type 2

20 G of acceleration, 6 m/s
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Design / Control of fast and accurate robots

Dynamic performance
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Design / Control of fast and accurate robots

What is not mentioned
• Singularity analysis

• Modeling / Identification issues

Ongoing work

• Vibration control
• 3rd axis
• Improving the absolute accuracy

◦ Mapping of error and use in control (< 100 microns)
◦ Sensor-based control
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Design / Control of fast and accurate robots

Vision-based control of fast and accurate robots
Different possible approaches
• direct observation of the end-effector [Paccot et al., 2008]
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Vision-based control of fast and accurate robots
Different possible approaches
• observation of legs [Özgür et al., 2011]
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Introduction Dynamics Degeneracy Accurate & Fast Robots Other Works & Next Challenges Collaborators

Leg-direction-based visual servoing

Issues / Questions

• the observation of m leg directions (m < n) among the n legs is
enough,

• convergence problems for the end-effector, even if there is
convergence of the leg directions
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Issues / Questions

• the observation of m leg directions (m < n) among the n legs is
enough,

• convergence problems for the end-effector, even if there is
convergence of the leg directions

• existence of local minima

• singularities of the model (between the leg space and the Cartesian
space)
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Leg-direction-based visual servoing

Possible to answer to these questions thanks to the concept of
“Hidden Robot”

Basic idea
We must understand that, intrinsically, controlling the robot by
observing its legs is equivalent to control another architecture

e = u− udes (4)

ė = −λe⇒ u̇ = −λe (5)

τ = −λMT +e⇒ q̇ = −λJinv MT +e (6)

u̇ = MT τ (7)
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Leg-direction-based visual servoing

Basic idea
We must understand that, intrinsically, controlling the robot by
observing its legs is equivalent to control another architecture

Usual encoder-based controllerj
q⇒ x (q: measurement corresponding to the real actuators)

C

q
i

Base
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B
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A
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Leg-direction-based visual servoing

Basic idea
We must understand that, intrinsically, controlling the robot by
observing its legs is equivalent to control another architecture

Leg-direction-based visual controller
u⇒ x (u: corresponding to the virtual actuators of the hidden robot)
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Leg-direction-based visual servoing

Leg-direction-based visual controller
Gough-Stewart platform:
• Real robot ⇒ 6–UPS

• Hidden (virtual) robot ⇒ 3–UPS (case of the minimal observation)
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Leg-direction-based visual servoing

Leg-direction-based visual controller
Gough-Stewart platform:
• Real robot ⇒ 6–UPS
• Hidden (virtual) robot ⇒ 3–UPS (case of the minimal observation)
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Leg-direction-based visual servoing

By considering this analogy
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Leg-direction-based visual servoing

By considering this analogy
⇒ Final (non-desired) platform location ≡ a solution of the FGM of

the 3–UPS robot in the same aspect as the initial configuration
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Leg-direction-based visual servoing

By considering this analogy
⇒ Able to explain why the observation of m leg directions (m < n)
among the n legs is enough
⇒ Find the local minima
⇒ Find the singularities of the model used in the visual servoing
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Generalization of the concept and application to
different robot classes

Planar robots
Example of the 3–RRR robot
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3
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Generalization of the concept and application to
different robot classes

Planar robots
Example of the 3–RRR robot
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Generalization of the concept and application to
different robot classes

Spatial robots
Example of the Adept Quattro
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Generalization of the concept and application to
different robot classes

Spatial robots
Example of the Adept Quattro
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Generalization of the concept and application to
different robot classes

Spatial robots
Example of the Adept Quattro
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Generalization of the concept and application to
different robot classes

Experimental validation
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Generalization of the concept and application to
different robot classes

Experimental validation
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Use of the concept of hidden robot for the
controllability analysis

Definition of four main classes of robots for leg-direction-based
controllers

Cl 1: Robots which are not controllable
Cl 2: Robots which are partially controllable in their whole workspace
Cl 3: Robots which are fully controllable in their whole workspace
Cl 4: Robots which becomes controllable by using additional

measurements
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Use of the concept of hidden robot for the
controllability analysis

Class 1: Robots which are not controllable

A PRRRP robot 
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Use of the concept of hidden robot for the
controllability analysis

Class 2: Robots which are partially controllable in their whole
workspace
⇒ because singularities of the hidden robot always divide the
workspace into several aspects (unconnected areas)
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Use of the concept of hidden robot for the
controllability analysis

Class 3: Robots which are fully controllable in their whole
workspace
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Use of the concept of hidden robot for the
controllability analysis

Class 4: Robots which becomes controllable by using additional
measurements

A PRRRP robot 

u
1

u
2
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Use of the concept of hidden robot for the
controllability analysis

Class 4: Robots which becomes controllable by using additional
measurements
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Design / Control of fast and accurate robots

Conclusions
• New “spatial” 2T robot architecture

• Optimal design methodology for fast and accurate robots
• Improving the accuracy of high-speed robots
• Definition of a tool for understanding the mapping characteristics
of some visual servoing
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Ongoing and future works

Use of the concept of hidden robot for the visual servoing of
multi-arm robots
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Ongoing and future works

Use of the concept of hidden robot for the visual servoing of
geometric primitives
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Ongoing and future works

Use of the concept of hidden robot for the visual servoing of
geometric primitives

C

M
1

M
2

M
3

m
2

m
1

m
3

L
1

L
3 L

2

C

M
1

M
2

M
3

L
1

L
3 L

2

 e three
active cardan
joints are grouped
at the same point

Passive
prismatic
joints

Passive
spherical
joints

35 of 42



Introduction Dynamics Degeneracy Accurate & Fast Robots Other Works & Next Challenges Collaborators

Ongoing and future works

Use of the concept of hidden robot for the visual servoing of
geometric primitives
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Ongoing and future works

Use of the concept of hidden robot for the visual servoing of
geometric primitives
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Ongoing and future works

Use of the concept of hidden robot for control-based design
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Summary of other past works

Identification of dynamic parameters
Methodologies for the identification of dynamic parameters
• including the driving gains
• for overactuated robots
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Summary of other past works

Elastodynamic modelling
Systematic / automatic procedure for the symbolic computation of
the elastodynamic model of parallel robots
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Summary of other past works

Balancing techniques

• dynamics (by optimal design, by optimal motion planning, etc.)
• statics (for high-load carrying robots)
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Summary of other past works

Design of robots for high-load carrying
New parallel robot families with decoupled motions between
• planar platform motions
• vertical platform translations

200 N
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Summary of other past works

Design of robots for high-load carrying
New parallel robot families with decoupled motions between
• planar platform motions
• vertical platform translations
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Next challenges

Flying parallel robots

Interests:
• Sharing the load
• Rigid links vs cables ⇒ work also in compression (apply forces on
the environment)
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Next challenges

Flying parallel robots

Keypoints:
• Management of overconstraint (relative motion between drones =
2 dof)

• Dynamic reconfiguration
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Next challenges

Flying parallel robots

PhD Thesis of Damien Six (2015 – xxxx)
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Next challenges

Drastic energy consumption reduction of high-speed robots

TRAVERSEE Type 2

• High energy consumption
• No “relevant” solution
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Next challenges

Drastic energy consumption reduction of high-speed robots
• A first step made in that direction via the use of springs

• But
◦ “Big” issues of accuracy
◦ Just for few trajectories
◦ Slow motions (cycle times > 10 sec)

[Uemura et al. 2011]

[Iwamura et al. 2016]
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Next challenges

Drastic energy consumption reduction of high-speed robots
PhD Thesis of Rafael Balderas Hill (2016 ??– xxxx)

38 of 42



Introduction Dynamics Degeneracy Accurate & Fast Robots Other Works & Next Challenges Collaborators

Next challenges

Design of a lightweight fast manipulator mounted on drones for
grasping of moving objects

TRAVERSEE Type 2
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Next challenges

Design of a lightweight fast manipulator mounted on drones for
grasping of moving objects
Do the same with a manipulator mounted on a drone
• Issues of energy consumption
• Issues of drone stability when the manipulator is moving (at high
speed)

• Issues of drone payload capacity
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Next challenges

Design of a lightweight fast manipulator mounted on drones for
grasping of moving objects
Work both on
⇒ Novel actuation systems (small powerless actuators vs high

acceleration)
⇒ Topological optimization of robots
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Next challenges

Design of a lightweight fast manipulator mounted on drones for
grasping of moving objects

ANR DOS-COM ?? (IRCCyN, Heudiasyc, Gipsa-lab)
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Next challenges

Other next works
• Eco-design of robots
• Singularity analysis for generic sensor-based controllers
• Control-based design

40 of 42



Introduction Dynamics Degeneracy Accurate & Fast Robots Other Works & Next Challenges Collaborators

To conclude

Two messages to leave

• Dynamics’ not dead!
(Especially for the design of fast robot manipulators)

• Mechanics’ not dead!

◦ Control cannot solve all issues
◦ Many tools used by mechanical engineers can solve tricky issues

of control engineering community
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