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ABSTRACT

In this paper we present an analytical approach for the
static and dynamic analysis of the PAMINSA®, a new 4 degrees
of freedom parallel manipulator that has been designed at the
I.N.S.A.? in Rennes. On the base of the developed static model,
the input torques due to the static loads are reduced by means
of the optimum redistribution of the moving link masses. The
analytical dynamic modeling of the PAMINSA by means of
Lagrange equations is achieved. A numerical example and a
comparison between the suggested analytical model and an
ADAMS software simulation are presented.

INTRODUCTION

The complex nonlinear dynamics appears to be one of the
most important parallel manipulator characteristics. Even in the
static model, the expression of the torques (or forces) applied to
the actuators due to the weight of the platform and links, are
nonlinear. Driving torques on parallel manipulators are highly
nonlinear functions of the position, velocity and acceleration of
the mechanical actuator links. It should be noted that there are
algorithms to regulate the problems of non-linearity (static or
dynamic) and to ensure an efficient control and an acceptable
computation cost. However, the simplification of the
manipulator mechanical model is desirable and a mechanical

! parallel Manipulator of the .N.S.A.
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system with a linear input/output relation is more appealing for
industrial applications.

In the recent years, the decoupling of motions of parallel
manipulators has attracted researchers’ attention and different
structures have been proposed [1-8]. Previous works on this
problem may be arranged into two principal groups: (a) fully
decoupled parallel structures in which the architecture of the
manipulator is such that its input/output equations are linear
and fully decoupled [1-5]; (b) position/orientation decoupled
manipulators in which the end-effector’s position is
independent of the orientation [6-8].

Another trend of the kinematic decoupling is proposed in
the design of the PAMINSA®. It consists in decoupling the
motions in the horizontal plane and the translation along the
vertical axis.

DESCRIPTION OF THE PAMINSA

Fig. 1 shows a 3D model of the PAMINSA with three legs.
Each leg of the manipulator is realized by a pantograph mecha-
nism (Fig. 2) with two input points 3, and 8, and an output
point 5¢ (k = 1, 2, 3). Each input point 8, is connected with the
rotating drive M; by means of the prismatic guide mounted on
the rotating link. This type of manipulator architecture allows
the generation of motion in the horizontal plane by the rotating
actuators M;, M,, M3 and the vertical displacements by the
linear actuator My. Thus the displacements (x, y, 0) of the
platform in the horizontal plane (xOy) are independent of the
vertical displacements z.

% Patent concerning the PAMINSA is pending and a prototype is currently
being developed.

1 Copyright © #### by ASME



In the concept of the PAMINSA, the following properties
of the hand operated manipulators [9,10] are used: the work of
the gravitational forces of the manipulated object displaced in
the horizontal plane is zero because the gravitational forces are
always perpendicular to the displacements. However, the work
of the same forces in the case of the vertical displacements is
different from zero (the gravitational forces are parallel to the
displacements).

Thus, the rotating actuators move the platform in the
horizontal plane and their work due to the gravity of the
manipulated object is equal to zero.
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Fig. 1. 3D view of the PAMINSA.

Control

Fig. 2. Kinematic chain of each leg.

The obvious advantages of the PAMINSA are the
following:

a) the decoupling of the drive powers into two groups, which
allows the lifting of heavy load to a given altitude with
only one very powerful actuator and then, by using other
less powerful actuators, its accurate positioning in the
horizontal plane, i.e. it is possible to use two kinds of
actuators;

b) a simplification of the vertical control based on the linear
input/output equation (vertical displacements of the
platform and the linear actuator are copied by a
magnification factor);

¢) the improvement of positioning accuracy along the vertical
axis because the mechanical locking of the structure does

not allow the altitude variations during the displacements

in the horizontal plane;

d) the improvement of positioning accuracy in the horizontal
plane because the loads on the rotating actuators M; due to
the gravitational forces of the platform are cancelled.

It appears to us that the proposed manipulator could be
used in industrial applications for the manipulation of heavy
equipments with great positioning accuracy. Various fields are
possible depending on the type of the industrial application.

This contribution deals with the static and dynamic
analysis of the PAMINSA. The obtained results will be used for
the optimization of the dynamic behaviour of a prototype,
which is currently being developed at the I.N.S.A.

STATIC ANALYSIS AND INPUT TORQUES
OPTIMIZATION

The torques (or forces) Q; applied to the actuators M; (j = 1,
2, 3, 4) due to the force of gravity of links, joints and platform
of the studied manipulator can be expressed as:

p.,+Z[ZQ.k,} (i=1234, @

where Qiﬁ;‘j is the load applied to the actuator j due to the
gravity of the i-th link or bearings of the k-th leg (k = 1, 2, 3),
Q,s}” is the load applied to the actuator j due to the gravity of

the platform.
These loads can be represented in the form:

.k, (x,y,6,2) (ZJ (x,y,6,2)- G,k] )

Qpij =(3T 'Gpl) i ©)

where Ji is the Jacobian matrix between the point Py and the
actuated variables g, Py is the center of masses of the i-th link,
J is the general Jacobian matrix of the robot, between the point
P and the actuated variables g, P is the center of masses of the
platform, G and G;, are respectively the forces of gravity of the
platform and the links (or bearings).

It is easy to see that:

Qu =(17-G,)|; =0, forj=1,2,3 (4)

i.e. the input torques of the rotating actuators due to the gravity
of the platform are cancelled because the gravitational forces
are always perpendicular to the displacements (the platform
carry out the displacements in the horizontal plane).

Fig. 3 shows the redistribution of the actuator input torques
for the whole workspace of the PAMINSA (for 6 = n/3, where
0 is the rotation angle of the platform about the z axis). The
values of the input torques are differentiated by the different
colors.

It should be noted that the workspace of the PAMINSA is
symmetrical and the maximum values of the input torques are
the same for all actuators but they are situated in different
Zones.
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Fig. 3. Actuator input torques.

Thus, the input torques of the rotating actuators are the
following:

k=1\i=1

3 n
Qs :Z{ZQ%(X, y,0, Z)], (i=123,

where
3
Qi (x.¥,0) = [Zﬂk(x, Y,0,2)-Gy, Jl,— : ©)
k=1

In the work [10], it was shown that the input torques QJ§t of

the pantograph linkage can be cancelled by optimal
redistribution of movable masses.
Thus, in the same way as in the work [10] we can obtain:

Q?)tlj :07 (j:]-: 273)7 (7)

and consequently

Q?t =0, (j:]-, 213)1 (8)

In conclusion one can note the input torques of the rotating
actuators M;, M, and M; due to the gravity are completely
eliminated and the displacements of the platform in the
horizontal plane may be realized without great efforts (the
residual efforts are due to the resistance due to the friction in
the joints and the errors due to the elasticity of the links).

DYNAMIC ANALYSIS

The analytical model for dynamics of the PAMINSA based
on the Lagrange equations has been formulated to compute the
input torques which are necessary to control a given trajectory
of the movable platform. In order to simplify the mathematical
model, the effects of link elasticity and the friction in the joints
have been neglected. The pantograph linkages are assumed to
be composed of rigid bodies connected by joints without inner
clearance.

It should be noted that a CAD model of the studied
manipulator has been developed and more real simulation could
be carried out on the software ADAMS.

The studied manipulator has 4 degrees of freedom, so it is
natural to select the 4 joint variables {6;,0,,05,Z} as the 4

generalized coordinates, and then evaluate a set of 4 Lagrange
equations for these coordinates. Such equations would be the
formulas for the unknown torques (or forces).

However, due to the complexity of the geometrical model,
the evaluation of the Lagrange function and especially its
derivatives with four coordinates only, is found to be extremely
involved. So we use the same approach as in the study [11] and
we increase the number of the generalized coordinates.

In this studied case, it is better to choose the following 8
generalized coordinates:

la;f=1{xy.0,2,0,,0,,65,2},j=1, ..., 8 9)

The notation used to describe the pantograph linkages is
included below: (fig. 2)

Bix the link between the joints i and i+1 on the leg k
m; the mass of i-th joint

mg; the mass of the link By,

Isi the length of the link Bjy

I; theinertia matrix of the link Bj

We consider that the links are perfect tubes, i.e.

1% 0 o0
L=l 0 1 o | with 10 =10 (10)
o o 19
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Potential Energy
The potential energy V of the manipulator can be expressed
as follow:

3
V =Vy + ) Vi, (11)
k=1
where,
Vo =My, -g-z is the potential energy of the platform,

Vieg, =M1 Zg + Mo - Zg + M y3-Z +e5 is the potential

energy of the leg k,

g is the gravitational acceleration,

the expression of zsc and zg are given in Appendix 1 and the
expression of My, (i = 1, 2, 3) and e; are given in Appendix 2.

Kinetic Energy
The Kinetic energy T of the manipulator can be represented
in the form:

3
T=Ty+ ZT,egk , (12)
k=1
where,

Tol :%-(mp, Y+ 1 -62) is the kinetic energy of

the platform,
Tieg, = Tirans, + Trot, 1S the kinetic energy of the leg k,

Ttransk =My (ng + ygk) +Mey - Zszk
+ Mg - (% + Yo +25¢) + Mg - (g - Xk + Vs - Yok)
+Mos - 25 2o + Mg - Z + Mg - 25y - Z + Mg - 6§
(13)
Trot, Is the kinetic energy of the rotating links.

Let us note that there are two types of rotations (Fig. 4):
- rotation due to the actuators M; (j=1, 2, 3) (angle 6y),
which is about of the vertical axis,
- rotation due to the displacement of the pantograph in
the linkage plane (angles yy and ).

Fig. 4. A scheme for representation of the rotations of
the k-th pantograph linkage.

The kinetic energy of the rotating links can be written as:
_ .2 -2 A2 )
Trot, =M Wi + Meyg - i +0ic - (M g3 —Mgq -sin“(y ) +

M g €08 (i) =M g, -Sin? (@) + Mg - €08 (9 ))
(14)

The expressions for Mg (i = 1, ...
Appendix 3.

So the Lagrange function of the system is given by the
formula L=T -V and the Lagrange equations are the
following:

, 13) are given in

d(oL) oL 4
= =2+ Y A (15)
dt(@qJ oq; ;' !

where

A are the Lagrange multipliers (i=1, ..., 4),

q; are the generalized coordinates (j=1, ..., 8),

Q; are the input torques or forces.

Coefficients A;; are obtained by differentiating the closure-
loop equations of the manipulator with respect to the
generalized coordinates. These equations are given by the
expressions:

S = (Xsk —eyc) - sin(B) — (Vs — ) - cos(f) =0,k=1,2,3
(16)

s4=z+k&—2+|czzo. 17)

The expressions for By, €1 and ey are given in Appendix 1.
The system of equations (15) is solved as follow: firstly the
Lagrange multipliers must be obtained from the first four
Lagrange equations (for q;=Xx,y,6,z) and then the input

torques/forces can be determined from the last four Lagrange
equations:

Q=5 S—QLJ—;—;—MAS (18)
Q- %}—s—é—xz-% (19)
Q; :% %J‘%‘M'Am (20)
Qg :%(%)—2—;—}»4'&8 (21)

NUMERICAL SIMULATIONS

In order to verify the obtained expressions for the dynamic
model of the PAMINSA, we compared a numerical application
of the analytical computation with the ADAMS software
simulations. For this purpose a CAD model of the PAMINSA
(Fig. 5) has been developed with the parameters given in
Appendix 4.

The variation of the input torques/forces for the prescribed
trajectory (Appendix 5 - Fig. 8 to 11) with 1m/s2 maximal
acceleration has been computed and compared with the
ADAMS simulations. The variation of the input torque of the
rotating actuator 1 and the input effort of the linear actuator 4
for the entirely analytic dynamic model and the ADAMS
simulation are shown in Fig. 6 and Fig. 7. The values of the
input torques are differentiated by the different colors. The blue
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continuous curve represents the results of the analytic model
and the red dotted curve the ADAMS simulation.

The obtained results show that the examined functions are
identical. The small differences between the analytic dynamic
model and the ADAMS simulation are probably caused by
numerical noise.

Thus, the analytical dynamic model of the PAMINSA is
validated and can be implemented to improve the performance
of the control by taking into account, partially or totally all the
dynamic interaction torques.

Fig. 5. CAD model of the PAMINSA.

CONCLUSIONS

Static and dynamic analysis of the new parallel
manipulator with 4 degrees of freedom, called the PAMINSA
has been presented. By using an optimal redistribution of
masses of the pantograph linkages, the input torques of the
rotating actuators of the PAMINSA are cancelled. An analytical
model based on the Lagrange equations was formulated and a
simplified approach for its solution was proposed. Results of
numerical simulations have been presented to show the
feasibility of the proposed analytical approach.
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Fig. 6. Comparison of the Lagrange dynamic model and
ADAMS simulation for the input torque of the actuator 1.
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Fig. 7. Comparison of the Lagrange dynamic model and
ADAMS simulation for the input force of the actuator 4.
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APPENDIX
Appendix 1

Xs1 X =Ry -cos(0 + n/6)
Psi=| Y51 |=| Y —Rp -sin(6 + n/6)
Zs; Z+lgs

X5 X+ Ry -€os(-0 + /6)
Pso =| Y52 |=| Y= Ry -sin(-0 + n/6)
Zs, Z+lgs

Xs3 X—Rp -sin®

Pgs = Y53 | = y+RpI -C0sO

Zs3 Z+|lgs
where Ry is the platform radius.

Ry

3
€1 =—€p :_TRbIEZlZEZZ =——>.e;=0and ep =Ry,

where Ry, is the base radius.
Bi=6,+n/6, P, =0,+5-7/6, B3=05+3-1/2
Xok | (€ +H -cos(By)
Pok =| Yok | =| €ax +H -sin(By)
Zok F
where:
H=A+B-F, F=—(D-K)/(2-E), K=+4D?>-4-E-C,
E=—(B%+1), D=2-B-(X,-A),
=133 - XZ2+2-A-X,— A%, B=Z/(k-X,),
A= (184 =15 = X2+ X5 =ZH)I(2-k-Xy), Zy =25,

X4==X;/(k-1) and X; = \/(Xsk —ep)” + (Vs —€x)°

Appendix 2

3
m; m Mpg; Mg;
M = g <l Me + (_Ij + ﬂ —+ (ij + (ij}
pl 5 E E
{ i=2,3,4,7 k 2 i=1,7 2:k) Uk

M. = ((k=1)-m, —m; +k-mg (k—2)-m33—mB7
P2 =9 k 2-k

Mg + Mgy j

L, 8 29'|52(m2+ 2

Appendix 3

=1~{ﬂ+m5+ my _ m82 Mgs - (k- 2)2
k-(k=1)° (k-1° (2-k-(k-1))

+Mea Mgy - (k +1)2 +_ Msg
4 (2-k-(k-1)% (2-(k-1))?

M, = .[i_w( J+m5+lzl;(

—+mg +

)3

Mgg - (k- 2) mB4
4.k? 4

k2 kz-(k—l) 2-k?-(k-1) 2
+mB7'(k+1)_ Mgg J
2~k2~(k—1) 2-(k-1)

4-((k=1)-my-my)-—mMg; +2-Mps - (k-2) + Maq
2-k? 2

Moy =2 [2 k-)my  my Mg (k= 2)° +Maa

M =
c5 2

2
'I
B1 Bl B10 " 'B10
Mg =—22, M; =—2L, M, =—B10 B0

8 4.k 8
B4 B7 B4 B7
M :|§Y)+|\((Y) M :|§<x)+|§<x)
c9 2 » Whel0 2 !
B3 B8 B3 B8
M zl\((v)“L'éY) M :lg(x)+|§<x)
cll 2 ' cl12 2 )
lgy + 1
M .. —_B271B10
c13 2
0=9.81m/s2
Appendix 4

k=3, R,=0.35m, R,=0.1m

15:=0.308m, I5,=0.442m,
|53: Icg:0.42m, |B4:k |B7:O.63m,
|B5:0.0275m, |310:0.3635m

m,=0.214kg, m3=0.338Kkg,
m,=0.262kg, ms=0.233kg,
m,=0.28kg, mg=0.305kg,
mMe=0.259kg, m,=2.301kg,
m31:1.221kg, m3220.921kg,
m33:0.406kg, mB4:O.672kg,
mg7=0.107kg, mgg=0.403Kg,
m310:0.436kg.

153 = 0.0038kg/m?,
|Y($‘3> =0.02kg/m?,
&9 = 0.0012kg/m?,

<B4 =0.048kg/m?,

[ §<BX7 =8-10*kg/m?,

1887 = 0.003kg/m?,
Bs) =0.0024kg/m?,

|Y<$8> =0.02kg/m?,

I3, =0.003kg/m?,

I 510 = 0.02kg/m? and I, = 0.015kg/m?.

pl =
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Appendix 5: Trajectory used for the simulations
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Fig. 8. Position of the moving platform about x axis.
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Fig. 11. Orientation of the moving platform about z axis.
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