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Natural Frequency Computation
of Parallel Robots
The characterization of the elastodynamic behavior and natural frequencies of parallel
robots is a crucial point. Accurate elastodynamic models of parallel robots are useful at
both their design and control stages in order to define their optimal dimensions and
shapes while improving their vibratory behavior. Several methods exist to write the elas-
todynamic model of manipulators. However, those methods do not provide a straightfor-
ward way to write the Jacobian matrices related to the kinematic constraints of parallel
manipulators. Therefore, the subject of this paper is about a systematic method for the
determination of the mass and stiffness matrices of any parallel robot in stationary con-
figurations. The proposed method is used to express the mass and stiffness matrices of the
Nantes Variable Actuation Robot (NaVARo), a three-degree-of-freedom (3DOF) planar
parallel robot with variable actuation schemes, developed at IRCCyN. Then, its natural
frequencies are evaluated and compared with those obtained from both CAST3M software
and experimentally. [DOI: 10.1115/1.4028573]

1 Introduction

Parallel robots have been increasingly used in industry in the
last few years for pick-and-place applications and high-speed
machining [1,2]. This interest is mainly due to their high stiffness
and good dynamic performance compared with their serial manip-
ulator counterparts.

Having a good knowledge of the elastodynamic behavior of a
manipulator (especially its natural frequencies) is a crucial point.
As a consequence, accurate elastodynamic models of parallel
robots are useful at both their design [3–5] and control [6–8]
stages in order to define their optimal dimensions and shapes
while improving their vibratory behavior.

Several models have been proposed and used in order to com-
pute the natural frequencies of a mechanism. For instance, the
following three methods are commonly used in the literature:

• Finite element analysis (FEA): The FEA method is proved to
be the most accurate and reliable, since the links and joints
are modeled with their true dimensions and shape [9,10].
However, its accuracy is limited by the mesh size and is usu-
ally used at the final design stage of the robot because the
meshing is time consuming.

• Matrix structural analysis (MSA) method is a common tech-
nique in mechanical engineering [4,11–14]. It incorporates
the main ideas of the FEA method but operates with rather
large flexible elements (beams, arcs, cables, and so on). As a
result, the MSA method is less time consuming than the FEA
method, but requires good knowledge in FEA.

•

Virtual joint method (VJM) [5,15], which is also referred to
as “lumped modeling,” is based on the expansion of the tradi-
tional rigid model by adding virtual joints (localized springs),
which describe the elastic deformations of the manipulator
components (links, joints, and actuators). Lumped modeling
is simpler to use but is less accurate than MSA.

Some general methodologies dealing with MSA or VJM are
presented in Refs. [11–13,15]. These methodologies can differ
from the type of elements or flexible models used. Nevertheless,
all of them require the determination of some Jacobian matrices in
order to characterize kinematic dependencies in closed-loop
mechanisms. The main drawback of such methodologies is that
they are not specifically designed for parallel robots and they do
not propose a systematic and straightforward way for computing
the Jacobian matrices required for closing the loops.

An approach for the systematic computation of these matrices
was proposed in Ref. [4]. However, this approach is complicated
and the obtained results have been verified neither with a commer-
cial software nor experimental. In Ref. [14], the authors proposed
an interesting algorithm to study the elastodynamic behavior of
parallel robots that considers both the joint and link flexibilities.
The way the authors close the robot loops and choose the inde-
pendant coordinates is not straightforward, resulting in a poten-
tially asymmetrical description of the leg variables.

This paper aims at developing a simple and straightforward pro-
cedure for the computation of mass and stiffness matrices of par-
allel robots in stationary configurations. Indeed,

• a simple way to compute the Jacobian matrices required for
closing the robot loops is presented, and

• the set of independent coordinates for parallel robots with a
symmetrical arrangement are chosen cleverly.

The judicious choice of the set of independent coordinates for
parallel robots with a symmetrical arrangement aims at
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simplifying the robot elastodynamic modeling and the compre-
hension of the robot behavior for each natural frequency. Symme-
try is kept in the variable description in order to have the same
information on the evolution of the same variables for robots hav-
ing legs with the same kinematic chains.

Moreover, contrary to most of the existing methods, the proposed
approach does not contain any numerical matrix inversion, which is
better to avoid numerical issues that may lead to a loss in the result
accuracy. The natural frequencies calculated using this procedure
will be compared with simulation data obtained using an FEA/
MSA software and with experiments carried out on a parallel robot.

A methodology similar to the one presented in Ref. [16] to
obtain the rigid dynamic model of a parallel robot is used. For a
parallel robot composed of rigid or flexible links connected by
passive or active joints, such as the one described in Fig. 1, the
methodology is decomposed into two steps:

(1) All closed-loops are virtually opened in such a way that the
platform is virtually disassembled from the robot architecture
(Fig. 1(b)). Each joint is virtually considered actuated so that
the robot becomes a tree structure with a free body: the plat-
form. The mass and stiffness matrices of the tree structure
and the ones of the free platform are then computed.

(2) The loops are closed using Jacobian matrices so that the
mass and stiffness matrices of the actual parallel robot can
be obtained.

The paper is organized as follows. In Sec. 2, a method used for
the computation of the mass and stiffness matrices of one single
flexible body using MSA techniques is recalled. The mass and
stiffness matrices of the virtual system composed of the tree struc-
ture and the free platform are introduced in Sec. 3. A straightfor-
ward way for the computation of the Jacobian matrices linking the
Cartesian coordinates of each body to the generalized coordinates
of the virtual system is proposed. Section 4 describes the proposed
method to close the loops in order to obtain the mass and stiffness
matrices of the actual parallel robot that keeps a symmetrical
description of the leg variables. The natural frequencies of the
NaVARo [17,18] are then evaluated in Sec. 5. NaVARo is a
3DOF planar parallel manipulator with multiple actuation modes
developed at IRCCyN. Moreover, the simulation results obtained
with our approach are compared with both CAST3M software [19]
and experiments. Finally, Sec. 6 concludes this paper.

2 Computation of the Stiffness and Mass Matrices

of a Flexible Body

2.1 Kinematics of a Flexible Free Body. Let us consider
body j described in Fig. 2(a) to which a local frame F j is attached

at point Aj. The flexible body is considered as the superposition of
the undeformed configuration referred to as 0, which corresponds
to a rigid transformation of body j described by variable qj and the
deformed configuration related to the elastic deformation of the
body. The translational velocity of any material point Mj of this
flexible body can be expressed as [20]

vjðMjÞ ¼ vjðAjÞ þ xjðAjÞ � rjðMjÞ þ vej
ðMjÞ (1)

where vj(Aj) and xjðAjÞ are the translational and rotational
velocities of body j expressed in frame F j, respectively, rj(Mj) is
the position vector of point Mj (of the deformed body) expressed
in frame F j; vej

ðMjÞ is the translational velocity due to the body
elasticity that can be parameterized as truncated series of
Rayleigh–Ritz shape functions

vej
ðMjÞ ¼ Udj

ðM0jÞ _qej
(2)

with Udj
¼ /d1j

� � �/dNjj

h i
of size (3�Nj), /dkj

ðM0jÞ being a

three-dimensional vector (3D) containing the kth shape functions
for the displacement of the flexible body at point M0j, and

_qej
¼ _qe1j

� � � _qeNjj

� �T
; _qekj

being the kth elastic generalized veloc-

ity of body j and Nj the number of considered shape functions. It
should be noted that vector rj(Mj) in Eq. (1) can be expressed as

rjðMjÞ ¼ rjðM0jÞ þ uej
ðM0jÞ (3)

where rjðM0j
Þ is the position vector of point M0j expressed in

frame F j

uej
ðM0jÞ ¼ Udj

ðM0jÞqej
(4)

is the elastic displacement that transforms M0j to Mj and qej

¼ qe1j
� � � qeNjj

� �T
is the vector of elastic generalized coordinates

of body j.
Equation (1) can thus be written in the following matrix form:

vjðMjÞ ¼ I3 rjðMjÞ
� �T

� Udj
ðM0jÞ

h i vjðAjÞ
xjðAjÞ

_qej

2
4

3
5 (5)

where I3 is the (3� 3) identity matrix and [rj(Mj)]� is the cross-
product matrix of vector rj(Mj).

Fig. 1 Schematic of a parallel robot for its dynamic modeling: (a) kinematic chain
and (b) virtual tree structure
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Equations (1)–(5) define the kinematic model of flexible free
body j. This model is thus parameterized by the following set of
variables:

• vj(Aj) and xjðAjÞ: Cartesian velocities (Euler variables) char-
acterizing the rigid displacement of body j expressed in frame
F j;

• qej
: generalized coordinates (Lagrange variables) characteriz-

ing the elastic displacements of body j.

It should be mentioned that this description can be applied to
both robot links and joints, as long as all the shape functions can
be defined.

2.2 Kinetic Energy of a Flexible Free Body. The kinetic
energy of body j (denoted as Rj in the following integral) is given
by:

Tj ¼
1

2

ð
Rj

vjðMjÞTvjðMjÞdm ¼
qj

2

ð
Vj

vjðMjÞTvjðMjÞdV (6)

where qj is the material density and Vj is the body volume.
Introducing Eq. (5) into Eq. (6) leads to

Tj ¼
qj

2

ð
Vj

vjðAjÞ
xjðAjÞ

_qej

2
64

3
75

T I3

rjðMjÞ
� �

�

Udj
ðM0jÞT

2
64

3
75 I3 rjðMjÞ

� �T
� Udj

ðM0jÞ
h i

�
vjðAjÞ
xjðAjÞ

_qej

2
64

3
75dV ¼ 1

2

vjðAjÞ
xjðAjÞ

_qej

2
64

3
75

T

Mj

vjðAjÞ
xjðAjÞ

_qej

2
64

3
75 (7)

where

Mj ¼ qj

ð
Vj

I3 rjðMjÞ
� �T

� Udj
ðM0jÞ

rjðMjÞ
� �

� rjðMjÞ
� �

� rjðMjÞ
� �T

� rjðMjÞ
� �

�Udj ðM0jÞ

Udj
ðM0jÞT Udj

ðM0jÞT rjðMjÞ
� �T

� Udj
ðM0jÞTUdj

ðM0jÞ

2
664

3
775dV (8)

Mj is the mass matrix of body j expressed in its frame F j.

2.3 Elastic Potential Energy and Stiffness Matrix of a
Flexible Free Body. The elastic potential energy of any body is
given by Shabana [11]

Vej
¼ 1

2

ð
Vj

rT
j It�jdV (9)

where rj and �j are the six-dimensional stress and strain vectors
due to the small elastic displacement uej

ðM0jÞ in body j. It is a
(6� 6) diagonal matrix. The first three diagonal terms are equal to
one, whereas the last three diagonal terms are equal to two, because
of the two multipliers associated with the shear strains [11]. The
strain vector is defined as �j ¼ �j11

�j22
�j33

�j12
�j13

�j23½ �T,
where

�j11
�j12

�j13

�j12
�j22

�j23

�j13
�j23

�j33

2
4

3
5 ¼ 1

2
ruej
ðM0jÞ þ ruej

ðM0jÞ
� �T

� �
(10)

with

ruej
ðM0jÞ ¼

@uej

@x
ðM0jÞ

@uej

@y
ðM0jÞ

@uej

@z
ðM0jÞ

� 	

¼

@U1
dj

@x
ðM0jÞqej

@U1
dj

@y
ðM0jÞqej

@U1
dj

@z
ðM0jÞqej

@U2
dj

@x
ðM0jÞqej

@U2
dj

@y
ðM0jÞqej

@U2
dj

@z
ðM0jÞqej

@U3
dj

@x
ðM0jÞqej

@U3
dj

@y
ðM0jÞqej

@U3
dj

@z
ðM0jÞqej

2
6666666664

3
7777777775

(11)

where Uk
dj

corresponds to the kth line of matrix Udj
; k ¼ 1; 2; 3.

As a result

�j ¼

@U1
dj

@x
ðM0jÞ

@U2
dj

@y
ðM0jÞ

@U3
dj

@z
ðM0jÞ

1

2

@U1
dj

@y
ðM0jÞ þ

@U2
dj

@x
ðM0jÞ

 !

1

2

@U1
dj

@z
ðM0jÞ þ

@U3
dj

@x
ðM0jÞ

 !

1

2

@U2
dj

@z
ðM0jÞ þ

@U3
dj

@y
ðM0jÞ

 !

2
666666666666666666666664

3
777777777777777777777775

qej
¼ U�j

qej
(12)

The stress vector is expressed as

rj ¼ rj11
rj22

rj33
rj12

rj13
rj23½ �T¼ Ej�j (13)

where matrix Ej is given by the Hooke’s law [11].
Thus, introducing Eqs. (12) and (13) into Eq. (9) leads to

Vej
¼ 1

2
qT

ej
Kjqej

(14)

where Kj is the stiffness matrix of body j and takes the form

Fig. 2 Schematics of the flexible elements into consideration:
(a) parameters of one flexible body j and (b) assembly of two
flexible bodies
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Kj ¼
ð

Vj

UT
�j

ET
j ItU�j

dV (15)

2.4 Case of the Elastic Beam: The Bernoulli Model. The
computation of the mass and stiffness matrices of 3D beams is
useful for the elastodynamic modeling of parallel manipulators.

The Bernoulli model describes the beam deformation under the
assumption that the shear effect is negligible, that the cross
sections remain perpendicular to the neutral axis and that the
rotational inertia of sections is assumed to be zero [21]. With such
a model, the 3D beam deformation uej

ðM0jÞ (see Sec. 2.1) can be
characterized with the six shape functions /dxj

;/dyj
;/dzj

;/rxj
;/ryj

,
and /rzj

, i.e., Nj¼ 6, defined as

/dxj
¼ n 0 0 0 0 0½ � (16a)

/dyj
¼ 0 3n2 � 2n3 0 0 0 lj n3 � n2

� �� �
(16b)

/dzj
¼ 0 0 3n2 � 2n3 0 �lj n3 � n2

� �
0

� �
(16c)

/rxj
¼ 0 0 0 n 0 0½ � (16d)

/ryj
¼ 0 0 �6 n� n2

� �
=lj 0 3n2 � 2n 0

� �
(16e)

/rzj
¼ 0 6 n� n2

� �
=lj 0 0 0 3n2 � 2n

� �
(16f )

where n¼ x/lj and lj is the beam length.
x, y, and z denote the Cartesian coordinates of point M0j

expressed in the local frame F j and Udj
ðM0jÞ is a (3� 6) matrix

that takes the form

Udj
ðM0jÞ ¼

/dxj
� y/rzj

þ z/ryj

/dyj
� z/rxj

/dzj
þ y/rxj

2
4

3
5 (17)

Moreover, in the beam model, it is assumed that

rj22
¼ rj33

¼ rj23
¼ 0 (18)

�j22
¼ �j33

¼ �j23
¼ 0 (19)

rj11
¼ Ej�j11

(20)

rj12
¼ Gj�j12

(21)

rj13
¼ Gj�j13

(22)

where Ej is the Young modulus of body j and Gj is its shear
modulus.

Introducing Eqs. (16a)–(22) into Eqs. (8) and (15) for qej
¼ 0,

the stiffness matrix of body j takes the form

Kj ¼
1

l3j

EjAjl
2
j 0 0 0 0 0

0 12EjIzj
0 0 0 �6EjIzj

lj

0 0 12EjIyj
0 6EjIyj

lj 0

0 0 0 I0j
Gjl

2
j 0 0

0 0 6EjIyj
lj 0 4EjIyj

l2j 0

0 �6EjIzj
lj 0 0 0 4EjIzj

l2
j

2
666666666664

3
777777777775

(23)

where Aj is the beam cross section area, Iyj
, and Izj

are the second
moments of area around axes y and z of the local frame, I0j

is the
torsion constant.

Similarly, the mass matrix of body j is expressed as

Mj ¼
M11j

M12j

MT
12j

M22j

" #
(24)

where

M11j
¼

mj 0 0 0 mjzGj
�mjyGj

0 mj 0 �mjzGj
0 mjxGj

0 0 mj mjyGj
�mjxGj

0

0 �mjzGj
mjyGj

Jxxj
Jxyj

Jxzj

mjzGj
0 �mjxGj

Jxyj
Jyyj

Jyzj

�mjyGj
mjxGj

0 Jxzj
Jyzj

Jzzj

2
6666666664

3
7777777775

(25)

M12j
¼

mj

2
0 0 0 0 0

0
mj

2
0 0 0

mjlj

12

0 0
mj

2
0

mjlj
12

0

0 0 0
qjljIpj

2
0 0

0 0 �qjIyj
�7mjlj

20
0 �

mjl
2
j

20
0

0 qjIzj
þ7mjlj

20
0 0 0 �

mjl
2
j

20

2
66666666666666664

3
77777777777777775

(26)

M22j
¼

mj

3
0 0 0 0 0

0
13mj

35
þ

6qjIzj

5lj
0 0 0 �

11mjlj þ 21qjIzj

210

0 0
13mj

35
þ

6qjIyj

5lj
0

11mjlj þ 21qjIyj

210
0

0 0 0
qjljIpj

3
0 0

0 0
11mjlj þ 21qjIyj

210
0

mjl
2
j þ 14qjIyj

lj

105
0

0 �
11mjlj þ 21qjIzj

210
0 0 0

mjl
2
j þ 14qjIzj

lj

105

2
6666666666666666664

3
7777777777777777775

(27)
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and

• xGj
; yGj

, and zGj
are the Cartesian coordinates of the center of

mass of body j expressed in frame F j;
• Jxxj

; Jyyj
; Jzzj

; Jxyj
; Jxzj

, and Jyzj
are the terms of the rigid inertia

matrix expressed at the origin of frame F j;
• Ipj

¼ Iyj
þ Izj

is the polar moment of inertia.

3 Computation of the Stiffness and Mass Matrices

of a Tree Structure Robot

Let us consider a parallel robot composed of one rigid fixed
base (denoted as element 0), one rigid moving platform and n
legs, each leg being a serial kinematic chain composed of mi� 1
elements2 connected by mi joints (revolute, prismatic or fixed join-
ts� i¼ 1,…, n) located at points Cik (k¼ 1,…, mi—Fig. 1(a)).
The jth element of the ith leg is denoted by ij. The nominal values
of the actuated variables (of the passive variables, resp.) are
denoted by qa (qp, resp.). The nominal values of the Cartesian
coordinates of the platform are denoted by xp. The dimension na

of vector qa must be greater than or equal to the number of
degrees of freedom of the parallel robot. Under the assumption of
an elastic deformation, the variations in those variables are
denoted by dqa, dqp, and dxp, respectively.

The number of shape functions for the element ij is denoted by
Nij (j¼ 1,…, mi� 1). As a result, the dimension ne of the vector of
elastic variables qe is equal to

Pn
i¼1

Pmi�1
j¼1 Nij.

Thus, the vector of generalized coordinates of the tree-structure

is given by qt ¼ qT
t1
� � �qT

tn

h iT

, where qti
¼ dqT

ai
dqT

pi
qT

ei

h iT

.

dqai
; dqpi

, and qei
are the vectors of the actuated, passive, and

elastic generalized coordinates for the ith leg.

3.1 Relationships Between the Generalized Coordinates of
a Flexible Body and the Generalized Coordinates of the Tree
Structure. The generalized velocities vijðAijÞ;xijðAijÞ, and _qeij

of
body ij are linked to the generalized velocities3 _qt by the relations

vijðAijÞ
xijðAijÞ

� 	
¼ Ji

vij
_qti
¼ Jvij

_qt (28)

with

Jvij
¼ 0 � � � Ji

vij
� � � 0

h i
(29a)

_qt ¼

_qt1

..

.

_qti

..

.

_qtn

2
6666664

3
7777775

(29b)

and

_qeij
¼ Jeij

_qt (30)

The foregoing equations can be rewritten in the following com-
pact form:

vijðAijÞ
xijðAijÞ

_qeij

2
64

3
75 ¼ Jij _qt (31)

with

Jij ¼
Jvij

Jeij

" #
(32)

Jij is the Jacobian matrix mapping the generalized velocities _qt of
the tree structure into the generalized velocities of the element ij.
Jvij

is the Jacobian matrix mapping _qt into the twist of the local
frame attached to element ij. Jeij

is a matrix composed of 0 and 1
terms that is used to extract vector _qeij

from vector _qt.
Matrix Jvij

is expressed thanks to a generic and systematic
approach described thereafter and derived from Ref. [22].

Let us first compute the homogeneous transformation matrix Tij

that defines the location and orientation of the local frame
attached to the element ij. By definition, this element is located in
the leg i and is preceded by j� 1 elements, each element ik
(k¼ 1, …, j) being linked to another by a joint (revolute, prismatic
or fixed) described by its nominal coordinate qik (Fig. 1(b)). Thus,
matrix Tij is defined by

Tij ¼ Ti
base

Yj�1

k¼1

VaðqikÞTik
eltVeðqeik

Þ
� � !

VaðqijÞTij
end (33)

where

• Ti
base denotes the rigid transformation between the global

base frame and the frame attached to ith leg;
• The matrix function Va(.) is a transformation matrix corre-

sponding to an elementary rotation or an elementary
translation;

• Tik
elt denotes the rigid transformation matrix between the

frame attached to element ik and the frame attached to ele-
ment i, kþ 1 in the undeformed case;

• The matrix function Ve(.) represents the translations and rota-
tions due to the deformations of the flexible link (if the ele-
ment is rigid, this matrix will be the identity matrix qeik

¼ 0
in this case);

• T
ij
end is a matrix that allows the rotational part of Tij to be

equal to the identity matrix.

Then, let us gather all variables introduced in Eq. (33) into
vector

qtij
¼ qi1qT

ei1
� � �qT

ei;j�1
qij

h iT

(34)

and assume that for the lth variable qtijl of vector qtij
, Eq. (33) is

rewritten as

Tij ¼ HR
ijlVijlðqtijlÞHL

ijl (35)

where the first and the third multipliers are constant homogeneous
matrices while the second multiplier is either an elementary trans-
lation matrix or an elementary rotation matrix. Then the partial
derivative of the homogeneous matrix Tij with respect to qtijl

at

the configuration qnom
tijl

(qnom
tijl
¼ 0 for an elastic variable and may

not vanish for a joint variable) can be computed from a similar
product where the internal term is replaced by the matrix

Vd
ijlð:Þ ¼ @VijlðqtijlÞ=@qtijl

that takes a simple analytical form. For

instance, for elementary translations and rotations along and about
the x axis, these derivatives take the form

Vd
ijlðqtijl

Þ ¼

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

2
6664

3
7775for a translation along x axis

Vd
ijlðqtijl

Þ ¼

0 0 0 0

0 � sinðqtijlÞ � cosðqtijlÞ 0

0 cosðqtijl
Þ � sinðqtijlÞ 0

0 0 0 0

2
6664

3
7775

for a rotation about x axis (36)
2Note that each robot link can be composed of one element or several elements.
3It is assumed that the generalized velocities are equal to d=dtðdqtÞ ¼ _qt .
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For the elementary translations and rotations along and about the

other axes, the matrices Vd
ijlð:Þ can be obtained similarly.

Only small displacements occur in the determination of the nat-
ural frequencies. Therefore, the derivative of the homogeneous

matrix Td
ij ¼ @Tij=@qtijl ¼ HR

ijlV
d
ijlðqtijl

ÞHL
ijl can be expressed as

Td
ij ¼

0 �cd
zijl

cd
yijl

kd
xijl

cd
zijl

0 �cd
xijl

kd
yijl

�cd
yijl

cd
xijl

0 kd
zijl

0 0 0 0

2
666664

3
777775 (37)

It is noteworthy that vector 0j
qtijl
vij ¼ kd

xijl
kd

yijl
kd

zijl
cd

xijl
cd

yijl
cd

zijl

h iT

,

which can be obtained by extracting the terms of matrix Td
ij

defined in Eq. (37), is the column of the Jacobian matrix corre-
sponding to variable _qtijl . The latter maps vector qt into the veloc-

ity of the local frame attached to body ij expressed in the global

frame [22]. Let ijR0 be the (6� 6) extended rotation matrix

ijR0 ¼
ijR0 03

03
ijR0

� 	
(38)

where ijR0 is the rotation matrix between the global frame and the
local frame attached to element ij, which is evaluated in the robot
undeformed configuration and can be extracted using Eq. (33).

Thus, multiplying ijR0 by vector 0j
qtijl
vij yields the column j

qtijl
vij

¼ij R
0

0j
qtijl
vij of Jacobian matrix Jvij

defined in Eq. (28) correspond-

ing to variable _qtijl .

3.2 Stiffness and Mass Matrices of the Tree Structure.
From Eqs. (6) and (9), the Lagrangian of the tree structure system
can be expressed as

Lt ¼
X

i;j

Tij � Veij

� �

¼ 1

2

X
i;j

vijðAijÞ
xijðAijÞ

_qeij

2
64

3
75

T

Mij

vijðAijÞ
xijðAijÞ

_qeij

2
64

3
75� qT

eij
Kijqeij

0
B@

1
CA (39)

Introducing Eq. (28) into Eq. (39) leads to

Lt ¼
1

2

X
i;j

_qT
t JT

ijMijJij _qt � qT
t JT

eij
KijJeij

qt

� �

¼ 1

2
_qT

t Mt _qt � qT
t Ktqt

� �
(40)

where Mt and Kt are the mass and stiffness matrices of the tree
structure.

Adding the contribution of the rigid platform into Eq. (40), the
Lagrangian of the total system can be written as

L¼ 1

2
_qT

t Mt _qtþ _xT
p Mp _xp�qT

t Ktqt

� �

¼ 1

2
_qT

t _xT
p

h i Mt 0

0 Mp

" #
_qt

_xp

" #
� qT

t dxT
p

� � Kt 0

0 0

" #
qt

dxp

" # !

¼ 1

2
_qT

totMtot _qtot�qT
totKtotqtot

� �
(41)

where Mp is the mass matrix of the rigid platform. Mtot and Ktot

are the total mass and stiffness matrices of the virtual system.

qtot ¼ qT
t dxT

p

h iT

is the vector of all generalized coordinates of

the virtual system.

4 Computation of the Stiffness and Mass Matrices

of the Parallel Robot

The model of the virtual tree structure and of the free moving
platform does not consider the closed-loop kinematic chains. As a
matter of fact, the nqtot

components of vector qtot are dependent.
The independent components are gathered into vector q and their
determination is described thereafter.

4.1 Determination of the Generalized Coordinates of the
Parallel Robot. For determining one possible subset of general-
ized coordinates for the parallel robot, let us express the relations
between the vector of generalized velocities _qti

and the twist of

the last element mi for each leg i. Using Eq. (28) for computing

the twist4 ti;mi
¼ vT

i;mi
ðAi;mi

Þ xT
i;mi
ðAi;mi

Þ
� �T

of the extremity of

each leg, it comes

ti;mi
¼ Ji

vi;mi
_qti

(42)

As the leg extremity is also linked to the rigid platform, its twist
can be related to the platform twist _xp via the rigid body displace-
ment relation

ti;mi
¼ Ji

p _xp (43)

where

Ji
p ¼ i;mi R0

I3 pi½ ��
0 I3

� 	
(44)

in which Ji
p is a (6� 6) matrix, pi½ �� is the cross product matrix of

vector pi that characterizes the position of the attachment point
Ci;mi

with respect to the platform centre position (Fig. 1(a)) and
i;mi R0 is the (6� 6) rotation matrix between the global frame and
the local frame attached to element i, mi, evaluated in the robot
undeformed configuration.

Thus, expressing the twist ti;mi
for each leg as a function of the

platform twist _xp and generalized coordinates _qti
, the following

set of equations is obtained:

J1
v1;m1

� � � 0

..

. . .
. ..

.

0 � � � Jn
vn;mn

2
664

3
775

_qt1

..

.

_qtn

2
64

3
75�

J1
p

..

.

Jn
p

2
664

3
775 _xp ¼ 0 (45)

which can be equivalently written as

Jv _qt � Jp _xp ¼ Jv �Jp½ � _qt

_xp

� 	
¼ Jtot _qtot ¼ 0 (46)

where Jtot is a (rn� nqtot) matrix in the case of a spatial robot,
nqtot

> rn (r¼ 6 for a spatial robot, r¼ 3 for a planar robot). This
means that a subset qd of rn variables in vector qtot is linked to the
others. This subset is not unique. An idea could be to put in
this subset all passive joints and platform variables, i.e.,

q�d ¼ dqT
p dxp

h i
. However, for overconstrained parallel robots,

dim q�d
� �

< r n. As a result, this vector should be completed using

some other elastic variables that could be chosen arbitrarily.
Meanwhile, most parallel robots have identical legs and such a

4Note that index ij is written i, j in this section for a better understanding of the
equations.
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methodology will lead to an asymmetrical description of the leg
variables, which is not ideal. In order to avoid this problem, we

had better put in qd the last r components qf
ti

of each vector qti

that is now decomposed into two parts: qti
¼ q0T

ti
qfT

ti

h iT

. Thus,

variables qf
ti

are related to the others using Eq. (45)

�

Jf1
v1;m1

� � � 0

..

. . .
. ..

.

0 � � � Jfn
vn;mn

2
6664

3
7775

_qf
t1

..

.

_qf
tn

2
664

3
775 ¼

J01
v1;m1

� � � 0 �J1
p

..

. . .
. ..

. ..
.

0 � � � J0n
vn;mn

�Jn
p

2
6664

3
7775

_q0
t1

..

.

_q0
tn

_xp

2
666664

3
777775

(47)

which can be rewritten as

� Jf
v

_qf
t1

..

.

_qf
tn

2
6664

3
7775 ¼ J0

v �Jp

� �
_q0

t1

..

.

_q0
tn

_xp

2
666664

3
777775 (48)

or also

_qf
t1

..

.

_qf
tn

2
664

3
775 ¼ � Jf

v

� ��1
J0

v �Jp

� �
_q0

t1

..

.

_q0
tn

_xp

2
666664

3
777775

¼

Jd1;1
� � � Jd1;n

Jd1;nþ1

..

. . .
. ..

. ..
.

Jdn;1
� � � Jdn;n

Jdn;nþ1

2
664

3
775 _q (49)

where

• J0i
vi;mi

(Jfi
vi;mi

, resp.) collects the columns of matrix Ji
vi;mi

corre-

sponding to variables _q0
ti

( _qf
ti
, resp.);

• Jdij
is the matrix that maps _q0

tj
into _qf

ti
; j ¼ 1;…; n;

• Jdi;nþ1
is the matrix that maps _xp into _qf

ti
.

It is noteworthy that the inversion of matrix Jf
v involves only

the inversion of the (r� r) matrices Jfi
vi;mi

, which is less time con-

suming. Moreover, when 3D beam elements are used for leg i, if

the coordinates qf
ti

are the elastic coordinates the lth element of

this leg (previously denoted as qei;l), it can be proven that, as the

kth column of matrix Jfi
vil

corresponds to a unit twist that describes

the displacement of the leg extremity due to the kth coordinate of

vector qf
ti
; Jfi

vil
is equal to [23]

Jfi
vil
¼

i;mi Ril
i;mi Ril pil½ ��

0 i;mi Ril

� 	
(50)

where i;mi Ril is the rotation matrix between the local frame
linked at element i, mi and the local frame linked to element il
and [pil]� is the cross product matrix of the vector pil that char-
acterizes the position of the leg extremity with respect to the
frame linked to element il. Thus, its matrix inverse is equal to

Jfi
vil

� ��1

¼
i;mi RT

il � pil½ �
i;mi

� RT
il

� �
0 i;mi RT

il

" #
(51)

which requires few calculations and, before all, avoid any numeri-
cal inversion that could lead to numerical issues. If 2D beam
elements are used, some similar relations can be obtained.

Finally, the Jacobian matrix relating all variables _qtot to the

independent variables _q ¼ ½ _q0T
t1
� � � _q0T

tn
_xp�T can be obtained as

_qtot ¼

_q0
t1

_qf
t1

..

.

_q0
tn

_qf
tn

_xp

2
6666666666664

3
7777777777775
¼

Ic1
� � � 0 0

Jd1;1
� � � Jd1;n

Jd1;nþ1

..

.
� � � ..

. ..
.

0 � � � Icn
0

Jdn;1
� � � Jdn;n

Jdn;nþ1

0 � � � 0 I6

2
666666666664

3
777777777775

_q0
t1

..

.

_q0
tn

_xp

2
6666664

3
7777775
¼ J _q (52)

where Ici
is the (ci� ci) identity matrix, ci being the dimension of

vector _q0
ti
. Under the assumption of small displacements, the

following relation holds true

qtot ¼ Jq (53)

4.2 Computation of the Natural Frequencies of the Paral-
lel Robot. Introducing Eqs. (52) and (53) into Eq. (41) leads to

L ¼ 1

2
_qTJTMtotJ _q� qTJTKtotJq
� �

¼ 1

2
_qTM _q� qTKq
� �

(54)

Since in the natural frequency problem, matrices M and K are
evaluated in the robot nondeflected configuration, namely, for
qe¼ 0, and as a result for dqa¼ 0 and dqp¼ 0, it turns out that the
Lagrange equations yield

d

dt

@L

@ _q


 �
� @L

@q
¼M€qþKq ¼ 0 (55)

A solution ql of this equation satisfies

x2
l M�K

� �
ql ¼ 0 (56)

where xl¼ 2pfl, fl is the natural frequency associated with the lth
natural mode of vibrations and ql is its associated eigenvector.

Therefore, the natural frequencies of the parallel robot are eval-
uated by solving the following eigenvalue problem

det x2
l M�K

� �
¼ 0 (57)

In Sec. 5, the natural frequencies of the NaVARo, a parallel
robot developed at IRCCyN [17], are computed using the pro-
posed method and compared with the results obtained with the
CAST3M software [19] and experimentally.

5 Case Study: Computation of the Natural

Frequencies of the NaVaRo

5.1 Description of the NaVARo. The NaVARo was devel-
oped at IRCCyN and is shown in Fig. 3(a). The NaVARo is a
3DOF planar parallel manipulator composed of three identical
legs and one moving platform made up of three segments E1P,
E2P, and E3P rigidly linked at point P. The ith leg contains four
links AiBi, BiCi, CiEi, AiDi (named link 2i, link 3i, link 4i, and link
1i, respectively) connected with five revolute joints in such a way
that AiBiCiDi is a parallelogram linkage, i¼ 1, 2, 3. The base

frame F b O; x0; y0; z0

� �
(not shown in Fig. 3(b)) is defined such as

point O is located at the geometric centre of the equilateral trian-

gle A1A2A3. Frame F p P; xp; yp; zp

� �
is attached to the moving
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platform. In the home configuration shown in Fig. 3, F b and F p

coincide. (xp, yp) are the Cartesian coordinates of point P
expressed in frame F b and hp is the orientation angle of the
moving platform, namely, the angle between x0 and xp.

q1i denotes the angle between axis x0 and link 1i. q2i denotes
the angle between link 1i and link 2i. Three double clutches are
mounted to the base and located at points Ai, i¼ 1, 2, 3, in order
to actuate either joint q1i or joint q2i. As a consequence, the
NaVARo has eight actuation modes as described in Refs. [17] and
[24]. Therefore, the moving platform can be moved throughout
the manipulator workspace without reaching any parallel singular-
ity thanks to a judicious actuation scheme.

The kinematics of the ith leg is described by the modified Dena-
vit–Hartenberg parameters (MDH) [23] given in Table 1, in which
ci¼p/2 if i¼ 1, ci¼ –5p/6 if i¼ 2, and ci¼ –p/6 if i¼ 3. Besides,
the circumradius of the moving-platform is equal to 0.2027 m,
i.e., l5i¼ 0.2027 m.

Each link, of rectangular cross section, is made up of duralumi-
num alloy (E¼ 74000 MPa, G¼ 28900 MPa, and q¼ 2800 kg/m3).
Table 2 gives the cross section area and the moments of inertia of
the robot links.

In the experimental setup, the rotation of links 1i and 2i about
point Ai, i¼ 1, 2, 3, is locked thanks to the double clutch mecha-
nisms. The elasto-dynamic modeling of the NaVARo is complex
due to the closed-loop chain in each leg and is obtained by follow-
ing those three steps:

(1) Computation of the mass and stiffness matrices of the vir-
tual system assuming that the moving platform is cut at
point P and the parallel linkages are opened at points Di,
i¼ 1, 2, 3;

(2) Computation of the mass and stiffness matrices of the legs
including the closed-loop chains;

(3) Computation of the mass and stiffness matrices of the
NaVARo.

A single 3D beam element is used to model links 1i, 2i, 3i, and
5i (see Sec. 2.4) while two 3D beam elements of equal lengths l
(l ¼ lCiDi

¼ lDiEi
) are used to model links 4i. Links 4i are decom-

posed into two beam elements in order to close the loops as men-
tioned in step 2. Thus, the NaVARo is modeled as a spatial
mechanism and its elasto-dynamic model contains 144 generalized
coordinates: (i) 108 elastic coordinates; (ii) 12 passive joint coordi-
nates, i.e., four passive joint angles per leg; (iii) 18 intermediary
coordinates for the assembly of the legs; (iv) 6 coordinates for the
moving-platform pose. From Sec. 4, it turns out that there are only
90 independent coordinates among those 144 coordinates.

5.2 Numerical Analysis. A MATLAB code was written to com-
pute the robot mass and stiffness matrices using the modeling pro-
cedure presented in Secs. 2–4. The obtained robot mass and
stiffness matrices were validated by means of an equivalent model
developed using CAST3M software [19]. CAST3M aims to determine
the elastodynamic model of structures modeled with beams. Both
models give the same values for the first 90 natural frequencies of
the NaVARo. Table 3 gives the first five natural frequencies of the
NaVARo for the eight robot configurations shown in Fig. 4.

The natural frequencies of the NaVARo are the same for con-
figurations 3, 5 and 7 (4, 6, and 8, resp.) as they correspond to a
rotation of the robot base frame of 6120 deg with respect to con-
figuration 3 (configuration 4, resp.).

5.3 Experiments. Some experimental tests were carried out
using the setup presented in Fig. 5. The application of experimental
modal testing to the NaVARo was done through impact hammer

Table 1 MDH parameters of the ith leg

ji a(ji) rji cji bji aji dji hji rji

1i 0 0 ci 0 0 d1¼ 0.4041 m q1i–ci 0
2i 0 0 ci 0 0 d1¼ 0.4041 m q2i–ci 0
3i 2i 0 0 0 0 d3¼ 0.2100 m q3i 0
4i 3i 0 0 0 0 d4¼ 0.2100 m q4i 0
5i 4i 0 0 0 0 d5¼ 0.4200 m q5i 0

Table 2 Characteristics of the beam cross sections

link Aij (m2) Iyij
(m4) Izij

(m4) Ipij
(m4) I0ij

(m4)

1i, 2i, 3i, 4i 2.4 � 10� 4 1.152 � 10�8 2.000 � 10�9 1.352 � 10�8 5.902 � 10�9

5i 4 � 10�4 3.333 � 10�8 5.333 � 10�8 8.666 � 10�8 1.123 � 10�8

Fig. 3 The NaVARo (a) prototype of the NaVARo located at IRC-
CyN, Nantes, France and (b) Shematics of the NaVARo
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Fig. 4 The eight configurations used for the experiments: (a) pose 1 x 5 0 m, y 5 0 m, h 5 0 rad; (b) pose 2 x 5 0 m, y 5 0 m,
h 5 2p/3 rad; (c) pose 3 x 5 0.117 m, y 5 0.068 m, h 5 2p/3 rad; (d) pose 4 x 5 0.182 m, y 5 0.105 m, h 5 2p/3 rad;(e) pose 5
x 5 20.117 m, y 5 0.068 m, h 5 2p/3 rad; (f) Pose 6 x 5 20.182 m, y 5 0.105 m, h 5 2p/3 rad; (g) pose 7 x 5 0 m, y 5 20.135 m,
h 5 2p/3 rad; and (h) pose 8 x 5 0 m, y 5 20.21 m, h 5 2p/3 rad

Table 3 Comparison of the natural frequencies obtained with CAST3M and the MATLAB model

(Hz) Pose 1 Pose 2 Pose 3 Pose 4 Pose 5 Pose 6 Pose 7 Pose 8

f1(CAST3M) 44.10 45.71 36.98 40.17 36.98 40.17 36.98 40.17
f1(MATLAB model) 44.10 45.71 36.98 40.17 36.98 40.17 36.98 40.17
f2(CAST3M) 44.10 45.71 49.31 50.32 49.31 50.32 49.31 50.32
f2(MATLAB model) 44.10 45.71 49.31 50.32 49.31 50.32 49.31 50.32
f3(CAST3M) 53.98 54.58 53.37 52.99 53.37 52.99 53.37 52.99
f3(MATLAB model) 53.98 54.58 53.37 52.99 53.37 52.99 53.37 52.99
f4(CAST3M) 60.63 65.35 67.28 67.36 67.28 67.36 67.28 67.36
f4(MATLAB model) 60.63 65.35 67.28 67.36 67.28 67.36 67.28 67.36
f5(CAST3M) 95.62 97.92 91.80 91.52 91.80 91.52 91.80 91.52
f5(MATLAB model) 95.62 97.92 91.80 91.52 91.80 91.52 91.80 91.52
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excitation, a 3D accelerometer response and data postprocessing,
conducted using the DATABOX software developed at IRCCyN and
sold by MITIS company. The points and directions of excitation
were chosen on points Bi and Ei of each leg along all axes in order
to get the maximal number of resonance frequencies. Piezoelectric
triaxial accelerometers with a sensitivity of 1000 mV/g were used
to pick up the three acceleration responses. The acquisitions were
performed for the eight robot configurations shown in Fig. 4. Each
measurement resolution is equal to 1 Hz as the acquisition time and
the sampling time are equal to 1 s and 40 ls, respectively.

The resonance frequencies were obtained with a fast Fourier
transform of the signals given by the triaxial accelerometer. As a
result, the measured resonance frequencies between 0 and 80 Hz
for configurations 1–4 are given in Table 4. As the results for con-
figurations 3, 5, and 7 (configurations 4, 6, and 8, resp.) are similar
due to the manipulator symmetry, only the results for poses 3 and
4 are given in Table 4 and the redundant configurations were used
to highlight some resonance frequencies with low energy level.

It is noteworthy that the resonance frequencies of the NaVARo
amount to its natural frequencies as the damping is supposed to be
negligible.

It is apparent that the results given in Table 4 do not match with
those shown in Table 3. As a matter of fact, the elasticity of the
clutches has not been modeled and the joint masses have been
omitted with CAST3M software as the latter cannot model lumped
masses. Thus, a refined MATLAB model was written in order to con-
sider joint masses (about 300 g per joint) and elasticities in
clutches (about 2000 Nm/rad). The natural frequencies of the
NaVARo computed with this refined model and the measured fre-
quencies are gathered in Table 4 by comparing the computed
mode shapes with the hammer impact direction and the direction
of the vibration signals, the latter being measured by the triaxial
accelerometer.

We can notice that there is a good correlation between the
measured frequencies and the computed natural frequencies.
Nevertheless, few predicted frequencies do not match with the
measurements and vice-versa. Indeed, the theoretical and experi-
mental results may differ due to the following reasons:

• The NaVARo has not been calibrated yet and there are some
errors in the estimated moving platform pose.

• The passive joint elasticity has not been considered.
• The robot links are supposed to be coplanar in the theoretical

model, whereas they are not in the prototype for collision
avoidance.

• The robot links are not perfect beams as both ends are wid-
ened to insert ball bearings.

• The theoretical elastodynamic model does not consider any
damping effect.

However, from those experiments, we can claim that the theo-
retical model is satisfactory and the proposed modeling procedure
is efficient for reproducing the real behavior of any parallel robot.

6 Conclusion

Parallel robots have been increasingly used in the industry in
the last few years and the characterization of their elastodynamic
behavior is still an issue. Accurate elastodynamic models of paral-
lel robots are useful at both their design and control stages in order
to define their optimal dimensions and shapes while improving
their vibratory behavior. Several models have been proposed in
the literature. However, even if they can be adapted to any type of
mechanism, they are not directly devoted to parallel manipulators
and they do not provide a systematic and straightforward way for
computing the Jacobian matrices associated with the kinematic
constraints. Moreover, they do not take into account the symmetry
in the robot leg description for choosing the independent coordi-
nates describing the robot motion.

Therefore, a systematic method for the natural frequency com-
putation of parallel robots has been developed in this paper.
Indeed, the Jacobian matrices related to the kinematic constraints
of the parallel robots are obtained in a straightforward way. More-
over, a way of choosing a symmetrical set of leg variables has
been proposed. Contrary to most of the existing methods, the pro-
posed approach does not contain any numerical matrix inversion,
which is better to avoid numerical issues that may lead to a loss in
the result accuracy.

This proposed approach has been used to compute the natural
frequencies of the NaVARo, which is a planar parallel manipula-
tor with multiple actuation modes developed at IRCCyN. The
foregoing computed natural frequencies and those obtained with
CAST3M software by using an equivalent robot model turned out to
be identical. Then, some experiments have been carried out
through impact hammer excitation and measurements of the plat-
form displacements with a 3D accelerometer. The resonance fre-
quencies obtained with a fast Fourier transform of the signals
given by the triaxial accelerometer have been compared with the
frequencies computed from a refined model of the robot. It
appeared that there is a good correlation between the natural fre-
quencies of the NaVARo computed with this refined model and
the measured excitation frequencies.

Fig. 5 Experimental setup: DATABOX

Table 4 NaVARo natural frequencies (measured and computed
using refined model) between 0 and 80 Hz

(Hz) Pose 1 Pose 2 Pose 3 Pose 4

f1 meas. 22 19 17 18
f1 calc. 19.25 19.46 17.91 18.44
f2 meas 24 21 19 20
f2 calc. 20.43 20.49 19.71 19.26
f3 meas. 32 — 23 22
f3 calc. 40.25 41.88 20.91 21.28
f4 meas. — 44 27 33
f4 calc. 43.16 45.55 — 36.88
f5 meas. 42 45 32 43
f5 calc. 44.10 47.05 36.88 40.60
f6 meas. 50 53 43 44
f6 calc. — — 41.86 46.13
f7 meas. 52 54 46 50
f7 calc. — 56.37 45.61 55.29
f8 meas. 62 56 48 56
f8 calc. 67.94 — 50.52 57.81
f9 meas. 66 60 57 58
f9 calc. 68.81 63.10 55.45 62.27
f10 meas. 77 — 60 66
f10 calc. 79.79 — 61.04 —
f11 meas. — — 61 —
f11 calc. — — — —
f12 meas. — — 65 —
f12 calc. — — 65.00 —
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