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Abstract

This master thesis report presents a motion optimisation method for a new aerial robot Flying
Parallel Robot (FPR) with respects to its dynamics and payloads constraints.

In the Chapter 1, an overview of a quadrotor and its potential research interest are discussed
at first. New design conceptions of quadrotor and platform are presented in a brief way. As the
object robot FPR is a new robot design, the trajectory generation of a single drone is addressed
and analysed as references. We explore the on-broad system navigation guidance control system
of a drone and the typical control system structure, which are the backgrounds and influence
trajectory generation. This is followed by state of art about the trajectory generation. Also,
we address introduction of Type 2 singularity for parallel robots and methods for crossing such
singularity. We introduce the object robot FPR which consists of a passive chain and two
drones as well as its advantages in applications.

In the Chapter 2 Dynamic model and control system of FPR, we recall the dynamic model
of FPR and the controller proposed by designers of FPR. To begin with, the dynamic model
consists of two parts: passive chain dynamic model and attitude dynamic model. Computed
torque control are applied in those two loops and one coupling term in the dynamic model is
treated as a perturbation in the controller. This perturbation term plays an significant part in
the following motion optimisation.

In the Chapter 3 Optimisation motion planning for FPR, we first formulate the motion planning
problem statement and choose 9-degree polynomial to generate a trajectory. Then, a optimi-
sation motion planning is presented: way points without its positions and via points work as
decision variables (a point in defined as position, velocity, acceleration, third and fourth deriva-
tives); the objective function is built based on the energy cost and the perturbation in the
controller. Then, the parameters in the optimisation algorithm and results are analysed later.
Subsequently, this optimisation method is validated by the simulation in Matlab. A prototype
robot built in LS2N is used to test the optimised motion in real experiment.

In the Chapter 4, two approaches to cross the Type 2 singularity for FPR prototype are
discussed and analysed. This chapter is began by addressing the problem statement of crossing
singularity for the PFR robot prototype. Then, two different approaches are used to cross the
singularity and final results are presented and summarised.
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Notations
BS backstepping

DOF degree of freedom

FBL feedback linearisation

FPR flying parallel robots

GNC guidance, navigation, and control

RUAV rotor unmanned aircraft vehicle

CoM centre of mass

RUAS rotor unmanned aircraft system

SMC sliding mode control

MDPT minimisation derivatives of the position trajectory

UAV unmanned aircraft vehicle

Llink length of FPR’s link

di the distance between the joint i and the CoM of quadrotor i

f input force of the FPR

fp1, fp2 force applied by drone 1 and drone 2 to the passive chain of FPR

f1z, f2z thrust force of drone 1 and drone 2 of FPR

fim the force produced by a rotor of a done

Fmax the maximum thrust force of a drone

g acceleration of gravity

J objective function in the motion optimisation

Jd Jacobian matrix relating qd and qa

Je energy consumption in the objective function in the motion optimisation

Jφ perturbation index in the objective function in the motion optimisation

Jp Jacobian matrix relating the tp and qa

Jpr Jacobian matrix relating [ẏj3, żj3]
T and [q̇1, q̇2]

T

mdi the mass of the quadrotor i

nvp number of via points

p, q, r rotational rates about body axes of a drone

p perturbations in the controller of FPR
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q1, q2 angles of joint 1 and joint 2 of FPR prototype

q11, q21 actuated joints of 5 bar mechanism

q12, q13, q22 passive joints of 5 bar mechanism

q21 the relative angle between two links of FPR

q state variable of FPR and q =
[
x y z ψ θ φ q21 φ1 φ2

]T
qp coordinate of the passive chain of FPR and qp =

[
y z φ q21

]
qa coordinate of the attitude of FPR and qa =

[
ψ θ φ1 φ2

]
ri positions of joint i in the vertical plane in the world frame

Ri is the rotation matrix about φ1 in the vertical plane

s configuration state of FPR

S points in motion planning of FPR and S =
[
s ṡ s̈ s(3) s(4)

]
Sd1,Sd2 decision variables in the motion optimisation

tp the platform twist of 5 bar mechanism

v1,v2 linear velocity of drone 1 and drone 2 of FPR

xz, yz, zz translational coordinate of a drone in the world frame

xe, ye coordinates of the end-effector of 5 bar mechanism

x, y, z translational coordinate of the FPR end-effector in the world frame

yj1, yj2, yj3 horizontal coordinate of joint 1, 2, 3 of the FPR prototype

zj1, zj2, zj3 vertical coordinate of joint 1, 2, 3 of the FPR prototype

xz xz = [xz, yz, zz]

xe xe = [xe, ye]

x x = [x, y, z]

α the weight in the objective functions of optimisation process

γ γ = [p, q, r]

ψz yaw angle of a drone in the world frame

φ1, φ2 roll angles of drone 1 and drone 2 of FPR

φ, θ, ψ roll angle, pitch angle and yaw angle of the end-effector

τim the torque produced by the rotor m of the done i

τbx, τby, τbz are roll torque, pitch torque and yaw torque of a drone.

τ e the real robot input efforts of 5 bar mechanism
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τ ta the virtual input efforts in the actuated joints of 5 bar mechanism

τ td the virtual input efforts in the passive joints of 5 bar mechanism

τ b drag torque τ b = [τbx, τby, τbz]

δ, δp perturbations representations in the close-loop of the passive chain

$im the rotor angular speed of a drone

ξ configuration state of FPR prototype and ξ =
[
q1 q2

]
Ξ Ξ =

[
ξ ξ̇ ξ̈ ξ(3) ξ(4)

]
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Chapter 1

Introduction

This chapter is dedicated to introduce Flying Parallel Robot and the state of art trajectory
generation for a single quadrotor.

First of all, a quadrotor and its application as a robot platform are introduced. By giving a brief
and a big overview of quadrotor applications, we aim to show the potential research interests of
quadrotors. Then, an overview of the on-board system of a quadrotor, navigation, guidance and
control (NGC), is given to understand trajectory generation for a quadrotor system. The whole
NGC structure and typical control system are introduced then. In the third part, trajectory
generation and its state of art of the methods are explored, especially two main approaches:
minimisation derivatives of the position trajectory and optimal control approach. Their models
are built and analysed in details in this part. Crossing Type 2 singularity is another important
task in this thesis. State of art about methods for crossing Type 2 singularity for parallel robots
are stated. This is followed by the introducing the conception of FPR that is our object robot.

1.1 State of art quadrotor design and application

Generally speaking, a quadrotor or drone is an aerial mechanism with six DOF, i.e three
translations and three rotations. It consists of four individual rotors attached to a rigid cross
airframe [23]. One example is XAircraft X650 shown in the Fig.1.1.

Fig. 1.1. XAircraft X650
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A quadrotor has been deeply investigated in recent years and it has been applied in many differ-
ent areas, because of its rapid manoeuvrability, easy maintainability, low-cost manufacturability
with reduced mechanical complexity, stable hovering capability [29, 28]. Now, researchers now
are trying to apply drones as versatile platforms. Quadrotors and some mechanics like a ma-
nipulator are used to build a complex flying platform. Main applications can be regrouped into
three categories: a flying grasper, a cable-suspended transportation and an aerial manipulation
with a tool.

A flying grasper

A high speed and avian-inspired grasping quadrotor is able to perform with pick-up velocities
at 2m/s and 3m/s in the real experiment[35].

Fig. 1.2. A still image comparison between the eagle and the quadrotor for a trajectory with the
quadrotor moving at 3 m/s (9 body lengths/s) at pickup.[35]

A cable-suspended transportation

Montserrat Manubens et al. propose the robot FlyCrane consisting of three aerial robots
connected to a platform by three pairs of cables, as illustrated in Fig.1.3.

Fig. 1.3. The Rescue problem: the FlyCrane has to install a lightweight footbridge between two
buildings for a rescue operation.[24]

An aerial manipulation with a tool

Fig.1.4 shows that Christopher Korpela et al.[20] built an aerial vehicle with dual multi-degree
of freedom manipulators. They also developed control methods and tested them in the flight
tests.

To sum up, the quadrotor is not only working as a flying robot, but also can be a working
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Fig. 1.4. MM-UAV carrying a long rod[20]

platform on which other devices can be put. In such a way, the the workspace of a robot can
extended dramatically.

1.2 Navigation, guidance, control system of a quadrotor

In order to have a big picture of the trajectory generation of a drone, we briefly discuss the
on-board system including navigation, guidance and control subsystems and address the state
of art about the trajectory generation methods.

An on-board system of a quadrotor can be regrouped into three main categories: navigation,
guidance and control (NGC). NGC are expected to finish missions without direct or continuous
human control. Especially, the guidance system has the highest priority compared to the
navigation system and the control system. The components of navigation system and
guidance system are shown in the Fig.1.5.

Navigation system is to figure out ”where we are”. For autonomous vehicles such as robots
and UAVs, navigation can be defined as the process of extracting information about the vehicle’s
self-motion and also the surrounding environment [28]. Typically, most of the sensors of UAV
work in the frame of navigation system. Navigation system can estimate the vehicle’s attitude,
angular rates, height, velocity and position with respect the word frame or relative to the target.
In some advanced navigation system, mapping, obstacles detection and localization can also be
done.

Guidance system works like a driver of UAV finishing the mission and ensuring the safety
at the same time. It takes information ”where we are” and ”where the target is” from the
navigation system and generate a trajectory that UAV will track to reach the destination
respecting the obstacles and constrains of UAV.

In the guidance system,
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Fig. 1.5. Overall structure of guidance navigation and control systems onboard of a RUAS [18].

1. Mission Planning refers to the process of generating tactical goals, a route (general or
specific), a commanding structure, coordination, and timing for a RUAS or a team of
unmanned systems [17, 18]. The mission, the destination for example, can be pre-defined
and uploaded to the UAV or can be generated online.

2. Path Planning is to find the best and safest way, usually a curve, to reach a goal posi-
tion/configuration or to accomplish a specific task [18]. The path does not contain any
time information.

3. Trajectory Generation produces different time-respecting motion functions (reference po-
sition, reference heading, etc.) that are physically possible, satisfy RUAS dynamics and
constraints. and can be directly used as reference trajectories for the flight controller [18].
In other words, it add the time information to the path.
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1.3 Trajectory generation for a quadrotor

1.3.1 Problem statement of trajectory generation

A trajectory generation problem can be presented as: with given initial and final sates, a
trajectory leads a quadrotor to the final destination and is feasible with respect to dynamics
constrains and control input constraints.

A configuration is the three position and three orientation coordinates. The configuration
space or C-space is the set of all possible configurations of a vehicle. A state consists of the
configuration and rates of the configuration change. Similarly, all the possible states are named
after state space.

The whole configuration or state world could be divided into free space and obstacle space. Free
space is where the vehicle can move without contacting obstacles. Obstacle space is the subset
of points representing a collision between the vehicle and an obstacle [8]. UAV is represented
by a point vehicle which is a basic assumption for trajectory planning to vastly simplifies the
problem [8]. An example is given by the Fig.1.6.

Fig. 1.6. Point vehicle representation

Fig.1.6 shows that a path is a curve that the vehicle is going to follow in the configuration
space, while a trajectory refers to a combination of the path and the time information along
the path.

Planing the UAV flight path or trajectory is the chief problem in autonomous UAV deployment
[28]. The main challenges can be summarised as[22, 21, 7, 28, 8]

• Computation complexity caused by mathematical optimization methods which are com-
putationally too demanding.

• Dependency between time and the state space introduced by the differential constraints

• UAV have differential constrains like limited speed and maximum acceleration.
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• Uncertainty in vehicle dynamics and limited precision in command tracking.

• Uncertainty in the knowledge of the environment (e.g., obstacle locations).

• Uncertainty in pose information.

• Disturbances in the operational environment (e.g., wind, atmospheric turbulence).

1.3.2 Sate of art of trajectory generation

Trajectory generation for a drone has been a research interest for many years. However, due to
difficulties and challenges mentioned before, the exact solution is generally impossible to find.
Nearly all the algorithms designed to solve this problem are approximative [8].

In 2015, Hehn, Markus and D’Andrea, Raffaello [14] classify three main categorisations in
trajectory generation algorithms for quadrotors:

1. A decoupling geometric and temporal planning approach.

(a) first, a geometric trajectory without time information is constructed. For example,
those path primitives can be constructed with lines in [16], polynomials in [6] or
splines in [3].

(b) then, parametrising the generated path in time such that the dynamic constraints
of the quadrocopter are enforced.

2. An another approach is minimisation derivatives of the position trajectory (MDPT).
These derivatives are linked to control input constraints and feasibility of the trajectory.

3. A numerically optimal control (OP) approach that directly considers the nonlinear dy-
namics of the drone. Optimal solutions are found through optimal control methods.

1.3.3 Minimisation derivatives of the position trajectory

MDPT considers the dynamics constrains and control inputs by optimising the derivatives of
the position trajectory. Those derivatives are associated with the control and dynamics.

In 2012, Daniel Mellinger and Vijay Kumar [25] proposed and tested a real-time method min-
imising derivatives of the position trajectory to generate a sequence of 3D positions and yaw
angles.

At first, a keyframe σ is defined as a combination of the position xz and the yaw angle ψz in
the space.

σ = [xz, ψz] (1.1)
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where xz =
[
xz yz zz

]T
and xz, yz, zz are translational coordinate of the drone.

The quadrotor is expected to pass some keyframes at certain time. Fig.1.7 shows an example
in which the quadrotor should begin from keyframe 0 and pass by keyframe 1, keyframe 2 and
then till keyframe n.

Fig. 1.7. Key frames in the space

The decision variables are the keyframe sequences:
[
σ1 σ2 . . .σn−1

]
.

Then, a m-order polynomial function is used to generate a trajectory between each two keyframes.
The choice of m depends on the mission. For instance, if we want to specify the the position, ve-
locity and acceleration at the initial and target point, the order of polynomial functions should
be 5.

Then the whole trajectory is represented as

σ(t) =


∑m

i=0 σi1t
i t0 ≤ t ≤ t1∑m

i=0 σi2t
i t1 ≤ t ≤ t2

: :∑m
i=0 σint

i tn−1 ≤ t ≤ tn

(1.2)

where σi1t
i(σi2t

i...) are parameters in the polynomial function that define a trajectory between
keyframe σ0 and σ1.

Then, σ(t) acts as a basis function for the following optimisation. In the model of Daniel
Mellinger and Vijay Kumar, control inputs u2 and u3 are functions of the 4th derivatives of the
positions and u4 is related to the 2nd derivative of the yaw angle. Thus, the objective function
is designed to minimise the integral of the square of the snap.

min

∫ tf

t0

ux ‖
d4xz
dt4
‖2 +uψ ‖

d2ψz
dt2
‖2 dt (1.3)

where ux, uψ are constants that make the integrand nondimensional.

Each keyframes should be passed by the quadrotor at a specified time and the corresponding
constrain is formulated as

σ(ti) = σi, i = 0, ...,m (1.4)
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Sometimes, the quadrotor might be asked to stop or meet a special conditions at some of
keyframes. Other constrains about elements of σ(t) xz, yz, zz, ψz are defined depending on the
mission.

djxz
dtj
|t=ti = 0 or free, i = 0, ...,m; j = 1, 2, 3, 4 (1.5)

djyz
dtj
|t=ti = 0 or free, i = 0, ...,m; j = 1, 2, 3, 4 (1.6)

djzz
dtj
|t=ti = 0 or free, i = 0, ...,m; j = 1, 2, 3, 4 (1.7)

djψz
dtj
|t=ti = 0 or free, i = 0, ...,m; j = 1, 2 (1.8)

Also, some extensions like corridor constraints and optimal segment times were done in their
work. Real time experiments were conducted to test this method in [25].

Then the developments of MDPT are introduced in the Table 1.1.

Table 1.1. Sate of art of MDPT
Time Researchers Validation
2012 Soonkyum Kim et al.[19] considered the trajec-

tory generation as a Mixed-Integer Quadratic Pro-
gram (MIQP) respecting kinematic constraints,
avoiding obstacles, and constraining the trajec-
tory to a particular homology class.

Numerical Simula-
tion

2012 Daniel Mellinger et al.[26] used MIQP approach
to generate trajectories for four quadrotors.

Real time experi-
ments

2013 Charles Richter et al.[31]. who were inspired by
the work in [25] developed a objective function
minimising a weighted sum of derivatives

Real time experi-
ments

2015 Sarah Tang and Vijay Kumar[34] applied MIQP
trajectory generation for a quadrotor with a cable-
suspended payload

Numerical Simula-
tion and Real time
experiments
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1.3.4 Optimal control approach

Markus Hehn and Raffaello D’andrea developed a dynamic algorithm for trajectory generation
that directly incorporates the dynamics constrains at the planning stage and is fast enough in
real-time planning [13] in 2011.

In their work, a trajectory generator computes a trajectory from a given state xz0, yz0, zz0 to a
given target state in order to reach in the minimal time. It is defined as xz(t), yz(t), zz(t). Then
control inputs are calculated from this trajectory generated. The control inputs are set as the

rotational rates about body axes γ =
[
p q r

]T
and the mass-normalised collective thrust Fa.

Constrains of thrust and rotational rates are analysed first. The trajectory generation can be
done in each translational coordinate after decoupling. Jerk of three translational DOF

...
x z are

planning inputs considering the acceleration and control inputs constrains. Then, trajectory
generated is checked and replanned with reduced jerk constrains if it is infeasible.

The whole process is shown in the Fig.1.8.

Fig. 1.8. Closed-loop control using the trajectory planning [13]

Feasibility Conditions

Feasibility constrains for trajectory include two parts: collective thrust and rotational rates.
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In terms of collective thrust, a vector fa is introduced to represent the total mass-normalised
force required to track the trajectory.

fa :=

ẍzÿz
z̈z

+

0
0
g

 = fRb

 0
0
Fa

 (1.9)

The direction of thrust can be described as

f̄a =
fa
‖ fa ‖

(1.10)

The limits for thrust force are assumed to be [Fmin, Fmax]. The constrains of the thrust force
can be represented by fa in the following way

Fmin 6‖ fa ‖6 Fmax

Fmin 6
√

(ẍz)2 + (ÿz)2 + (z̈z + g)2 6 Fmax
(1.11)

The control inputs p, q have to be bounded with the unit norm propoerty of the rotation
matrix[1, 13].

p 6‖ ˙̄fa ‖

q 6‖ ˙̄fa ‖
(1.12)

Constrains on r can be user-defined, for instance, r = 0.

Decoupling

In order to simplify the problem, three DOF are decoupled into xz, yz, zz independently in
trajectory generation.

As a consequence of decomposition, collective thrust and rotational rate constrains for the
whole system have to be transformed for each translational coordinate.

For collective thrust constrains, limits user-defined (ẍzmax , ÿzmax , z̈zmax) are set for each coordi-
nate separately.

|ẍz| 6 ẍzmax , |ÿz| 6 ÿzmax , |z̈z| 6 z̈zmax (1.13)

The values of (ẍzmax , ÿzmax , z̈zmax) should meet conditions expressed in Eq.1.11.√
(ẍzmax)

2 + (ÿzmax)
2 + (z̈zmax + g)2 6 Fmax

g − z̈zmax > Fmin
(1.14)

The transformation of rotational rate constrains to each coordinate is complicated. Planning
inputs are

...
x z, the constrains on p, q are transformed to constrains for the

...
x z,

...
y z,

...
z z. Authors

show that even it is possible to find relations between
...
x z and fa, it is difficult to get allowable

magnitudes for elements due to the complexity.

Consequently, the constrains, for instance
...
x zmax , are defined by users and will be iterated for

obtaining a feasible trajectory in the checking feasibility part.

Trajectory generation
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An example of xz trajectory generation is presented with the target being the origin. Let
% = (%1, %2, %3) = (xz, ẋz, ẍz). The decision variable is ζ the third derivative of the xz. The
purpose is to minimise the reaching time tf . So, the time-optimal problem can be rewritten as:

ζ♦ = argmin tfx (1.15)

subject to states dynamics
%̇1 = %2

%̇2 = %3

%̇3 = ζ

(1.16)

The initial and target state are
%(t = 0) = xz0

%̇(t = 0) = ẋz0

%̈(t = 0) = ẍz0

%(t = tfx) = 0

(1.17)

The control input corresponds to the constrains on rotational rates.

|ζ| 6 ζmax (1.18)

where ζmax =
...
x zmax . That might be modified in the checking feasibility steps.

Acceleration constrains from Eq.1.13 will appear as a state constrain.

|%3| 6 ẍzmax (1.19)

With some mathematics in applied optimistic in [2, 11], the author claims that the solution ζ♦

has a form shown in Fig.1.9. The corresponding ẍ, x can be integrated by Eq.1.16.

Fig. 1.9. Optimal trajectory including λ3, ζ
♦, ẍ♦, x♦[14]

The whole process consists of five sections:

1. t ∈ [0, t1], ζ
♦ = −ζmax,
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2. t ∈ [t1, t2], ζ
♦ = 0,

3. t ∈ [t2, t3], ζ
♦ = ζmax,

4. t ∈ [t3, t4], ζ
♦ = 0,

5. t ∈ [t4, tfx], ζ
♦ = −ζmax

Obviously, ζ♦ is bang-singular and fully defined by its switching times t1, ..., tfx. It is fully
specified by the five times t1, t2, t3, t4, tfx and the initial control input. The decision variables
change to t1, t2, t3, t4, tfx instead of ζ.

{t1, t2, t3, t4, tfx}♦ = argmin tfx (1.20)

A bisection algorithm is used to compute tf based on which we can directly calculate t1, t2, t3, t4.
Then the whole trajectory is obtained.

Applying this method to yz, zz coordinates to obtain tfy, tfz. The quadrotor ends at rest at the
origin at time tf = max(tfx, tfy, tfz).

Check feasibility

The trajectory generated would be checked whether it meets the collective force and rotational
rates constrains in Eq.1.11,1.12. It can act as a reference trajectory for the controller if it
satisfies the constrains. Otherwise, we need to re-generate the trajectory with smaller values
of ζmax.

This method was tested at an indoor aerial vehicle development platform at ETH Zurich. The
3D result is shown Fig.1.10.

Fig. 1.10. 3D flight trajectory during experiment

In the Fig.1.10, the target point is marked by a red cross. The beginning state includes nonzero
velocity and acceleration. At each blue circle, the quadrotor generates a reference trajectory
which is a dotted blue line. The actual trajectory is the bold black line.
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The quadrotor does not follow the trajectory 1 at the beginning. Then a trajectory 2 is com-
puted and the quadrotor follows this trajectory quite well till nearly the end. A large error
along axis z occurs at the end of the trajectory 2 and a trajectory 3 is computed, which is
thought to be caused by strong aerodynamics effect. Finally the quadrotor reaches the target
by following the trajectory 3.

Remarks

This method incorporates the thrust force and rotational rates in the optimal form. The
decision variable are the jerks of translation coordinates and they are represented by 5 time
variables. Experiments show that this method can be conducted in real time.

State of art

Table 1.2 shows the state of art of optimal approach for trajectory generation for a quadrotor.

Table 1.2. Sate of art of optimal control approach

Time Researchers Validation
2012 Markus Hehn and Raffaello D’Andrea[12] improved

the method presented by crossing a specified position
at a specified time.

Real-time experiment

2013 Mark W. Mueller et al.[27] introduced a cost func-
tion built with jerk of the quadrotor into the optimal
framework in[13].

Real-time experiment

2015 Markus Hehn and Raffaello D’Andrea[14] proposed
an iterative method for optimally choosing the de-
coupling parameters for the method in[13].

Real-time experiment

This method incorporates thrust force and rotational constrains in the optimal problem formu-
lation directly. But there is not an efficient way for tuning parameters such as ẍmax.

1.4 Type 2 singularity of parallel robots

Singularity and crossing singularity have been the research interest for decades in terms of
parallel robots. A 5 bar mechanism is a typical parallel robot shown in the Fig.1.11 whose
actuated joints are q11 and q′21.

Dynamic model of this parallel robot 5 bar mechanism is presented as

τ e = τ ta + JTp wp + JTd τ td (1.21)

where τ e is the vector of the real robot input efforts.
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Fig. 1.11. A 5 bar mechanism

τ ta corresponds to the virtual input efforts in the actuated joints of the parallel robot related
to the Lagrange Lt of the virtual tree structure.

τ ta =
d

dt

(
∂Lt
∂q̇a

)T
−
(
∂Lt
∂qa

)T
(1.22)

where qa represents the actuated joints and qa =
[
q11 q′21

]T
wp corresponds to the wrench of the free platform expressed in the base frame and related with
the Lagrange Lp of the moving platform

wp =
d

dt

(
∂Lp
∂ẋe

)T
−
(
∂Lp
∂xe

)T
(1.23)

where xe =
[
xe ye

]
is the coordinate of the end-effector.

τ td is a vector, which corresponds to the virtual input efforts in the passive joints of the parallel
robot related to the Lagrange Lt of the virtual tree structure, and can be computed as:

τ td =
d

dt

(
∂Lt
∂q̇d

)T
−
(
∂Lt
∂qd

)T
(1.24)

where qd =
[
q12 q22 q13

]
and q12, q22, q13 are passive joints.

Jp = A−1r B is the Jacobian relating the platform twist tp and the active joint velocities q̇a,
which is obtained from

Artp + Bq̇a = 0 (1.25)

Jd allows to express the passive joint velocities q̇d as a function of the active joint velocities q̇a.
More details could be found in [5].
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Singularities in parallel robots can be classified into following types of singularities according
to the kinematic models, which is proposed by Grosselin and Angeles[10].

1. When matrix B is rank-deficient, such kind of singularity is called Type 1 singularities,
in which case the robot loses the ability to move in one given direction. In other words,
there is a direction in which no task space velocity can be generated in such configuration.
Motion of the actuators does not lead to the displacement of the robot platform

2. When matrix Ar is rank-deficient, it means Type 2 singularities. It refers to the the fact
the parallel mechanism loses its ability to change from assembly mode. The robot gains
one (or more) uncontrollable motion.

One Type 2 singularity of the 5 bar mechanism is given in the Fig.1.11. In such configu-

ration, the parallel robot gains an uncontrollable motion perpendicular to
−−−−→
A12A13,

−−−−→
A22A13

(under-actuation in the system).

Fig. 1.12. One Type 2 singularity configuration of a 5 bar mechanism

3. When both Type 1 and Type 2 singular postures appear together (Ar,B are rank-
deficient), it means Type 3 singularity. In such configurations, the robot loses locally
the ability to perform a motion along one direction of the workspace and also gains one
or more uncontrollable motions along another direction.

4. Other singularities such as LPJTS singularities and its introduction can be found in [5]

One approach is to develop a physical criterion deduced from the degeneracy conditions of the
dynamic model [4]. The configuration at the singularity will be specified off-line.

Since the matrix Ar is rank-deficient, we can find a non-null vector ts in the kernel of Ar.

tTs wp = 0 (1.26)

That is the condition to cross the type 2 singularity. It means that the wrench applied on the
platform by the legs and external forces wp must be reciprocal to the twist ts of uncontrollable
motion in the singularity locus.
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A multi-model computed torque control for tracking optimal trajectories that respect the phys-
ical criterion is proposed in [30]. Damien SIX et al implement a controller in Cartesian space to
track a trajectory that crosses a Type 2 singularity in [32] After that, Rafael Balderas Hill et al.
[15] propose a controller integrated in a multi-control architecture in order to switch between
a classical computed torque control far from the singularity and the virtual-constraint-based
control law near to the singularity locus. This method is tested in real experiments.

1.5 A Flying parallel robot

Damien Six, Abdelhamid Chriette, Sebastien Briot and Philippe Martinet [33] explore a new
flying structure in the Fig.1.13. It is built from two quadrotors linked by a passive kinematic
chain. From the perspective of the whole robot, it is a parallel robot where actuators are
replaced by two drones. In other words, the end-effector is driven by the two quadrotors which
are under-actuated.

Fig. 1.13. Flying parallel robot[33]

FPR has several advantages compared to the existing flying platforms [33]:

• It can deal with tasks where the end-effector is under or above the quadrotors by changing
the configuration of the system.

• The whole efforts are spread over two quadrotors such that FPR’s total payload is en-
hanced.

• The absence of additional embedded motors to actuate the effector reduces the load of
the system itself and maintain the energetic autonomy of the drones.

• Choices of leg topology [9] leads to a variety of physical properties of potential interest.

As a combination of quadrotors and a passive chain, FPR’s dynamics is more complicated
and difficult to analyse than ordinary quadrotors. That is, the under-actuation and dynamic
limits, such as thrust limits, of quadrotors cause a difficulty for designing controllers for FPR.
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The motion optimisation for the robot needs to consider, under-actuation of quadrotors, the
dynamics constrains and two quadrotors payload limitations.

1.6 Master thesis contents

In terms of FPR, the modelling part and a controller system have already been done in [33].

The main purposes and contributions of the thesis are

• to propose an optimal motion planning with the respect of dynamic constraints linked to
the drones payload limitations for the RPR.

• to design a trajectory crossing Type 2 singularity of FPR.

This report is organised as follows:

1. Chapter 2 recalls the dynamic modelling process of FPR and introduce the controller
designed in [33].

2. Chapter 3 addresses the main contribution of this master thesis optimal motion planning
for FPR. Optimisation results are validated in simulation/Matlab. This method is also
tested with a FPR prototype robot.

3. Chapter 4 analyses Type 2 singularity of FPR and the approaches to crossing Type 2
singularity for the FPR prototype.
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Chapter 2

Dynamic model and control system of
FPR

This Chapter illustrates main steps for developing the dynamic model for FPR and the CTC
controller in [33]. Two parts of the whole dynamic model are demonstrated: passive chain
dynamic model and attitude dynamic model. Based on that, one CTC controller is introduced.

2.1 Dynamic model of FPR

The robot is designed to perform motions restricted to a vertical plane in order to simplify and
reduce the study complexity. The chain motion is constrained by the three revolute joints to a
planar motion and FRP becomes a planar parallel mechanism. Two passive joints connect the
chain and drones which are named after drone 1 and drone 2. Fig.2.1 shows the frames and
the parametrisation.

The world frame is defined as F with axis −→x ,−→y ,−→z . The local frame attached to the end-
effector is named after F ′. Two local frames D1,D2 are set at the centers of quadrotor 1 and
quadrotor 2.

Fig. 2.1. Parametrisation of the FPR[33]
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The coordinate vector q =
[
x y z ψ θ φ q21 φ1 φ2

]T
where

•
[
x y z

]
means the origin of the local frame F ′ expressed in world frame F

•
[
ψ θ φ

]
represent orientation of the local frame (Yaw/Pitch/Roll angles) in the world

frame.

• q21 is the relative angle between two links.

•
[
φ1 φ2

]
are the roll angles of respectively drone 1 and drone 2 in the world frame.

The inputs of the FPR are from two quadrotors and each quadrotors provides one thrust force
and three torques. They can be represented by two actuation wrenches:

w1 =
[
0 0 0 f1z τ1x τ1y τ1z

]
(2.1)

w2 =
[
0 0 0 f2z τ2x τ2y τ2z

]
(2.2)

where f1z, f2z are two thrust forces and τ1x, τ1y, τ1z, τ2x, τ2y, τ2z are six torques defined in the
local frames of quadrotors D1,D2. We define

f =
[
f1z f2z

]T
(2.3)

τ =
[
τ1x τ1y τ1z τ2x τ2y τ2z

]T
(2.4)

(2.5)

The dynamic model of FPR is decoupled into two parts: passive chain dynamic model and
attitude dynamic model.

Passive chain dynamic model

qp =
[
y z φ q21

]
parametrises the configuration of the passive chain.

fp1 and fp2 are the forces applied to the chain by the quadrotors. For instance, fp1 is shown in
the Fig.2.2

The relationship among q̈p, fp1 and fp2 is obtained by applying the Euler-Lagrange equations
to the passive chains.

Mpq̈p + cp = JTp

[
fp1
fp2

]
(2.6)

Mp is the definite positive generalised inertial matrix (4 by 4) of the planar passive chain
depending on qp; cp refers to a 4 dimensional vector of Coriolis and centrifugal effects depending
on qp and q̇p.

Then, links among the forces applied by quadrotors, input thrust forces and roll angles are
developed. This is done through expressing the translational dynamics of the quadrotors.
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Fig. 2.2. Forces acting on quadrotor 1[33]

For quadrotor i(i=1.2), we have[
0
fiz

]
= Ri[fpi +mdi(r̈i − g)] + pi (2.7)

pi =

[
−mdidiφ̇

2
i

mdidiφ̈i

]
(2.8)

where

• Ri =

[
cos(φi) sin(φi)
−sin(φi) cos(φi)

]
is the rotation matrix about φi in the vertical plane,

• ri positions of joint i in the vertical plane in the world frame,

• mdi represents the mass of the quadrotor i,

• g is acceleration of gravity,

• di means the distance between the joint i and the CoM of quadrotor i.

Combing Eq.2.6 and Eq.2.7 results in

Rinv(Ψf − p) = Mtq̈p + ct (2.9)

with Rinv =

[
R−11 0

0 R−12

]
, Ψ =

[
0 0 0 1
0 1 0 0

]
, p =

[
p1

p2

]

The term p is considered as a perturbation of the passive chain dynamics, such that dynamic
equations of passive kinematic chain depends only on the input thrust forces f and roll angles
of two drones φ1, φ2.
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Attitude dynamic model

The coordinates for attitude are qa =
[
ψ θ φ1 φ2

]T
.

Applying Euler-Lagrange equations to the whole FPR and selecting acceleration of attitudes
results in

q̈a = Minv,a

(
JT
[
w1

w2

]
− c

)
(2.10)

in which

• Minv,a is the rows of the inverse of the matrix M restricted to the attitude coordinates
and c corresponds to the vector of Coriolis and centrifugal effects:

q̈ = M(−1)
(

J

[
w1

w2

]
− c

)
(2.11)

• J is the Jacobian matrix from the twists of drone 1, 2 and coordinates velocities q̇

• w1,w2 are input wrenches in quadrotors’ local frames, defined in Eq.2.1 and Eq.2.2.

Then, actuation wrenches are expressed in terms of f and τ . Eq.2.10 can be represented as

q̈a = Minv,a

(
JTτ τ + JTf f − c

)
(2.12)

q̈a = Aττ + Minv,a

(
JTf f − c

)
(2.13)

2.2 Control methods for FPR

The controller scheme of the FPR is illustrated in the Fig.2.3.

Fig. 2.3. General scheme of the FPR controller [33]

The whole control system is a combination of two cascaded loops: one outer loop for passive
chain and one inner loop for attitude. The outer loop generates desired roll angles uφ and input
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thrusts f for two drones. Also, The desired angles of θ and ψ are set to guarantee the vertical
planar motion. A CTC controller is designed as

up = q̈dp −Kpp(pp − pdp)−Kdp(ṗp − ṗdp) (2.14)

Submitting up and considering p as disturbances in Eq.2.9, we can compute the input force f

f =

[
−sin(φ1) cos(φi) 0 0

0 0 −sin(φ2) cos(φ2)

] [
fu1
fu2

]
(2.15)[

fu1
fu2

]
= (Mtup + ct) (2.16)

The closed-loop equation of the passive chain is obtained by applying the computed input forces
Eq.2.15 to its dynamic model Eq.2.9

ep + Kppep + Kdpėp + M−1
t (δ + δp) = 0 (2.17)

where

δ = Rinv


fu1ycos(φ1) + fu1zsin(φ1)

0
fu2ycos(φ2) + fu2zsin(φ2)

0

 (2.18)

δp = Rinvp (2.19)

The perturbation term δ is caused by the drones under-actuation and fuiy, fuiz are the distri-
butions of force fui along −→y and −→z directions. This perturbation term δ can be cancelled by
setting roll angles for drones and two auxiliary inputs are computed as

uφ =

[
uφ1
uφ2

]
=

[
atan2(fu1y,−fu1z)
atan2(fu2y,−fu2z)

]
(2.20)

One part of δp in Eq.2.19 can be partly rejected by modifying the thrust inputs in Eq.2.15 as

f =

[
−sin(φ1) cos(φi) 0 0

0 0 −sin(φ2) cos(φ2)

] [
fu1
fu2

]
+

[
md1d1φ̈1

md2d2φ̈2

]
(2.21)

In this way, the perturbation term δp finally becomes

δp = Rinv


−md1d1φ̇

2
1

0

−md2d2φ̇
2
2

0

 (2.22)

The inner loop operates much faster than the outer loop. The inner controller loop computes
input torques, receiving desired angles qda = [uθ,uφ, ψd]. The control law is

ua = q̈da −Kpa(pa − pda)−Kda(ṗa − ṗda) (2.23)

We can obtain input torques τ linking Eq.2.23 and Eq.2.13.

τ = A+
τ (ua + Minv,ac−Minv,aJ

T
f f) (2.24)

where A+
τ is the pseudo-inverse of Aτ .
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Chapter 3

Optimisation motion planning for FPR

3.1 Motion generation for FPR

A controller system based on the CTC has been designed and tested with a square trajectory
in the vertical plane in the paper [33]. However, an optimal trajectory for this new FPR robot
is still necessary.

An optimal trajectory should take into account the following points:

1. The dynamics of FPR in which the actuators are two quadrotors. Each quadrotor is
driven by four rotors and the thrust force has a linear relationship with the square of
rotor angular velocities. Thus a feasible trajectory should consider the rotors dynamics.
Also, the thrust force produced by one quadrotor is always along the zi direction in its
local frame. If a oblique input force is needed by the robot, quadrotors are supposed to
have certain roll angles φi.

2. Perturbation δp in Eq.2.22 in the controller which we discuss in section 2.2. The optimal
trajectory should minimise terms that cause perturbations in the controller.

3. Under-actuation of quadrotors. The attitudes of the two drones are not known.

4. Energy consumption is usually involved in trajectory optimisation. Especially, many
quadrotors have their on-board batteries but durations of quadrotors are limited by these
batteries.

A vector to design the motion in the vertical plane is defined as

s = qp =
[
y z φ q21

]
=
[
s1 s2 s3 s4

]
(3.1)

Basic assumptions

1. trajectory generation for each coordinate is independent for s.
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2. Robot does not change its configuration or cross singularity during the motion.

3. Navigation and control systems work in perfect ways. Or, the locations and orientation
information of the robot are available without any error and controller tracks the reference
signals perfectly without any time delay.

Trajectory generation with 9-degree polynomial

One drone is driven by four on-board rotors which are controlled by mic-controllers. The
dynamic model of a drone is to be analysed to understand a feasible robot motion.

Fig. 3.1. The force and torque generated by one rotor

Fig.3.1 shows the force fim and the torque τim produced by a rotor of the done i (m = 1, 2, 3, 4).
We assume that the rotor m rotates at the speed $im, the thrust fim and torque τim generated
are

fim = cT$
2
im (3.2)

τim = cQ$
2
im (3.3)

where cT and cQ are positive constants and we can obtain their values from static thrust tests.

So, the thrust force generated by a whole drone can be modelled as

fiz =
4∑

m=1

fim = cT

4∑
m=1

($2
im) (3.4)

Second, the roll torque depends on the front and the rear rotors (m = 2, 4), which is

τix = fi2 · d− fi4 · d = dCT ($2
i2 −$2

i4) (3.5)

where d is the distance between the CoM of the drone i and one rotor.

Similarly, we can get the dynamic model for pitch torque (m = 1, 3)

τiy = fi1 · d− fi3 · d = dCT ($2
11 −$2

13) (3.6)
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The dynamic model of yaw torque is different from the others. Yaw rotation is because of the
reaction torque (caused by rotor drag). The yaw dynamic model is developed as

τiz = τi2 + τi4 − τi1 − τi4 = cQ($2
i2 +$2

i4 −$2
i1 −$2

i3) (3.7)

Thus, the drag torque τ is modelled as

τ i =
[
τix τiy τiz

]T
(3.8)

The dynamic equation of one drone is[
fiz τ i

]T
= Rf$i (3.9)

in which

Rf =


cT cT cT cT
0 dcT 0 −dcT
−dcT 0 dcT 0
−cQ cQ −cQ cQ

 (3.10)

$i =
[
$2
i1 $2

i2 $2
i3 $2

i4

]T
(3.11)

As each rotor is controlled by a mic-controller, it is necessary to guarantee that the $im is

continuous. This can be done by design a trajectory with continuous
[
f τ

]T
.

With a planned motion, we can represent required input force of FPR from Eq.2.14, 2.21, 2.16
in a simplified way. :

f = (RinvΨ)(−1) (Mtüp + ct) +

[
md1d1φ̈1

md2d2φ̈2

]
(3.12)

f = g1(q̈
d
p, q̇

d
p,q

d
p) (3.13)

q̈dp needs to be designed in order to have a continuous f . Based on the f , we recall the required
roll angles of two drones in Eq.2.20 and represent it as

uφ = g2(f) = g3(q̈
d
p, q̇

d
p,q

d
p) (3.14)

In the second controller loop of ua, uθ are computed by PD controller with xd = 0 and ψd = 0.
Since ua depends on the q̈da, q̇

d
a,q

d
a and qda = [uθ,uφ, ψd], we can represent ua as

ua = g4(q
d(4)
p ,qd(3)p , q̈dp, q̇

d
p,q

d
p) (3.15)

Then, we can obtain the expression for τ in Eq.2.24 as following:

τ = g5(ua, f) (3.16)

τ = g6(q
d(4)
p ,qd(3)p , q̈dp, q̇

d
p,q

d
p) (3.17)

It is clear from Eq.3.17 that we must specify q
d(4)
p , i.e. s(4) in the motion planning. Consequently,

a 9-degree polynomial is used to generate a trajectory. One trajectory for coordinate sj (j =
1, 2, 3, 4) can be expressed as

sj(t) = aj0 + aj1t+ aj2t
2 + aj3t

3 + aj4t
4 + aj5t

5 + aj6t
6 + aj7t

7 + aj8t
8 + aj9t

9 (3.18)
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where t refers to the time and aj0, ...aj9 are parameters. Computing those parameters requires
the travelling time tf , the initial and the final position and their 1st, 2nd, 3rd and 4th deriva-
tives.

sj(t = 0) = sjb sj(t = tf ) = sjf

ṡj(t = 0) = ṡjb ṡj(t = tf ) = ṡjf

s̈j(t = 0) = s̈jb s̈j(t = tf ) = s̈jf (3.19)

s
(3)
j (t = 0) = s

(3)
jb s

(3)
j (t = tf ) = s

(3)
jf

s
(4)
j (t = 0) = s

(4)
jb s

(4)
j (t = tf ) = s

(4)
jf

where sjb, ṡjb, s̈jb, s
(3)
jb , s

(4)
jb are position, velocity, acceleration, 3rd and 4th derivatives of the

robot at the initial position. The information corresponding to the final destination are pre-
sented by sjf , ṡjf , s̈jf , s

(3)
jf , s

(4)
jf .

Motion planning problem statement

Usually, a robot is asked to pass some designed positions in the task space or in the joint space.
Those designed positions by the mission are named after way position sw.

The way positions of the trajectory in [33] are represented in the Fig.3.2. The mission can be
described as

1. s0 ⇒ sw1

2. sw1 ⇒ sw2

3. sw2 ⇒ sw3

4. sw3 ⇒ s0

where s0 is the Beginning\Ending position
[
0 0 5π

4
π
2

]
and swk are way positions.

3.2 Motion planning optimisation for FPR

According to the previous section, the trajectory generation needs not only positions but also
velocities, accelerations, 3rd and 4th derivatives.

We define

Position : s. sw means way positions.

Point : S =
[
s ṡ s̈ s(3) s(4)

]
. Sw refers to way points.
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Fig. 3.2. Way positions in the task space

3.2.1 Decision variables

Way points

Clearly, we can see from Eq.3.19 that a trajectory depends on way points and travelling time
for segments. Only the way positions are given by user or decided by the task. Instead of

setting ṡw = s̈w = s
(3)
w = s

(4)
w = 0 for every way point, we set

[
ṡw s̈w s

(3)
w s

(4)
w

]
as decision

variables in the optimisation. Thus, the robot does not have to ”stop” at every way position.

A decision variable is defined as

Sd1 =


ṡw1 s̈w1 s

(3)
w1 s

(4)
w1

. . .

ṡwk s̈wk s
(3)
wk s

(4)
wk

. . .

ṡwnwp s̈wnwp s
(3)
wnwp s

(4)
wnwp

 (3.20)

Via points

We aim to optimise the trajectory and improve the robot performance further. Especially, way
positions given by the task are far away from each other.

We introduce via point Sv defined as

Sv =
[
sv ṡv s̈v s

(3)
v s

(4)
v

]
(3.21)

One example of via points is shown in the Fig.3.3. Way point 1 and way point 2 are too far
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away from each other. Two via points are introduced in this trajectory segment, which can
possibly change the shape of the path drastically.

Fig. 3.3. One example of via points

As a consequence, we define another decision variable as

Sd2 =


Sv1
. . .
Svk
. . .

Svnvp

 =


sv1 ṡv1 s̈v1 s

(3)
v1 s

(4)
v1

. . .

svk ṡvk s̈vk s
(3)
vk s

(4)
vk

. . .

svnvp ṡvnvp s̈vnvp s
(3)
vnvp s

(4)
vnvp

 (3.22)

where nvp is the number of via points in the optimisation for one segment trajectory.

In order to simplify the case, we make two assumptions

1. the number of via points nvp can be decided by a user or his task.

2. the travelling time for one segment is distributed to the travelling time between two via
points evenly.

Finally, the decision variables of the optimisation are via points in the every segment and[
ṡw s̈w s

(3)
w s

(4)
w

]
of way points of the whole trajectory.

Sd1,Sd2 (3.23)

3.2.2 Objective function

The main purpose of the motion optimisation is to minimise two terms: energy cost of the
robot and perturbations in the controller.
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Fig. 3.4. Forces acting on the quadrotor 1 and the velocity of joint 1

We can see from the Fig.3.4 that input force on the quadrotor 1 has to compensate the gravity
force md1g, the centripetal force md1r̈1 (r1 is positions of joint 1 in the vertical plane) and the
reaction force from the chain f ′p1 that is decided by the dynamic of motion.

As the linear velocity v1 can be easily computed through DKM (direct kinematic model) of the
parallel robot, we can approximatethe energy consumption of quadrotor 1 with |f1 · v1|.

In this case, the energy consumption of FPR is approximated with

Je =

∫
|f1 · v1|+ |f2 · v2|dt (3.24)

We recall the expression of δp in 2.22

δp = Rinv


−md1d1φ̇

2
1

0

−md2d2φ̇
2
2

0


It is suggested that the roll angular velocity φ̇ plays a significant part in the perturbation and
it induces a challenge for the controller. Even though the controller used in [33] are proven to
be robust, it is still beneficial if the perturbation φ̇ can be optimised in the motion planning.
Thus, we introduce a perturbation index:

Jφ =

∫
|φ̇2

1|+ |φ̇2
2|dt (3.25)

Energy Je and perturbation J are two objectives in our optimisation.

1. we introduce a weight α to transform this problem from a multi-objective optimization
into a single objective optimisation. Users can choose the priority term form energy and
perturbation to optimise according to their missions and tasks.

2. Je and Jφ share different units and distinct orders of magnitude, from which the opti-
misation process is influenced. Both of Je and Jφ are normalised by the case that we
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set
ṡw = s̈w = s(3)w = s(4)w = 0

which means the robot is asked to stop at the each way position.

Finally, the objective function is modelled as

J = α · Je
Je0

+ (1− α) · Jφ
Jφ0

(3.26)

where Je0 and Jφ0 are the energy and perturbation when ṡw = s̈w = s
(3)
w = s

(4)
w = 0.

3.2.3 Constraints

Several constrains should be involved in the motion planning.

1. Safety flying conditions

Quadrotors should fly above the ground and never get too close to the ground. We can use
the location of the joints linked to quadrotors to approximate the drone. The geometry of the
passive chain is shown in Fig.3.5 .

Fig. 3.5. Geometry of the passive chain

Constraints on the locations of the quadrotors can be modelled as

zi ≥ −Llink +mgd (3.27)

where Llink stands for the length of the link and mgd = 0.1 refers to the distance margin used
in the optimisation.

2. Not cross the type 2 singularity.

π +mga ≤ φ ≤ 2π −mga (3.28)

mga ≤ q21 ≤ π −mga (3.29)

where mga is an angle margin in this optimisation and mga = 0.2.
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3. Dynamic limits of quadrotors

The force generated by one rotor of each drone, fim, should respect the corresponding limit.
we define ρi = [fi1, fi2, fi3, fi4] as a vector consisting of four rotor forces generated of drone i.

ρi = cT$i (3.30)

where cT =
[
cT cT cT cT

]
. Based on the Eq.3.9 and Eq.3.30, we can get

ρi = cTR
(−1)
f

[
fiz
τ i

]
(3.31)

We can obtain fiz, τ i by computing the required input force and torques from Eq.3.12 and
Eq.2.24 of a trajectory. After that, the constraint for every rotor force can be expressed as

|fim| ≤ fmax −mgf ,m = 1, 2, 3, 4, i = 1, 2 (3.32)

fmax = 9N which depends on the exact drones used in the FPR and mgf = 1.5N is defined as
a force margin.

4. Quadrotors should not roll over.

A drone is under-actuated and usually φi works as virtual control in the backstepping controller.
In other words, we can not know the φi directly in the motion planning. Furthermore, the drone
is not supposed to roll over just to simplify the robot motion and guarantee a safety flight.

|φi| ≤
π

2
−mga (3.33)

3.2.4 Motion optimisation formulation

Decision variables:
Sd1,Sd2

where Sd1 in defined in Eq.3.20, Sd2 =
[
Sv1 . . . Svk . . . Svnvp

]T
defined in Eq.3.39.

Objective function:

J = α · Je
Je0

+ (1− α) · Jφ
Jφ0

where Je0 and Jφ0 are the energy and perturbation when ṡw = s̈w = s
(3)
w = s

(4)
w = 0.

Constraints:

zi ≥ −Llink +mgd

π +mga ≤ φ ≤ 2π −mga

mga ≤ q21 ≤ π −mga

|fim| ≤ fmax

|φi| ≤
π

2
−mga

This optimisation problem is solved in a numerical way.
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Method fmincon in Matlab.

fmincon is a non-linear programming solver.

Algorithm interior-point.

interior-point is the default and first recommended algorithm in the fmincon and it dis-
tinguishes itself by solving large-scale problems.

In practice, we propose a 2-step optimisation method.

1. the 1st step is to carry out the optimisation with the decision variables being Sd1. It means
the optimisation only improve the trajectory by changing the velocities, accelerations, 3rd
and 4th derivatives of the robot at every way positions.

2. the 2nd step is to conduct the optimisation for each segment separately whose the decision
variable is Sd2. This optimisation is based on the new way points which are the results
of the optimisation in the 1st step.

As the computation time will increases drastically, if more decision variables are in the opti-
misation process. For instance, if we introduce one via point in every segment of trajectory in
[33], the number of decision variables will be nearly a 32 by 4 matrix in the original method.
With the two-step optimisation, decision variables will be just a 16 by 4 matrix in the first step
and they will be a 5 by 4 matrix in each segment in the second step.

Obviously, an initial guess plays an essential part in the optimisation solver. Sometimes, a
good initial guess can help the optimisation convergence fast. By contrast, a bad initial guess
can leads to a infeasible solution. It is more difficult to find a proper initial guess for the
optimisation case with more decision variables.

As a consequence, the 2-step optimisation is taken in the practice. It is believed that this
2-step optimisation is a suboptimal approach and some precisions could be lost but it has less
computation complexity and easy initial guesses in a general way. An examples in Appendix
shows that 2-step optimisation even causes a better result than the original method. But
differences between those two methods will depend on the tasks.

3.2.5 Influences of number of via points and weights in objective
functions

A user has to choose two parameters in the optimisation process: number of via points nvp and
weight α.

The effects given by the nvp are investigated in the following mission:
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• the initial position is [0, 0, 3.9270, 1.5708] and final position is [1, 1, 3.9270, 1.5708], which
are shown in Fig.3.6. The 2nd-4th derivatives of the initial and final points are set to be
zeros.

• the travelling time is set to be 3s

• α = 0.5

-1 -0.5 0 0.5 1 1.5 2

x(m)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y
(m

)

Initial and final positions in task space

Fig. 3.6. A task to test optimisation parameters

Optimisation is conducted with different nvp. In order to illustrate the effectiveness, we show
Je
Je0

and
Jφ
Jφ0

in the Fig.3.7 and Fig.3.8, where Je0 and Jφ0 refer to the no via point case.
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Fig. 3.7. Energy consumption with different number of via points
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Fig. 3.8. Perturbation index with different number of via points

We can see from the Fig.3.7 and Fig.3.8 that introducing the via points can improve the robot
performance drastically. For instance, the trajectory without any via point does not meet
the constraints, while one via point can make this trajectory feasible. Also, it is clear that
with more via points introduced as decision variables, the Je and Jφ will decline more sharply,
especially the drop of Jφ. However, the perturbation are easier to be optimised or changed than
energy.

Then, influences of different α are investigated by the same task with nvp:

• the initial position is is [0, 0, 3.9270, 1.5708] and final position is [1, 1, 3.9270, 1.5708], which
are shown in Fig.3.6.

• the travelling time is set to be 3s.

• nvp = 1.

Several optimisations with α = 0, 0.3, 0.6, 0.9, 1 are conducted. We compute Je/Je|α=0 and
Jφ/Jφ|α=1 from the results in order to present the differences caused by different α in the
optimisation process. Je|α=0 and Jφ|α=1 are Je and Jφ when α = 0 and α = 1 respectively.

It is clear from the results in Fig.3.9 and Fig.3.10 that optimisation focus can be adjusted
by tuning α. A larger α means that user hopes to minimise energy cost of robot more than
the perturbation during the motion, and the minimisation of the perturbation index is more
important if a smaller α is set.

To sum up,

1. A larger nvp can cause a more optimal motion. However, the computation time will
increase significantly if we choose a too large nvp. A balance needs to be found between
the optimisation and the computation cost.
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Fig. 3.9. Energy consumption with different weights Fig. 3.10. Perturbation index with different weights

2. Energy computation is not improved markedly, not only in with different nvp, but also
with different α. But it is still believed to keep the energy consumption in the objective
function, as energy consumption depends missions and as more flexibilities are provided
to users.

3.2.6 Optimal motion VS no-optimal motion

First of all, an optimised motion is generated with the same way positions, beginning\ending
position, same travelling time with that in [33]. We set nvp = 1, α = 0.5 during the optimisation.

The trajectory of the end-effector in task space is shown in the Fig.3.11 and the trajectory of
each coordinate is illustrated in the Fig.3.12

Fig. 3.11. An optimised trajectory of the end-effector in the task space

It is clear from Fig.3.11 and Fig.3.12 and that the trajectory after optimisation is smoother
than the trajectory used in [33].

Fig.3.13 and Fig.3.14 show the Je and Jφ of the optimised trajectory.
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Fig. 3.12. An optimised trajectory of each coordinate

Fig. 3.13. Energy consumption in the trajectory Fig. 3.14. Perturbation index in the trajectory

Fig.3.15, 3.16, 3.17, 3.18 show the |ft1|, |ft2|, φ1, φ2 of the optimised trajectory. We are able to
find that the optimised trajectory have less aggressive |ft1|, |ft2|, φ1, φ2 than the non-optimal
trajectory .
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Fig. 3.15. Norm of input force of drone 1 Fig. 3.16. Norm of input force of drone 2

Fig. 3.17. Roll angle of drone 1 Fig. 3.18. Roll angle of drone 2

Then, we conduct the simulation in SimulinkMatlab and results are shown as follows.

Fig. 3.19. Trajectory of the end-effector in task space Fig. 3.20. End-effector in x coordinate
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Fig. 3.21. End-effector in y coordinate Fig. 3.22. End-effector in z coordinate

Fig. 3.23. Trajectory of end-effector’s pitch angle Fig. 3.24. Trajectory of end-effector’s yaw angle

Fig. 3.25. Roll angle of end-effector Fig. 3.26. Angle between two links q21

Several analyses can be driven form the results presented in Fig.3.19-.3.32.

1. The motion of FRP is mainly in the vertical plane. x(t), θ(t), ψ(t) of PFR in Fig.3.20,
3.23, 3.24 are approximately level at around zeros.
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Fig. 3.27. Roll angle of drone 1 Fig. 3.28. Roll angle of drone 2

Fig. 3.29. Vertical coordinate of drone 1 Fig. 3.30. Vertical coordinate of drone 2

Fig. 3.31. Rotor forces of drone 1 Fig. 3.32. Rotor forces of drone 2

2. Generally speaking, the controller designed in the [33] enables the robot to follow the
trajectory designed as we can find from Fig.3.19, 3.21, 3.22, 3.25, 3.26. Constraints about
the safety flight and rotors’ limits are satisfied in the robot’s motion in Fig.3.27, 3.28,
3.29, 3.30, 3.31, 3.32.
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3. FPR takes about one third second to take off from the beginning\ending position.

3.3 Methods validation with a FPR prototype

3.3.1 Motion optimisation for the prototype

A FPR prototype has been developed in the LS2N lab as shown in Fig.3.33 and its kinematic
structure is shown in the Fig.3.34.

Fig. 3.33. FPR prototype in the lab

Fig. 3.34. Kinematic structure of prototype

Fig.3.35 shows the motion capture system built in the LS2N . It is used to obtain the position
information of this robot in the experiment, from which we compute q1, q2.

This robot can be considered as a simplification of the FPR. Compared to FPR, one ”actuator”
in the prototype is replaced by a fixed point. As all the revolute joints are passive, the DOF of
this robot is 2.
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Fig. 3.35. Motion capture system

The vector for motion planning is defined as

ξ =
[
q1 q2

]
(3.34)

A point is defined as Ξ =
[
ξ ξ̇ ξ̈ ξ(3) ξ(4)

]
.

Basic assumption are made as:

1. Trajectory generation for each coordinate is independent in ξ

2. The robot does not change its configuration or cross singularity. The robot is set to be
”arm down” configuration (q2 ≥ 0) without losing generality.

3. Navigation and control systems work in perfect ways.

Jacobian matrix Jpr of the prototype robot is defined as[
ẏj3
żj3

]
= Jpr

[
q̇1
q̇2

]
(3.35)

and

Jpr =

[
Llink · [sin(q2 − q1)− sin(q1)] −Llink · sin(q2 − q1)
Llink · [cos(q2 − q1) + cos(q1)] −Llink · cos(q2 − q1)

]
(3.36)

With similar attempts in Chapter 2, the dynamic model of the prototype robot is

JTprf1 = Mpt(ξ)ξ̈ + cpt(ξ̇, ξ) (3.37)

• f1 and τ 1 are the input force and torques of the robot.
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• Mpt is the definite positive generalised inertial matrix depending on ξ; cpt refers to a
vector of Coriolis and centrifugal effects depending on ξ and ξ̇. This work is contributed
by SIX Damien.

The 2-step optimisation is conducted to find a optimal motion for the robot.

• the 1st step is to carry out the optimisation with the decision variables being Ξd1. It means
the optimisation only improve the trajectory by changing the velocities, accelerations, 3rd
and 4th derivatives of the robot at every way position.

Ξd1 =


ξ̇w1

ξ̈w1
ξ(3)w1

ξ(4)w1

. . .

ξ̇wk ξ̈wk ξ(3)wk ξ(4)wk
. . .

ξ̇wnwp ξ̈wnwp ξ(3)wnwp ξ(4)wnwp

 (3.38)

where ξ̇w, ξ̈w, ξ
(3)
w , ξ(4)w are velocity, acceleration, 3rd and 4th derivatives corresponding to

the way points.

• the 2nd step is to conduct the optimisation for each segment separately whose the decision
variable is Ξd2. This optimisation is based on the new way points which are the results
of the optimisation in the 1st step.

Ξd2 =


Ξv1

. . .
Ξvk

. . .
Ξvnvp

 =


ξv1 ξ̇v1 ξ̈v1 ξ(3)v1 ξ(4)v1

. . .

ξvk ξ̇vk ξ̈vk ξ(3)vk ξ(4)vk
. . .

ξvnvp ξ̇vnvp ξ̈vnvp ξ(3)vnvp ξ(4)vnvp

 (3.39)

The objective function is modified as follows:

J = α · Je
Je0

+ (1− α) · Jφ
Jφ0

where

• Je =
∫
|f1 · v1|dt and Jφ =

∫
|φ̇2

1|dt

• Je0 and Jφ0 are the energy and perturbation when ξ̇w = ξ̈w = ξ(3)w = ξ(4)w = 0

In terms of constraints for this robot:
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1. the drone should not touch the ground or the fixed point.

zj2 ≥ −Llink +mgd (3.40)

zj3 ≥ −Llink +mgd (3.41)

yj2 ≥ mgd (3.42)

yj3 ≥ mgd (3.43)

|q1| ≤
π

2
−mga (3.44)

2. the drone should not roll over.
|φ1| ≤

π

2
−mga (3.45)

3. the robot should not cross the singularity.

mga ≤ q2 ≤ π −mga (3.46)

4. When it comes to the rotor limits, the four rotors angular speeds are considered rather
than forces produced by them. That is much easier to measure rotors angular speeds in
the real experiment.

$1 = R
(−1)
f

[
f1z
τ 1

]
(3.47)

where f1z and τ 1 can be computed from Eq.2.7 and Eq.3.37 .

Constraints are presented as

0 ≤ $ij ≤ $max −mgr, i = 1, 2, j = 1, 2, 3, 4 (3.48)

where $max = 900 and the margin mgr = 150
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3.3.2 Simulation in Matlab

An optimal motion for the robot is generated and the trajectory of the drone is shown in the

Fig.3.36, in which travelling time between two way points are
[
5s 8s 8s 8s 8s 8s 5s

]T
.

In the optimisation, we set α = 0.5 and nvp in each segment to be 1.

Fig. 3.36. An optimal trajectory of the drone of FPR prototype

Fig.3.37 shows the corresponding q1(t), q2(t) of the motion planned. Then, Je and Jφ in the
optimal trajectory are shown in the Fig.3.38 and Fig.3.39. The |f1| and φ1 are shown in the
Fig.3.40 and Fig.3.41.

Fig. 3.37. Joint angles in an optimal trajectory of FPR prototype
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Fig. 3.38. Energy consumption of FPR prototype Fig. 3.39. Perturbation index of FPR prototype

Fig. 3.40. Norm of input force of drone of FPR proto-
type

Fig. 3.41. Roll angle of FPR prototype

Simulation with the optimal trajectory in Matlab is conducted to test the controller of this
prototype. The drone trajectory in simulation is shown in the Fig.3.42 and the error for q1, q2
are demonstrated in Fig.3.43
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Fig. 3.42. Drone trajectory in planning and simulation

Fig. 3.43. Joints error in simulation

According to the results shown in Fig.3.42-3.51, we can obtain the conclusions as follows:

1. The controller can drive the robot to follow the optimal trajectory properly. Tracking
error of q1 and q2 in the Fig.3.43 converge and level off at a certain neighbour of origin.

2. All the constraints modelled by the Eq.3.40-4 in the Fig.3.44-.3.49.

3. As we can find that from Fig.3.50, Je is almost the same in planning and simulation.
There is a large jump at the beginning of Jφ during the simulation. This is due to the
drone takes off from the initial position which is not stable.
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Fig. 3.44. Joint 1 of FPR prototype in simulation Fig. 3.45. Joint 2 of FPR prototype in simulation

Fig. 3.46. Vertical coordinate of prototype joint 2 Fig. 3.47. Vertical coordinate of prototype joint 3

Fig. 3.48. Roll angle of FPR prototype in simulation Fig. 3.49. Rotor forces of the drone in simulation
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Fig. 3.50. Energy consumption in simulation Fig. 3.51. Perturbation index in simulation

3.3.3 Real experiment with the prototype robot

The real experiments are conducted with this prototype robot in order to test our optimal
trajectory. The tracking of ξ is shown in Fig.3.52 and Fig.3.53. Another two more examples in
the real experiments are presented in the Appendix.

Fig. 3.52. Joint 1 tracking in the real experiment Fig. 3.53. Joint 2 tracking in the real experiment

It is clear from the Fig.3.52 and Fig.3.53 that the prototype robot tracks the motion planned
properly in a general way with its controller. Still, we should notice two things:

1. when the drone is taking off and landing, the dynamics of robot, or the drone, is sig-
nificantly affected by the ground effects. The thrust force rebound from the ground will
impact the drone when the drone is just above the ground. The dynamic model of the
robot does not consider the ground effects, so the performance is not perfect.

2. if the drone is far away from the fixed point, for instance during the 40s−50s, the tracking
is a little worse than the before. The reason behind this is the challenge for the controller
is much larger when the drone is far away from the base.

The θ is designed to force the robot motion to be in the vertical plane, which should be in
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Fig. 3.54. Pitch angle error in the real experiment

the neighbour of zero. Comparing Fig.3.54 with Fig.3.52 and Fig.3.53, we can find that the
absolute value of θ error reaches the peak around 0.1rad at 28s when the drone is at the highest
position during the trajectory.

Fig. 3.55. Four motors of the drone in the real experiment

Fig.3.55 gives the performances of four motors in the experiment. That the trajectory does not
meet the saturation of the actuator.

To sum up, the optimisation motion is tested in the real experiment. With the controller and
the motion optimisation method, the robot is able to finish the mission properly.
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Chapter 4

Cross Type 2 singularity for FPR
prototype

4.1 Type 2 singularity of FPR prototype

Crossing Type 2 singularity of FPR is a challenge that is totally different from the typical
parallel robot such as 5 bar mechanism.

• The actuators are two movable drones in the task space, while the actuated joints are
fixed at certain positions in the 5 bar mechanism.

• Inputs of the 5 bar mechanism are torques of the actuated joints, but two under-actuated
drones, more precisely the thrust forces and torques of the drones, are inputs of FPR.

• More constraints are on the inputs of FPR. the forces fp applied to the passive chain
depend on the thrust forces and the roll angles of drones which are limited for both of
them. More precisely, the limits of thrust force of a drone is Fmax = 36N and the roll
angles φ1 should be smaller than π

2
to ensure that the robot is able to follow the motion

planned.

The robot prototype can be considered as one special case of FPR when one drone is fixed.
Thus, we propose to solve the type 2 singularity crossing with the robot prototype instead of
the FPR. That mean we are trying to solve the crossing singularity with one drone first. The
main approach is to find a feasible singularity configuration satisfying all the constraints of the
robot prototype . Or to be more precise, the input force, torques and roll angle expected meet
the constraints.

We recall the dynamic model of robot prototype in Eq.3.37

JTprft1 = Mpt(ξ)ξ̈ + cpt(ξ̇, ξ)

When the robot is at the type 2 singularity, q2 = 0 and the Jacobian matrix becomes

Jpr =

[
−Llink · 2sin(q1) −Llink · sin(q1)
Llink · 2cos(q1) −Llink · cos(q1)

]
(4.1)
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From which we can see that rank(Jpr) = 1 and Jpr becomes rand-deficient. In the controller,
we compute the ft1 through Inverse Dynamic Mode in the way

ft1 = J(−T )
pr Mpt(ξ)ξ̈ + cpt(ξ̇, ξ) (4.2)

in which Jpr, however, is not invertible.

Thus, when the robot is in such a singular configuration, the matrix Jpr cannot be inverted, and
then the dynamic model degenerates and cannot be solved. Moreover, in the neighbourhood
of the singularity, the force ft1 increases as its expression is proportional to the inverse of the
determinant of Jpr, which is close to zero in the singularity locus.

The main challenges for crossing this kind of singularity for robot prototype are

• to decide the configuration at the singularity such that expected input force not only be
finite but also meet the drone limits.

• to find a balance among singularity configuration and other parameters to make whole
trajectory meet the constraints.

An initial and final positions are introduced in the joint space in the crossing singularity task
and the two positions in the task space are shown in the Fig.4.1 .

Fig. 4.1. Task presentation in task space to cross singularity

1. initial position ξ1 =
[
−0.9470 1.8940

]
, final position ξ2 =

[
0.9470 −1.8940

]
and sin-

gularity position ξs = [10−4, 10−4].

2. the whole motion is composed of two parts:

• ξ1 ⇒ ξs during travelling time tf1
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• ξs ⇒ ξ2 during travelling time tf2

3. singularity point is defined as Ξs = [ξs, ξ̇s, ξ̈s, ξ
(3)
s , ξ(4)s ].

4.2 Crossing type 2 singularity

4.2.1 1st optimal approach for robot prototype

The first optimal approach is to design a trajectory which satisfies a certain condition such as
the Eq.1.26 for 5 bar mechanism, at the singularity. This approach can be summarised as

1. find ξ̇s, ξ̈s to make ft1 be finite at singularity configuration

2. tune tf = [tf1, tf2] to generate an initial guess for the trajectory optimisation and the
main purpose is to make the trajectory cross singularity only once.

3. optimise the ξ(3)s , ξ(4)s (with Via Points) to find a feasible solution to make the whole
trajectory meet the constraints.

A vector q̇n ∈ null(Jpr) such that

Jprq̇n = 0 (4.3)

We can obtain one q̇n =
[
−1 2

]T
. Then the dynamic model in Eq.3.37 is multiplied by q̇Tn

and it leads to

q̇TnJTprft1 = q̇Tn (Mpt(ξs)ξ̈s + cpt(ξ̇s, ξs)) (4.4)

(Jprq̇n)T ft1 = q̇Tn (Mpt(ξs)ξ̈s + cpt(ξ̇s, ξs)) (4.5)

0 = q̇Tn (Mpt(ξ)ξ̈s + cpt(ξ̇s, ξs)) (4.6)

The input force will not be infinite, if qs, q̇s, q̈s meet the criterion[
−1 2

]
(Mpt(ξs)ξ̈s + cpt(ξ̇s, ξs)) = 0 (4.7)

To meet the criterion in Eq.4.7, we set

ξ̇s = [−1, 2] (4.8)

ξ̈s = [−10.7243, 24.6296] (4.9)

With the dynamic model in Eq.3.37 we can compute the expected input force at the singularity
configuration

0 ≤ f1 ≤ Fmax = 36N (4.10)

Then, travelling time for each segment influences the path of trajectory. With some values, the
trajectory of ξ(t) would cross singularity more than once.
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Fig. 4.2. Initial guess of trajectory Fig. 4.3. Input force of initial guess trajectory

An initial guess is made with tf = [0.4, 1.5]:

From Fig.4.2 and Fig.4.3, we can see that the robot crosses the singularity at 0.5s and the input
force at that singularity configuration is finite. However, the input force is beyond the limits
during the robot motion at some point.

One optimisation approach is conducted with its optimisation formation being:

Decision variables:

• the 1st step optimisation is to find proper ξ(3)s andξ(4)s such that trajectory linking ξ1, ξs, ξ2
is optimal.

• the 2nd step optimisation is conducted for each segment of the whole trajectory with
decision varaibles being the via points, i.e. Ξv1,Ξv2.

where Ξv1,Ξv2 means the via points in the first segment and the second segment. Ξ1 ⇒ Ξs is
the first segment and Ξs ⇒ Ξ2 is the second segment.

Objective function:

J = α · Je
Je0

+ (1− α) · Jφ
Jφ0

where Je0 and Jφ0 are the energy and perturbation index when ξ(3)s = ξ(4)s = 0 and α = 0.5

Constraints:
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1. The drone should not touch the ground or the fixed point.

zj2 ≥ −Llink +mgd

zj3 ≥ −Llink +mgd

yj2 ≥ mgd

yj3 ≥ mgd

|q1| ≤
π

2
−mga

2. The drone should not roll over.
|φ1| ≤

π

2
−mga

3. The limits of the four rotors of the drone are

0 ≤ $ij ≤ $max

where $ij is the angular speed of the rotor j of the drone i. $max is the limit of the rotor
and $max = 900.

However, the optimisation with one via point failed. The last failed approach in the optimisation
case is shown in Fig.4.4 and Fig.4.5.

Fig. 4.4. Trajectory in a failed approach Fig. 4.5. Input force in a failed approach

From the results above, we can see that even with the help of optimisation, the input force
required is still beyond the limit of the drone.

4.2.2 2nd optimal approach for robot prototype

The previous approach is able to guarantee that the input force is not infinite but can not specify
the exact value of the input force. In contrast, the 2nd approach aims to obtain ξs, ξ̇s, ξ̈s by
setting the input force.
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Instead of setting the input force ft1, we attempt to decide the force applied by the drone to
the chain fp1. We can get the direct dynamic model of the passive chain from Eq.2.6 that

ξ̈s = M−1
pp (ξs)(Jprfp1 − cpr(ξs, ξ̇s)) (4.11)

With

ξ̇s = [−3, 3]T (4.12)

fp1 = [0, 5]T (4.13)

We obtain
ξ̈s = [−12.64, 18.58]T (4.14)

and

ft1 = [−6.4, 11.01]T (4.15)

|ft1| ≤ Fmax (4.16)

Then, an initial trajectory guess is generated with tf = [1.25, 1.2]

Fig. 4.6. Initial guess for a trajectory Fig. 4.7. Input force of the initial guess trajectory

Decision variables:

• the 1st step optimisation is to find proper ξ(3)s and ξ(4)s such that trajectory linking
ξ1, ξs, ξ2 is optimal.

• the 2nd step optimisation is conducted for each segment of the whole trajectory with
decision varaibles being the via points, i.e. Ξv1,Ξv2.

where Ξv1,Ξv2 means the via points, in the first segment Ξ1 ⇒ Ξs and the second segment
Ξs ⇒ Ξ2 respectively.

Objective function:

J = α · Je
Je0

+ (1− α) · Jφ
Jφ0
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where Je0 and Jφ0 are the energy and perturbation index when ξ(3)s = ξ(4)s = 0 and α = 0.5

Constraints:

1. The drone should not touch the ground or the fixed point.

zj2 ≥ −Llink +mgd

zj3 ≥ −Llink +mgd

yj2 ≥ mgd

yj3 ≥ mgd

|q1| ≤
π

2
−mga

2. The drone should not roll over.
|φ1| ≤

π

2
−mga

3. The limits of the four rotors of the drone are

0 ≤ $ij ≤ $max

where $ij is the angular speed of the rotor j of the drone i. $max is the limit of the rotor
and $max = 900.

Unfortunately, this optimisation approach fails and the last case in the process is shown in
Fig.4.8 and Fig.4.9.

Fig. 4.8. Trajectory in a failed approach Fig. 4.9. Input force in a failed approach

There are two things we can notice from the Fig.4.8 and Fig.4.9:

• the expected input force is still large than the limit for instance at 0.5s

• a sudden change or discontinuity happens at crossing singularity both in the before and
after optimisation cases.
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4.2.3 Summary

Crossing type 2 singularity for FPR or even FRP prototype is a challenge different from typical
parallel robots.

Typical approaches with optimisation can make the input force be finite or specified, however,
the input force is still beyond the limit somewhere between the initial point and the singularity
point, or somewhere else.

The main problems can be summarised as

• trajectory depends not only on the configuration at the singularity point, but also the
travelling time. And thus we realised that it is hard to tune both at the same time.

• a good initial guess is necessary to begin an optimisation.

• input force can be provided by a drone limits the mobility.
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Conclusion and future work

The main topic of this thesis was to develop a motion optimisation planning for a new aerial
robot FPR: a method for motion optimisation and approaches to Type 2 singularity.

FPR is a new robot combining a passive chain and two drones. It can be considered as a parallel
robot whose two actuators are drones. Three main challenges are addressed in this thesis: (1)
no motion planning has been done for this robot. (2) dynamics of drones, for instance under-
actuation, must be taken into account in the motion planning. (3) required input force for
crossing Type 2 singularity are beyond the limits of drones.

Chapter 1 states present research work and gives a general description of drones, its advantages
and applications with other robots at the beginning. A overview of drones application in the
robotics domain are stated: a flying grasper, a cable-suspended transportation and an aerial
manipulation with a tool. An example in each domain is introduced, such as a high speed
and avian-inspired grasping quadrotor, FlyCrane and an aerial vehicle with dual multi-degree
of freedom manipulators. The on-board system and the state of art about the trajectory
generation for a single drone is presented. Only the methods which having been tested in the
real experiments are chosen. Thus, we present two methods: minimisation derivatives of the
position trajectory and optimal control approach and their models in details. Crossing type 2
singularity is one of the task for FPR. The dynamic model of 5 bar mechanism is stated as an
example of parallel robots. This is followed by the state of art of type 2 singularity crossing.
Finally, the conception of FPR and its potential research interest are introduced.

Chapter 2 first demonstrate developments of FPR dynamic model done by SIX Damien et al.
The whole model is composed of two parts: a passive chain part and an attitude dynamic
model part. CTC are applied into controller of the passive chain part and attitude dynamic
part. A coupling terms associated to the drones angular velocities and accelerations is treated
as a perturbation in the closed- loop equation of the passive structure control. Simulations
showed the performance and the robustness of the controller designed.

Chapter 3 shows one main contributions of this master thesis. To begin with, the vector for
motion planning is defined from the configuration of the passive chain. Trajectory generation
is conducted independently for each configuration sate. Considering the rotor dynamics of a
drone, a 9-degree polynomial is used to generate a trajectory to guarantee the continuity of
the rotor angular speed. A off-line planning optimisation is proposed to improve the robot
motion. Way points and via points are defined as decision variables. The objective function
includes an energy consumption term and a perturbation term in order to minimise the energy
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cost of robot during the motion and the perturbation in the controller. Investigation about two
parameters in the optimisation, number of via points and weights in the objective function, are
carried after that. Simulation in Matlab validates the motion from optimisation. A prototype
robot is built in the lab of LS2N. We formulate the optimisation methods for this prototype
and conduct simulation and real experiments to test the optimisation results.

Chapter 4 presents two approaches for motion planning based on the optimisation to cross Type
2 singularity. The degenerating in the dynamic model of FPR prototype, Jacobian matrix, is
first analysed to understand the type 2 singularity of this robot. Based on the condition of
FPR crossing type 2 singularity, an optimisation with the decision variables being the 3rd, 4th
derivatives of singularity point and two via points. Even though we can guarantee the input
force at the singularity is finite, but the input force in the motion are beyond the limits of
robot with the help of introducing via points. Then, we specify the exact input force at the
singularity in the 2nd approach. Optimisation with the 3rd, 4th derivatives of singularity point
and two via points are considered, but still no feasible solution is found. The main challenge is
that the thrust force of the drone can not afford the expected input force of the robot during
crossing the singularity.

Some research can be done as continuation of motion planning for this robot:

1. optimisation algorithm can be simplified and optimised for less computation complexity
such that this algorithm can perform on-line motion planning.

2. an feasible trajectory crossing singularity with the optimisation method proposed should
be investigated continuously.
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Appendix

Comparison between the 2-step optimisation and the orig-

inal optimisation for FPR

An example is presented to show that 2-step optimisation is more effective than the original
optimisation method.

The mission is to start at the Beginning/Ending position, pass the way position 1, 2, 3 and
finally come back to the Beginning/Ending position shown in the 4.10. The travelling time for
each segment trajectory is 3s.

Fig. 4.10. Way positions in the task space

The trajecoties of the original optimisation method and 2-step optimisation are shown in the
Fig.4.12 and 4.12.
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Fig. 4.11. The trajectory of the original optimisation method in the task space

Fig. 4.12. An optimised trajectory of the end-effector in the task space

Their trajectories of each coordinate are presented by Fig.4.13 and Fig.4.14.
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Fig. 4.13. The trajectory of each coordinate of the original optimisation method

Fig. 4.14. The trajectory of each coordinate of the 2-step optimisation method

As we can see from Fig.4.13, Fig.4.14, Fig.4.13 and Fig.4.14, the 2-step optimisation changes
the trajectory shape more than the original method.

Their Je and Jφ are shown in Fig.4.15, Fig.4.16, Fig.4.18 and Fig.4.18.
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Fig. 4.15. Energy consumption in the original method Fig. 4.16. Energy consumption in the 2-step method

Fig. 4.17. Perturbation index in the original method Fig. 4.18. Perturbation index in the 2-step method

Comparing the Jφ in Fig.4.17 and Fig.4.17, we can see that 2-step optimisation can obtain a
smaller Je nearly one third of the that of original method. However, the advantage of the 2-step
optimisation is not obvious form the perspective of Je.

Also, it takes the original optimisation programs nearly 40 minutes to finish the optimisation
process and find a feasible solution, while the 2-step optimisation just needs around 15 minutes.

Examples in the real experiments

The task is set as the same in the section 3.3.2 as the Fig.3.36.

When the travelling time is
[
5s 5s 5s 5s 5s 5s 5s

]T
, the results in the real experiment

are shown in Fig.4.19, Fig.4.20,
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Fig. 4.19. Joint 1 tracking in the real experiment Fig. 4.20. Joint 2 tracking in the real experiment

Fig. 4.21. motor angular speeds in the real experiment

When the travelling time is
[
5s 3s 3s 3s 3s 3s 5s

]T
, the results in the real experiment

are shown in Fig.4.22, Fig.4.23.
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Fig. 4.22. Joint 1 tracking in the real experiment Fig. 4.23. Joint 2 tracking in the real experiment
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Technical Annex

Motion planning and optimisation is validated with simulation and the real experiment on the
FPR prototype robot.

Three main programs in Matlab are contributed in this master thesis.

1. Motion optimisation program for FPR prototype robot.

2. Motion optimisation program for FRR.

3. Singularity crossing optimisation approaches for FPR prototype robot.

All these programs have been normalised to be user-friendly. In such a case, beginners of this
project will find it easy to use these codes to repeat the results in this thesis.

Main structure of programs

The structure and functions of the whole program of Motion optimisation program for FPR
prototype robot can be presented in Fig.4.24

Run optimisation Main program.

InterFace() take inputs from users

Optimisation4WayPoints() optimise the trajectory with way points

Optimisation4Segment()() optimise each segment of the trajectory by via points

ReConstuctTrajectory()/TimeSericesTrajectory() generate trajectory for simulation

call simulation call the simulation in Simulink

PlotSimulationResults() show results
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Fig. 4.24. Code structure of FPR prototype motion planning

How to use a program to generate a optimal trajectory

1. Run Run Optimisation.m in the path

2. Decide to way points in task space or in joint space

3. Input the way positions that the drone(prototype) or FPR end-effector will pass

4. Choose travelling time and number of via points for each segment

5. Show way positions in task space
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Fig. 4.25. Choose configuration Fig. 4.26. Choose working space

Fig. 4.27. Choose the way positions Fig. 4.28. Choose tf and nvp

6. Begin the optimisation

Fig. 4.29. Choose the way positions Fig. 4.30. Input travelling time and number of via
points

7. Call the simulation in Simulink

8. Show results
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Fig. 4.31. Show the optimised trajectory Fig. 4.32. Call the simulation

9. Results are recorded and saved in txt

10. Generate trajectory data file for real expriment

Fig. 4.33. Save optimisation results Fig. 4.34. Generate trajectory for real experiment
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