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Visual servoing of the Monash Epicyclic-Parallel
Manipulator

Author: Alessia Vignolo

Abstract

Past research works have proven that the robot end-effector pose of parallel mechanisms can

be effectively estimated by vision. For parallel robots, it was previously proposed to directly ob-

served the end-effector. However, this observation may be not possible (e.g. if the robot is milling).

Therefore, it has been proposed to use another type of controller based on the observation of the

leg directions. Despite interesting results, this controller involves the presence of mapping singu-

larities inside the robot worskpace (near which the accuracy is poor) and it is not suitable for

some particular Parallel Kinematics Machine (PKM) families (e.g. MEPaM). This thesis presents

a new approach for vision-based control of the end-effector: by observing the mechanism legs, it is

possible to extract the Plücker coordinates of their lines and determine the end-effector’s pose. A

comparison between the previous approach based on the leg direction and the new approach based

on the leg line Plücker coordinates is presented. Both are applied on a five-bar mechanism, and

it is shown that the new approach has some advantages regarding the workspace of applicability.

Further, the new controller is applied to the Monash Epicyclic-Parallel Manipulator (MEPaM)

with the results of the simulation presented.

Streszczenie

W ostatnich badaniach pokazano, że położenie i orientację efektora robota równoległego można

efektywnie estymować za pomocą wizji. Dla niektórych typów robotów (np. skrawających) taka

estymacja może być trudna do zrealizowania. W związku z tym w piśmiennictwie zaproponowano

nowe algorytmy regulacji służące obserwacji członów robota – kończyn. Mimo, że wstępnie uzyskano

obiecujące wyniki, wspomniane algorytmy sterujące nie są szczególnie odpowiednie w zastosowa-

niach dla niektórych grup robotów równoległych (np. MEPaM), ze względu na osobliwości kine-

matyczne manipulatora wewnątrz przestrzeni roboczej. W tej pracy zaprezentowano nowe pode-

jście do sterowania robotów równoległych bazujące na informacji wizyjnej. Położenie i orientację

efektora manipulatora estymuje się poprzez obserwacje kończyn robota za pomocą współrzędnych

i algebry Plückera. W pracy zamieszczono porównanie proponowanego rozwiązania na tle ist-

niejących w piśmiennictwie i zamieszczono niektóre wyniki obliczeń symulacyjnych dla pięcioboku

przegubowego. Otrzymane rezultaty potwierdzają zalety metody, w szczególności jeśli chodzi o

rozmiar przestrzeni roboczej, w której może poruszasię robot. Proponowaną strategię regulacji

zaimplementowano dla robota MEPaM (Monash Epicyclic-Parallel Manipulator) i przedstawiono

wyniki obliczeń symulacyjnych.
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Chapter 1

Introduction

1.1 Motivations and general objectives

Compared to serial robots, parallel kinematic manipulators [1] are stiffer and can reach higher

speeds and accelerations [2]. However, their control is troublesome because of the complex me-

chanical structure, highly coupled joint motions and many other factors (e.g. clearances, assembly

errors, etc.) which degrade stability and accuracy.

Many research papers focus on the control of parallel mechanisms (see [3] for a long list of

references). It is possible to bypass the complex kinematic structure of the robot and to apply a

form of control which uses an external sensor to estimate the pose of the end-effector, reducing the

stability and accuracy degradation mentioned earlier.

A proven approach for estimating the end-effector pose is through the use of vision. The most

common approach consists of the direct observation of the end-effector pose [4, 5, 6]. In some cases,

however, it may prove difficult to observe the end-effector of the robot, e.g. in the case of a machine-

tool. A substitute target for the observation must then be chosen while effective candidates for this

are the legs of the robot, which are usually designed with slim and rectilinear rods [3].

An application of this technique was performed in [7] where vision was used to derive a visual

servoing scheme based on the observation of the legs of a Gough-Stewart (GS) parallel robot [8].

In that method, the leg directions (each direction represented by a 3D unit vector) were chosen

as visual primitives and control was derived based on their reconstruction from the image. The

approach was applied to several types of robots, such as the Adept Quattro and other robots of

the same family [9, 10].

However, it was proven later that:

• The mapping between the leg direction space and the end-effector pose space is not free

of singularity which considerably affect the performance in terms of accuracy and do not

appear at the same place as the singularity of the controlled robot. Finding the singularity

of the mapping is a complicated task which can be considerably simplified by using a tool

called “the hidden robot” concept [11]. The hidden robot is a virtual robot whose kinematics

represents the mapping between the leg direction space and the end-effector pose space. Thus,

the mapping singularities appear if and only if the virtual hidden robot encounters kinematic

singularities. A general methodology to find the hidden robot model of any parallel robot

controlled by leg-observation-based visual servoing approach has been defined in [11] and

9
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Figure 1.1: The PRRRP robot

several families of robots have been studied in [12, 13, 11].

• The approach proposed in [7] cannot be applied to any type of robot family: it was shown

in [10] that it was not possible to control a particular family of parallel robots for which the

first joints of the legs are prismatic joints whose directions are all parallel. For example, in

the case of the PRRRP1 robot with parallel P joints (Fig. 1.1), the pose of the end-effector

can not be estimated using the leg directions ui as, for the same values of the vectors u1 and

u2, infinite possible configurations of the end-effector can be found.

Regarding this second point, a solution to bypass the mentioned problem would be to use the

Plücker coordinates of the lines passing through the legs instead of the leg directions only. Using

the Plücker coordinates of the lines passing through the legs for the visual servoing is equivalent to

use the leg direction plus their distance and position with respect to the camera frame. Thus, the

line passing through the legs are fully defined. Estimating the end-effector pose in the case of the

PRRRP robot of Fig. 1.1 is similar to finding the intersection point of the lines L1 and L2 passing

through the legs.

The aim of this thesis is dual:

1. First, to introduce this new leg servoing scheme based on the use of the Plücker coordinates

of the lines passing through the legs; to apply it on a five-bar mechanism and on MEPaM;

and to analyze the singularity of the mapping involved between the observed line space and

the end-effector space, and

2. Then, to compare this approach with the previous one based on the leg direction space in

1In the following of the text, R and P stand for passive revolute and prismatic joints, respectively, while R and
P stand for active revolute and prismatic joints, respectively.
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terms of robustness to measurement noise.

Summarizing, this thesis has the following objectives:

• to develop a simulator of a five-bar mechanism and MEPaM

• to propose a visual-based controller for the five-bar mechanism and MEPaM, based on the

observation of the legs (which is the main aim of the thesis)

• to analyze their corresponding hidden robot model.

1.2 Software tools

Due to the fact that I do not have access to the prototype at Monash, the research is simulation-

based. The tools that have been relevant to my project are:

• Adams, the multibody dynamics and motion analysis software owned by MSC Software

Corporation

• Matlab/Simulink, a graphical programming language tool for modeling, simulating and an-

alyzing multidomain dynamic systems developed by MathWorks.

Matlab/Simulink and Adams have been interfaced by Adams/Controls. Within Adams/Controls,

it is possible to model a system and then, via some TCP/IP communication as feedback, the model

can be exported in Matlab/Simulink. Then, a controller can be built in Simulink: the inputs for

the controller are the outputs from the Adams model and the outputs from the controller are

the inputs for the Adams model. This closed loop between Simulink and Adams/Controls makes

simulation of non linear time-invariant systems very simple.

1.3 Organization of the text

The rest of the thesis is organized as follows. Chapter 2 describes the different control approaches

which have been used until now and it explains why the Cartesian space control is a valid alter-

native to the usual joint space control in some machines. Then, there is a summary about the

novel approach based on the leg direction developed by the IRCCyN Robotics Team and a con-

clusion which explains also that this novel approach is not enough for some particular robots, like

MEPaM.

Chapter 3 gives a general view on the Plücker coordinates concept and a detailed explanation

about their application in the visual servoing field, in particular about how they are used in the

new control approach implemented during the thesis work.

Chapter 4 describes both the old leg-direction-based and the new line-based control approaches

applied on a five-bar mechanism, analyzing also the singularities introduced by the two controllers.

Then, a comparative analysis between them is done and the results obtained using the two ap-

proaches are presented, pointing out the advantages of the new controller. Chapter 5 introduces

the MEPaM (Monash epicyclic-parallel manipulator), with a description of its design and its kine-

matics (based both on the actuators angles and the Plücker coordinates of the legs). The new

control approach is then applied on it, and an analysis of the real robot and of the hidden robot

is also done. Then, the results obtained from the simulation are presented.

Chapter 6 presents the conclusions and the future work.
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Chapter 2

State of the art about the different

methods of control

In this section, there will be a literature review about the existing control strategies, with their

major drawbacks pointed out.

2.1 Joint space control

In [14] it has been shown that the control designs taken for serial are usually employed in parallel

robots, in spite of the unsuitability.

The main control strategies used until now, for both serial and parallel mechanisms, are in the

joint space: the linear single-axis and the computed torque control.

The linear single-axis control, or PID control, is the most popular and simplest way of

control. It is shown in Fig. 2.1, and the symbols have the following meanings:

Xd: desired end-effector pose; IKM : Inverse kinematic model; q and qd: joint positions and desired

joint positions; e: error between q and qd, M : inertia matrix of the actuated bodies, mapped into

the active joint space, diagonal and constant; s: Laplace variable; uP ID: torque input generated

by the PID controller; uff : feedforward compensation term; Γ: actuation torques. The block s2 is

computed on-line.

This type of control system gives good performances for a wide range of serial manipulators, but

it shows weakness regarding fast serial manipulators, where it leads to a poor dynamic accuracy

[15]. In the case of parallel robots, it leads to a poor dynamic accuracy too, for the complex inverse

kinematics.

The simplest way for compensating the non-linear dynamic behaviour is the computed torque

control, which is shown in Fig. 2.2. Here we have some additional symbols, which are: IDM :

Inverse dynamic model; q̇: joint velocities.

In such a way, the system is linearized and, if the dynamic model represents perfectly the real

machine [15], the linear controller can work with the maximal performance all over the workspace.

Nevertheless, the condition can be verified almost never.

Therefore, joint space control is very good for serial kinematic machines because, for them, the
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joint space control is a state feedback control, which is known as the one that can provide the

best accuracy. On the other hand, parallel machines state is represented by the end-effector pose:

then, the joint space control is not a state feedback control, therefore the best accuracy cannot be

achieved with such a control.

Moreover, a joint space control has to include the forward kinematic model in order to find the

end-effector pose, but it is not so easy like in serial manipulator. In fact, it is difficult to obtain

closed-form solutions form of forward kinematics of parallel robots, and a joint configuration can

lead to various end-effector poses.

Since there are a lot of disadvantages in using joint space control and parallel machines are defined

by the end-effector pose, a good idea is the Cartesian space control.

2.2 Cartesian space control

While for serial mechanism the inverse differential kinematic model depends only on the joint

values, for parallel machines it depends also on the end-effector pose. Then, the aim is to drive the

error signal, i.e. the difference between the current and the desired end-effector pose, to zero. So,

in the Cartesian control, the instantaneous Cartesian velocities which drive the error to zero are

computed at each sample time. Therefore, estimating the end-effector pose is needed. In the Fig.2.3,

the Cartesian space equivalent of the linear single-axis control generally used is shown. However,

it is shown that the transposition from joint to Cartesian space is not completely straightforward.

In the control scheme of Fig.2.3, the simplified dynamics is expressed as

γ = ˆDT (X)IẌ (2.1)

where only the inertia of the end-effector I is taken into account. The latter is mapped into the

active joint space with the forward instantaneous kinematic matrix.

2.3 End-effector pose estimation

Estimating the end-effector pose can be done through joint measurements and the forward kine-

matic model, but it is difficult due to the lack of an analytic formulation of the forward kinematic

model of a parallel mechanism. The inverse kinematic model is, instead, analytically defined for

most of the parallel mechanisms and one could numerically invert it. However, the numerical in-

version implies high order polynomial root determination with several solutions (up to 40 real

solutions for a GS platform).

Therefore, generally the solution of this problem is not unique, i.e. given actuated joint coordinates

correspond to several ways of assembling a parallel manipulator, and it is usually impossible to

express analytically the generalized coordinates as functions of the actuated joint coordinates.

The methods for finding all of the solutions of the direct kinematic problem have a computational

time which, although decreasing, are still too high for using them in real time control. Here is a

summary of these methods [16]:

• elimination: this method allows to reduce the initial problem of solving a system of several

equations to a problem of solving a univariate polynomial equation. This method requires

algebraic equations (i.e polynomial equations) for the inverse kinematics, and it has two main

drawbacks: it is very difficult to get a final polynomial which has the minimal degree, and
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the calculation of its coefficients is very sensitive to numerical errors (therefore this method

does not provide certified solutions).

• homotopy: this method requires algebraic equations for the inverse kinematics too, but it

may provide certified solutions. The main drawback is its slowness.

• Gröbner basis: this method requires algebraic equations for the inverse kinematics too, and,

if the coefficients of the inverse kinematics equations are rational numbers, provides certified

solutions.

• interval analysis: this method can be used even if the inverse kinematics equations are

not algebraic, and provides certified solutions. The unknowns must be bounded (but this is

usually the case for kinematics problems). The drawback is that the computation time is

difficult to estimate.

• ad-hoc methods: the direct kinematics problem is transformed into a different and simpler

problem that is solved with one of the above method or with an optimization procedure.

These methods can be fast, but are thought for a specific architecture, and cannot easily be

extended to other architectures.

These methods above are for obtaining all the solutions of the direct kinematic, but the aim of

the real direct kinematic problem is to determine the current pose of the end-effector, so the pose

when the joint values were measured. The problem is that there is no known algorithm which can

select the right current pose among the set of solutions. Another problem is the certification of the

solutions: in some of the methods above, the calculation may imply a high number of operations,

being very sensitive to numerical errors. In this case it is necessary to check the validity of the

solutions. Another problem is that it has to be assumed that all the data used to establish the

inverse kinematic equations are exact: this assumption is usually false, because the modeling of the

robot does not exactly fit the real robot and the joint variables are uncertain. The last problem is

that all of them are too slow for real-time use, so they cannot be used for control purposes.

There are some methods which can calculate the current pose, but all of them need a priori infor-

mation of the pose. They are numerical methods and are based on the concept that the unknown

current pose should be close to the pose established when the direct kinematic problem was solved

the previous time. Therefore, the solution of a system starts with an estimate close to the current

solution. One of the most classical numerical method for solving a non-linear system of equations

is the Newton iterative scheme. This method is more compatible with a real time context, but

has still some drawbacks. One problem is that Newton scheme may not to converge. Moreover,

there can be convergence problem if the inverted Jacobian matrix is close to be singular. Therefore

this method may give an incorrect answer or no answer at all, leading to a wrong control.

Fortunately, it is possible to detect if the Newton method has converged to an incorrect solution:

knowing the sample time of the controller, the maximal velocity of the end-effector and its last

pose, one can derive the extremal values which the new pose parameters cannot exceed. It is not

possible to detect a wrong solution just in case more than one solution satisfies the extremal values

constraints, but it usually does not occur in a slow moving robot, in fact the closeness of two

solutions implies the inverse of the Jacobian nearly singular, leading to a failure of the calculation

of it.

For control purposes, the best alternative is to use a direct kinematics procedure that may not be

the fastest available in absolute term, but the one that leads to the most reliable result, provided

14



that the additional computation time, compared to the fastest method, does not exceed the sam-

pling time.

For real time context, the numerical methods seem to be more suitable. Nevertheless, as said be-

fore, these numerical methods use the a-priori information on the current pose, but in some cases

this is not available (e.g. when starting the robot), therefore it is important to find a method for

which it is not required.

On the other hand, one of the most promising alternatives is the "‘metrological redun-

dancy"’, which adds sensors in the mechanism for simplifying the kinematic models and the

control.

Computer vision can be use in an efficient way for estimating the end-effector pose and, then, for

Cartesian control in parallel mechanisms. There are different possible approaches:

1) Vision as a sensor, where the end-effector pose is estimated by vision and then transformed

into joint configuration through the inverse kinematic model. Then the control is done in the joint

space. Computer vision can be considered as a contact-less redundant sensor, so the simplified

model based on the redundant metrology can be used. However, the joint control does not take

into account the kinematic closures, yielding high internal forces.

2) Visual servoing, where the measure of the end-effector pose is directly used for control. In this

case, the Cartesian desired velocity is generated and then converted through the inverse Jacobian

into joint actuation. In the parallel case is rather easier than in the serial case, since the inverse

Jacobian of a parallel mechanism has a straightforward expression.

There are more techniques like position-based visual servoing (PBVS) [17] (explicit pose mea-

surement) to image-based visual servoing (IBVS) [18] (it is made implicitly by using only image

measurements). The control loop is closed on the vision sensor, and this leads to a high robustness

to calibration and perturbations errors. Indeed, these errors only appear in a Jacobian matrix but

not in the regulated error.

However, these two ways of using vision are efficient but not innovative. Moreover, the direct appli-

cation of visual servoing techniques assumes implicitly that the robot inverse differential kinematic

model is given and that it is calibrated. Therefore, modeling, identification and control have small

interaction with each other. Indeed, the model is usually defined for control using proprioceptive

sensing only and does not foresee the use of vision for control, because identification and control

are defined later with the constraints imposed by the model. This is useful for modularity but this

might not be efficient in terms of accuracy as well as of experimental set-up time.

A new approach was proposed [19] in order to take the advantages of redundant metrology and

visual servoing, and it will be explained in subsection 2.3.1.

2.3.1 Novel approach of visual servoing

The novel approach proposed in [19] solves most of the previous techniques difficulties seen in

section 2.3. For instance, adding redundant sensors may be impossible or, anyway, you have to

modify the mechanism to install them. Moreover, observing the end-effector is not always possible:

the case of MEPaM is explicative because, since it is a haptic device, the presence of the user hand

may be an obstacle to do it. However, usually the observation of the legs is not a problem: this

turns the vision from an exteroceptive to a proprioceptive sensor.

This approach, based on the observation of the legs with a camera fixed with respect to the base,
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has been validated and illustrated on different parallel mechanism. The first step was made on the

GS platform (Fig. 2.4) simulation [19]: the visual primitives were represented by the leg directions,

and their reconstruction from the image was used for deriving the control. Then this approach was

improved in terms of accuracy by using the observation of the leg edges and controlling the robot

directly in the image space [20]: this new method was applied to Adept Quattro robot (Fig. 2.5)

and other machines of its family [21] [22].

In the novel approach, it is taken into account that control will be performed using vision since

the first stages of modeling: for that reason, the fusion between robot kinematic and projective

geometry is needed (Fig. 2.6). The point of unification can be found in line geometry, because of

the shape of parallel mechanism legs: they are usually slim and rectilinear, therefore they can be

modeled as straight lines.

2.3.2 Hidden robot

Recently, it has been shown that the visual servoing of the leg directions of the GS platform and

the Adept Quattro with 3 translational DOFs is equivalent to controlling other virtual robots,

with assembly modes and singular configurations different from those of the real ones, which can

be considered "‘hidden"’ within the controller.

It has been demonstrated in [23] that the concept of hidden robot:

1. can be used to explain why the observed robot with n legs can be controlled using the

observation of only m leg directions (m < n) arbitrarily chosen, and can also help to choose

the best set of legs to observe with respect to some given performance indices,

2. can be used to prove that is not always a full diffeomorphism between the Cartesian space

and the leg direction space, and can also bring solutions for avoiding the convergence to a

non desired pose,

3. allows to simplify the analysis of singularities of the mapping between the leg direction space

and the Cartesian space by reducing the problem to the analysis of singularities of a new

robot,

4. can be used to certify that the robot will not converge to local minima.

Usually, the control method is based on the measurement of the actuators motions, while the

novel approach described in section 2.3.1 is based on the observation of the leg directions. Therefore,

it is interesting to understand what type of virtual actuators this observation corresponds to. For

instance, it is possible to answer to this question taking into account the Gough-Stewart case,

which has six UPS legs of varying length qi, i ∈ 1...6, (U, P and S stand for passive universal,

prismatic and spherical joints, while U , P and S stand for active universal, prismatic and spherical

joints) attached to the base by U joints located in points Ai and to the platform by S joints located

in points Bi (Fig. 2.4, Right). By analyzing the leg i, the unit vector bui can be parameterized

by two independent coordinates, such as the angles defined by the universal (U) joint rotations:
bui is a measure of U joint displacements, so the observation corresponds to the virtual actuator

of the U joint. Therefore, observing the directions of the leg is useful to control the displacement

of a virtual UPS leg instead of a UPS leg. It is known that a 3 − UPS robot (Fig. 2.7) is fully

actuated: because of this, observing just three legs instead of six is enough to control the GS
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platform. Therefore, if only three legs are observed, the visual servoing of the leg directions of

the GS platform is equivalent to controlling another robot, the 3 − UPS, which has the same

geometric properties of the GS robot (same attachment points, same leg lengths, same U and S

joints orientations), but with different assembly modes and singular configurations.

In order to get a correct control, they should be analyzed through a forward geometric problem.

Considering the 3−UPS robot of the Fig. 2.7, it is possible to note that, disassembling the leg 3 at

point B3, only four actuators remain to control the six mobilities, and the end-effector gains two

DOFs. This gained motion is named Cardanic motion, and it is defined by the points B1 and B2

which are constrained on the lines of bu1 and bu2 and by the platform which can rotate around the

line B1B2. The surface described by the point B3 is an octic surface, which is an algebraic surface

of degree eight. The point B3 is, instead, constrained to move on the line of bu3. As demonstrated

in [11], a line and an octic surface can have up to eight real intersection points, therefore the

assembly modes of the 3−UPS robot can be up to eight.

These different assembly modes explain why the end-effector does not always converge to the

desired position, even if the observed directions do.

It has also been shown that the legs to observe and the number of them should be chosen carefully

in order to avoid inaccuracy problems.

Regarding the number of the legs to observe, in [23] it was shown that in the case of GS platform,

the pose accuracy of the robot can be improved adding measurement redundancy, therefore by

observing four, five or six legs instead of the minimum required, which is three legs. However,

increasing the number of legs to observe leads to an increase of the computational time and it is an

important drawback when high sampling rates are required. Thus, a compromise must be found

between the sampling period and the computational time for any given application.

Regarding the selection of the legs, it is necessary to ensure that:

• the legs have to be observable during all the time of the robot displacement

• the initial and final robot configurations must be included in the same assembly mode of the

virtual 3 − UPS robot. Otherwise, the controller is not be able to converge to the desired

end-effector pose, although the observed leg directions do.

Moreover, in order to achieve the best possible final accuracy, the following procedure can be used:

1. knowing the six leg orientations at the initial and final GS platform configurations, compute

the solutions of the forward geometric model of the different possible 3−UPS robots,

2. find the solutions of the forward geometric model that belong to the same assembly modes;

if, for one given virtual robot, initial and final platform configurations do not belong to the

same assembly mode, discard it;

3. for all remaining virtual 3 − UPS robots, knowing the observation error, compute the posi-

tioning error; hold the set of legs that guaranty the best accuracy;

4. test the controller (in simulation) with the held set of legs; if there is no problem of conver-

gence and the legs are observable during the whole displacement, the problem is solved; if

not, discard this set of leg and redo point c; if it does not exist any 3−UPS robot for which

initial and final configurations belong to the same assembly mode, the displacement is not

feasible.
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Therefore, the concept of hidden robot model is an important tool useful to analyze the intrinsic

properties of some controllers developed by the visual servoing community.

In order to apply the novel approach to a parallel robot, the analysis of its hidden robot is needed.

2.4 Conclusions

Through the state of the art, an overview on the control systems was done, showing the lacks of the

joint space control systems and the advantages of the Cartesian space control systems in the case

of parallel kinematic machines. Then, several methods for finding all the possible solutions and the

current one of the direct kinematic problem in order to estimate the pose of the end-effector were

reviewed, pointing out some drawbacks.

After, the novel approach proposed by some researchers of the IRCCyN Robotics Team was ana-

lyzed. The method, based on the observation of the legs with a camera fixed with respect to the

base, seems to be suitable to control the haptic device MEPaM. Nevertheless, this novel approach

has some problems which have to be solved.

In fact, for applying the vision-based control, it is necessary to ensure a diffeomorphism between

the error e, which has to be regulated, and the Cartesian state x of the end effector, which means

that controlling e becomes equivalent to controlling x. Therefore, as e depends only on the di-

rection of the legs, this approach can not be applied to some PKM families. One problem occurs

when it is not possible to observe the state of mechanism: for instance, you can consider the case

in which there is no change of direction of the legs but the end-effector moves, like in the case

of MEPaM where the directions of the cylindrical legs are constant. Another problem is about

internal motions, because the leg directions do not represent it.

These problems are due to the fact that this control approach is based just on a unit vector for de-

scribing the leg direction, and can be solved using a visual feature more relevant for those particular

PKM families: the Plücker coordinates.
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Figure 2.1: Single axis control.

Figure 2.2: Computed torque control

Figure 2.3: Simple PID control in theCartesian space

Figure 2.4: Left: a Gough-Stewart platform from DeltaLab; Right: schematics of leg i
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Figure 2.5: Left: Adept Quattro robot; Right: schematics of leg i

Figure 2.6: Simplified cascade from modeling to vision-based control using a projective kinematic
model.

Figure 2.7: Schematics of a 3−UPS robot.
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Chapter 3

Plücker coordinates for visual

servoing

3.1 General definition and geometric meaning

Plücker coordinates are a representation of lines in R
3. It is known that a line L in 3-dimensional

Euclidean space can be determined by two distinct points that it contains. Let the points x =

(x1,x2,x3) and y = (y1,y2,y3) be the points contained in the line L, then the vector displacement

from x to y represents the direction of the line. That is, every displacement between points on L
is a scalar multiple of d = y−x. Suppose that a physical particle of unit mass moves from x to y,

it would have a moment about the origin. The geometric equivalent is a vector with the direction

perpendicular to the plane containing L and the origin, and with the length equals the double

of the area of the triangle formed by the segment of the displacement and the origin. Therefore,

the moment is the vector cross product m = x×y. The area of the triangle is proportional to the

length of the segment between x and y. By definition, the moment vector is perpendicular to each

displacement along the line, so the vector dot product is d ·m = 0.

The two values d and m are sufficient to uniquely determine L. Therefore, the Plücker coordinates

are given by (d : m) = (d1 : d2 : d3 : m1 : m2 : m3).

Furthermore, this approach can be extended to points, lines, and planes.

3.2 Leg observation

Both control schemes, the leg-direction-based and the line-based ones, are based on the fact that

it is possible to observe by observing the robot legs. In this Section, the way to extract the leg

direction and the Plücker coordinates of the line passing through the leg is discussed.

3.2.1 Line modeling

A line L in space, expressed in the camera frame, is defined by its Binormalized Plücker coordi-

nates [24]:

L ≡ (cu,cn,cn) (3.1)
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where cu is the unit vector giving the spatial orientation of the line1, cn is the unit vector defining

the so-called interpretation plane of line L and cn is a nonnegative scalar. The latter are defined

by cncn = cP × cu where cP is the position of any point P on the line, expressed in the camera

frame. Notice that, using this notation, the well-known (normalized) Plücker coordinates [25, 2]

are the couple (cu,cncn).

The projection of such a line in the image plane, expressed in the camera frame, has for

characteristic equation [24]:
cnT cp = 0 (3.2)

where cp are the coordinates in the camera frame of a point P in the image plane, lying on the

line.

With the intrinsic parameters K, one can obtain the line equation in pixel coordinates pn from:

pnT pp = 0 (3.3)

Indeed, replacing pp with Kcp in this expression yields:

pnT Kcp = 0 (3.4)

By identification of (3.2) and (3.3), one obtains

pn =
K−T cn

‖K−T cn‖ ,cn =
KT pn

‖KT pn‖ (3.5)

Notice that for numerical reasons, one should use normalized pixel coordinates. Namely, let us

define the pixel frame by its origin located at the image center (i.e. the intersection of the image

diagonals) and such that the pixel coordinates vary approximately between −1 and +1, according

to the choice of the normalizing factor, which can be the image horizontal dimension in pixels, or

its vertical dimension, or its diagonal.

3.2.2 Cylindrical leg observation

The legs of parallel robots have usually cylindrical cross-sections [2]. The edges of the i-th cylindrical

leg are given, in the camera frame, by [26] (Fig. 3.2):

cn1
i = −cosθi

chi − sinθi
cui ×c hi (3.6)

cn2
i = +cosθi

chi − sinθi
cui ×c hi (3.7)

where cosθi =
√

ch2
i −R2

i

/
chi, sinθi = Ri/

chi and (cui,
c hi,

chi) are the Binormalized Plücker

coordinates of the cylinder axis and Ri is the cylinder radius.

It was also shown in [26] that the leg orientation, expressed in the camera frame, is given by

cui =
cn1

i ×c n2
i∥

∥cn1
i ×c n2

i

∥
∥

(3.8)

Let us remark now that each cylinder edge is a line in space, with Binormalized Plücker ex-

pressed in the camera frame (cui,
cn

j
i ,cnj

i ) (Fig 3.2(a)). Moreover, any point Ai (of coordinates cAi

in the camera frame) lying on the cylinder axis is at the distance Ri from the edge. Consequently,

1In the following of the thesis report, the superscript before the vector denotes the frame in which the vector is
expressed (“b” for the base frame, “c” for the camera frame and “p” for the prixel frame). If there is no superscript,
the vector can be written in any frame.
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a cylinder edge is entirely defined by the following constraints, expressed here in the camera frame,

although valid in any frame:
cn

jT
i

cAi = −Ri (3.9)

cn
jT
i

cn
j
i = 1 (3.10)

cuT
i

cn
j
i = 0 (3.11)

The vector chi = chi
chi can be computed using the edges of the i-th cylindrical leg too, and it

is given by
chi = cDi × cui (3.12)

where cDi is the position of the point Bi in the camera frame, which is the closest point of the

axis of the i-th leg to the camera. It is given by

cDi =
Ri

sin(θi)
·

cn1
i + cn2

i∥
∥cn1

i + cn2
i

∥
∥

(3.13)

3.3 Pinhole camera

The model that has been used for the visual servoing is a pinhole camera because it is simple to

implement and is a good approximation of real cameras. In the Fig. 3.3 a camera with O as center

of projection and the principal axis parallel to Z axis is shown. The distance between O and the

image plane is the focal length f . The 3D point P = (X,Y,Z) is projected on the image plane at

coordinates Pc = (u,v). Pc can be found using the properties of similar triangles as

f

Z
=

u

X
=

v

Y
(3.14)

which gives

u =
fX

Z
(3.15)

v =
fY

Z
(3.16)

If the origin of the 2D image coordinate system does not coincide with the intersection point

between the Z axis and the image plane, Pc needs to be translated to the desired origin. With a

translation of (tu, tv) we have

u =
fX

Z
+ tu (3.17)

v =
fY

Z
+ tv (3.18)

Using homogenous coordinates for Pc it becomes






u

v

w




 =






f 0 tu

0 f tv

0 0 1











X

Y

Z




 (3.19)
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Indeed it gives Pc = (u,v,w) = (fX
Z

, fY
Z

,1). In Eq. 3.19, Pc is expressed in meters, and, for convert-

ing it in pixel, we need the resolution of the camera in pixels/meters. Assuming that the pixels are

square, the resolution would be equal in both u and v directions of the camera image coordinates.

For generality, we assume rectangle pixels with resolutions mu and mv pixels/meters in u and v

direction respectively. Therefore, to have Pc in pixels, we should multiply u and v by mu and mv

respectively, and Eqs. 3.17 and 3.18 become

u = mu
fX

Z
+mutu (3.20)

v = mv
fY

Z
+mvtv (3.21)

and can be expressed in matrix form as






u

v

w




 =






muf 0 mutu

0 mvf mvtv

0 0 1











X

Y

Z




 =






αx 0 u0

0 αy v0

0 0 1




P = KP (3.22)

K is called the intrinsic parameter matrix of the camera because it depends on its intrinsic param-

eters, such as the focal length and the principal axis. In the case where the image coordinate axes

u and v are not orthogonal to each other, K also has a skew parameter s, and it is given by

K =






αx s u0

0 αy v0

0 0 1




 (3.23)

If the camera does not have its center of projection in (0,0,0) and its oriented in an arbitrary

way, then a rotation and a translation are needed to make the camera coordinate system coincide

with the XYZ coordinate system of Fig. 3.3. Let T be the camera translation and R the camera

rotation, then the matrix obtained by first applying the translation and then the rotation is given

by the 3×4 matrix (R|RT ) that is called the extrinsic parameter matrix. Therefore, the projection

of P is given by

Pc = K(R|RT )P = CP (3.24)

where C is a 3×4 matrix called complete camera calibration matrix. P need to be in 4D homoge-

neous coordinates and Pc is obtained in 3D homogenous coordinates and in pixels. The 2D location

of the projection on the camera plane will be obtained by dividing the first two coordinates of Pc

by the third one.
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Figure 3.1: Geometric intuition of the Plücker coordinates of a line. x and y are two points on the
line, whose displacement is d and whose moment is m.
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Figure 3.2: Projection of a cylinder in the image (a) and its visual edges (b)

Figure 3.3: A pinhole camera model
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Chapter 4

Leg-direction-based and line-based

visual servoing of the five-bar

mechanism

4.1 Visual servoing schemes

In this Section, the control schemes for the visual servoing of the five-bar mechanism are defined

and compared. Vectors are represented in bold letters, unit vectors in underlined and bold letters,

matrices in capital and bold letters.

4.1.1 Kinematics of the five-bar mechanism

The planar five-bar mechanism (Fig. 4.1) is a 2 degrees-of-freedom (dof ) parallel robot able to

achieve two translations in the plane (O,x0,y0) and which is composed of two legs:

• A leg composed of 3 R joints with an axis directed along z0 and located at points A1, B1

and C, the joint located at point A1 being actuated, and

• A leg composed of 2 R joints with an axis directed along z0 and located at points A2 and

B2, the joint located at point A2 being actuated,

all other joints being passive. Thus, the vector of actuated coordinates is qT = [q1 q2]. The end-

effector is located at point C and its controlled coordinates along x0 and y0 are denoted as x and

y, respectively.

The position of the point C is given by, for i = 1,2:

C = Ai + l1ivi + l2iui (4.1)

in which:

• C is the position of the point C, while Ai = [δi 0]T (δ1 = −lOAi
and δ2 = +lOAi

) is the

position of the point Ai (the frame is not specified, but it is usually either the base frame or

the camera frame),

• l1i and l2i denote the length of the links AiBi and BiC respectively,
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Figure 4.1: The planar five-bar mechanism (the gray pairs denote the actuated joints)

• vectors vi and ui are unit vectors defining the direction of the links AiBi and BiC respec-

tively.

Rearranging (4.1), we obtain

C−Ai − l1ivi = l2iui (4.2)

Then, squaring both sides of (4.2) we get, for i = 1,2:

(x-δi − l1i cosqi)
2 +(y − l1i sinqi)

2 = l22i

x2 + δ2
i + l21i cos2 qi −2xδi −2xl1i cosqi +2δil1i cosqi +y2 + l21i sin2 qi −2yl1i sinqi = l22i

x2 + δ2
i + l21i −2xδi −2xl1i cosqi +2δil1i cosqi +y2 −2yl1i sinqi = l22i

2l1i(δi −x)cosqi −2yl1i sinqi +x2 + δ2
i −2xδi + l21i +y2 − l22i = 0

Naming ai = 2l1i(δi −x), bi = −2yl1i, ci = (x−δi)
2 +y2 + l21i − l22i and substituting cosqi = 1−t2

1+t2

and sinqi = 2t
1+t2 , where t = tg( qi

2 ), we get

ai
1− t2

1+ t2
+ bi

2t

1+ t2
+ ci = 0 (4.3)

t2(ci −ai)+2bit+ai + ci = 0 (4.4)

and it comes that:

qi = 2tg−1




−bi ±

√

b2
i − c2

i +a2
i

ci −ai



 (4.5)

The first-order kinematics that relates the platform translational velocity τ p to the actuator

velocities can be obtained through the differentiation of (4.2) with respect to time and leads to

2(x− δi − l1i cosqi)ẋ+2(y − l1i sinqi)ẏ +2(l1i sinqi(x− δi)−yl1i cosqi)q̇i = 0 (4.6)

Putting Eq. 4.6 for i = 1,2 in matrix form, we have
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2

[

x− δ1 − l11 cosq1 y − l11 sinq1 0

x− δ2 − l12 cosq1 y − l12 sinq2 0

]

︸ ︷︷ ︸

A






ẋ

ẏ

ż






︸︷︷︸

τ p

+2

[

l11 sinq1(x− δ1)−yl11 cosq1 0

0 l12 sinq2(x− δ2)−yl12 cosq2

]

︸ ︷︷ ︸

B

[

q̇1

q̇2

]

︸ ︷︷ ︸

q̇

= 0

(4.7)

Thus,

A[2x3]τ p[3x1] +B[2x2]q̇[2x1] = 0 (4.8)

τ p = −A−1Bq̇ = Jq̇ (4.9)

or also

q̇ = −B−1Aτ p = J+
τ p (4.10)

4.1.2 Leg-direction-based visual servoing of the five-bar mechanism

Kinematics of the five-bar mechanism using the leg-direction-based visual servoing

technique

The control of the five-bar mechanism using the leg-direction-based visual servoing technique de-

veloped in [7] proposes to observe the distal leg direction ui to control the robot displacements. ui

can be obtained directly from (4.2)

ui = (C−Ai − l1ivi)/l2i (4.11)

Differentiating (4.11) with respect to time leads to:

u̇i =

(

τ p − l1i
dvi

dt

)

/l2i (4.12)

Knowing that
dvi
dt

= d
dt






cosqi

sinqi

0




 q̇i =






−sinqi

cosqi

0




 q̇i = v⊥

i q̇i, Eq. 4.12 becomes

u̇i =
(

τ p − l1iv
⊥

i q̇i

)

/l2i (4.13)

Finally, from (4.10), we have that q̇i = −ai/biiτ p, where ai is the i-th row of A and bii is the i-th

diagonal element of B, and Eq. 4.13 becomes

u̇i =
(

I[3x3] + l1iv
⊥

i ai/bii

)

/l2i τ p = MT
ui τ p (4.14)

where I[3x3] is the (3×3) identity matrix and matrix MT
ui is called the interaction matrix related

to the i-th leg.

It can be proven that matrix MT
ui is of rank 1. As a result, a minimum of two independent legs

is necessary to control the end-effector pose. An interaction matrix MT
u can then be obtained by

stacking the matrices MT
ui of the two legs (i = 1,2). Suming the two legs, we have

u̇[6x1] = MT
u[6x3]τ p[3x1] (4.15)

where u =

[

u1

u2

]

.
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Control scheme and interaction matrix

Visual servoing is based on the so-called interaction matrix MT [27] which relates the velocity of

the end-effector τ p to the time derivative of the vector s, which is the vector of the visual primitives

that are used through:

ṡ = MT
τ p (4.16)

The vector s in the leg-direction-based controller is s = u and we call the interaction matrix

MT
u .

The visual primitives vector is formed by unit vectors, therefore it is more elegant to use the

geodesic error rather than the standard vector difference. Consequently, the error will be:

ei = ui ×udi (4.17)

where udi is the desired value of ui.

Finally, a control is chosen such that e, the vector stacking the errors ei associated to k legs

(k = 2..4), decreases exponentially, i.e.

ė = −λe (4.18)

From Eq. 4.17, we have

ėi = − [udi]× u̇i (4.19)

where [...]
×

is the antisymmetric matrix associated to a 3D vector [6]). Therefore, we have

ė =

[

ė1

ė2

]

= −
[

[ud1]
×

u̇1

[ud2]
×

u̇2

]

= −
[

[ud1]
×

0

0 [ud2]
×

]

︸ ︷︷ ︸

U

·
[

u̇1

u̇2

]

︸ ︷︷ ︸

u̇

(4.20)

From Eqs. 4.18, 4.1.2 and 4.15 we have

−λe[6x1] = −U[6x6]u̇[6x1] = −U[6x6]M
T
u[6x3]

︸ ︷︷ ︸

NT
[6x3]

τ p[3x1] (4.21)

τ p = NT + · (−λe) (4.22)

This expression can be transformed into the control joint velocities using Eq. (4.10):

q̇ = J+ ·τ p = −λJ+NT +e (4.23)

4.1.3 Line-based visual servoing of the five-bar mechanism

In the present subsection, the controller based on the estimation of the Plücker coordinates of the

lines passing through the legs is defined. This is the first time that such a controller is proposed.
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Kinematics of the five-bar mechanism using the line-based visual servoing technique

The control of the five-bar mechanism using the new line-based visual servoing technique proposes

to extract the Plücker coordinates (ui,hi) of the two legs attached to the end-effector in order

to control the robot displacements. The control can be done thanks to the fact that the point to

control C is the intersection point of the lines of the two observed cylindrical legs. Applying the

formula of the intersection point between two lines in a plane both expressed in Plücker coordinates,

the position of the point C expressed in Plücker coordinates is given by, for i = 1,2 [28]:

CP = (−(h1 ·N) ·u2 +(h2 ·N) ·u1 +(h1 ·u2) ·N : (u1 ×u2) ·N) (4.24)

in which:

• (u1,h1) and (u2,h2) are the Plücker coordinates of the 1st and the 2nd leg respectively,

• N is a unit vector along a coordinate axis, with (u1 ×u2) ·N non-zero.

For converting the Plücker coordinates of the point in non-homogeneous coordinates, the for-

mula is

C =
CP

(u1 ×u2) ·N . (4.25)

Moving the right term of (4.24) to the left side, extending it and naming the equations with fi for

i = 1..3 leads to

f1 = x+
h1zu2x −h2zu1x

u1xu2y −u2xu1y
= 0 (4.26)

f2 = y +
h1zu2y −h2zu1y

u1xu2y −u2xu1y
= 0 (4.27)

f3 = z +
−h1xu2x −h1yu2y

u1xu2y −u2xu1y
= 0 (4.28)

where C = (x,y,z,1).

Differentiating (4.26), (4.27), (4.28) with respect to time leads to

ḟ1 = ẋ+
−h2z(u1xu2y −u1yu2x)− (h1zu2x −h2zu1x)u2y

(u1xu2y −u1yu2x)2
u̇1x +

(h1zu2x −h2zu1x)u2x

(u1xu2y −u1yu2x)2
u̇1y+

h1z(u1xu2y −u1yu2x)+(h1zu2x −h2zu1x)u1y

(u1xu2y −u1yu2x)2
u̇2x − (h1zu2x −h2zu1x)u1x

(u1xu2y −u1yu2x)2
u̇2y+

u2x

u1xu2y −u1yu2x
ḣ1z − u1x

u1xu2y −u1yu2x
ḣ2z = 0 (4.29)

ḟ2 = ẏ − (h1zu2y −h2zu1y)u2y

(u1xu2y −u1yu2x)2
u̇1x +

−h2z(u1xu2y −u1yu2x)+(h1zu2y −h2zu1y)u2x

(u1xu2y −u1yu2x)2
u̇1y+

u1y(h1zu2y −u1yh2z)

(u1xu2y −u1yu2x)2
u̇2x +

h1z(u1xu2y −u1yu2x)− (h1zu2y −h2zu1y)u1x

(u1xu2y −u1yu2x)2
u̇2y+

u2y

u1xu2y −u1yu2x
ḣ1z − u1y

u1xu2y −u1yu2x
ḣ2z = 0 (4.30)

ḟ3 = ż − (−h1xu2x −h1yu2y)u2y

(u1xu2y −u1yu2x)2
u̇1x +

(−h1xu2x −h1yu2y)u2x

(u1xu2y −u1yu2x)2
u̇1y+

−h1x(u1xu2y −u1yu2x)+(−h1xu2x −h1yu2y)u1y

(u1xu2y −u1yu2x)2
u̇2x +

−h1y(u1xu2y −u1yu2x)− (−h1xu2x −h1yu2y)u1x

(u1xu2y −u1yu2x)2
u̇2y+

−u2x

u1xu2y −u1yu2x
ḣ1x − u2y

u1xu2y −u1yu2x
ḣ1y = 0 (4.31)
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Finally, putting (4.29), (4.30), (4.31) in matrix form, it comes that

I[3x3]τ p[3x1] +P[3x12] l̇[12x1] = 0 (4.32)

l̇ = −P+ ·τ p = MT
l ·τ p (4.33)

where l =









u1

u2

h1

h2









and pjk =
∂fj

∂lk
is the term of the j-th row and the k-th column of P, with j = 1..3

and k = 1..12.

Control scheme and interaction matrix

The vector s in the line-direction-based controller is s = l and we call the interaction matrix MT
l .

Because the vectors h1 and h2 are not unit, the control law (4.16) cannot be used as it.

Consequently, it is necessary to use the following error

ei = li − ldi (4.34)

where ldi is the desired value of li.

The control is chosen in the same way of (4.18). From (4.18), (4.33) and (4.34), it comes

−λe = l̇− l̇d = MT
l ·τ p − l̇d = MT

l ·Jq̇− l̇d (4.35)

Then it is easy to derive the following control joint velocities

q̇ = J+ ·MT +
l · (−λe+ l̇d) (4.36)

where J+ is the inverse Jacobian matrix of the robot which relates the end-effector twist to the

actuator velocities, i.e. J+
τ p = q̇.

The control scheme is represented in Fig. 4.2.

4.2 Analysis of the controller singularities

In this Section, the control schemes for the visual servoing of the five-bar mechanism are compared

in terms of singularities.

4.2.1 Singularities of the leg-direction-based visual servoing controller

As mentioned in the introduction, the singularity of the mapping involved into the present con-

troller can be analyzed through the aid of the “hidden robot” concept [11].

Indeed, it has been shown that the visual servoing of the leg directions of the GS platform and

the Adept Quattro with 3 translational dof is equivalent to controlling other virtual robots, with

assembly modes and singular configurations different from those of the real ones, which can be

considered "‘hidden"’ within the controller.

The robotic community has developed many tools (e.g. the Grassmann algebra) to analyze the sin-

gularity of the kinematic architecture of a real mechanism, that is of the usual mapping
[

x y z
]T

=
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Figure 4.2: Line-based position controller for the five-bar mechanism.
(xd,yd): desired position of the end-effector,
u1,h1,u2,h2 : Plücker coordinates of the first and the second leg respectively,
ud1,hd1,ud2,hd2 : desired Plücker coordinates of the first and the second leg respectively,
e : error vector,
q̇1, q̇2: joint velocities,
(x,y): end-effector position,
q1, q2: joint angles,
A1,B1: two points of the first leg,
A2,B2: two points of the second leg,
L1a,L1b: the two visual edges of the first leg,
L2a,L2b: the two visual edges of the second leg

f(q). In the visual servoing, having to deal with a different map such that
[

x y z
]T

= g(s), things

are more complicated. For simplifying it, it is possible to find a kinematic architecture which can

describe the relation
[

x y z
]T

= g(s), that is an architecture whose actuators q are related to

the visual primitives s: this architecture is the hidden robot. The Jacobian matrix of the hidden

robot will be the interaction matrix of the real robot, therefore analyzing the structural singu-

larity of the hidden robot would be the same as analyzing the singularities of the visual servoing

controller. The reader willing to have further explanations is referred to [11].

The hidden robot involved into the leg-direction-based visual servoing approach for the five-bar

mechansim is shown in Fig. 4.3.

This virtual mechanism is made of two passive planar parallelogram joints AiBiDiEi linked

onto the ground on which is fixed an actuator at point Bi controlling the direction of the link

BiC. This special arrangement of the leg makes it possible, for one given position of the actuator

at Bi, to maintain the orientation with respect to the base of the link BiC independently of the

configuration of the passive parallelogram joint.

A simple kinematic analysis of this virtual robot shows that:

• The Type 1 (or serial) singularities [29] appear when one leg is fully stretched or folded, such

as for the five-bar mechansim (Fig. 4.4),

• The Type 2 (or parallel) singularities [29] appear when the links A1B1 and A2B2 are parallel,
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Figure 4.3: The hidden robot involved into the leg-direction-based visual servoing approach of the
five-bar mechansim (the gray pairs denote the actuated joints)

which is different from the Type 2 singularities of the five-bar mechanism that appear when

the points B1, B2 and C are aligned (Fig. 4.5). As demonstrated in [11], these singularities

affect the performance of the controller in terms of accuracy and need to be well handled.

An example of singularity loci in the workspace of a given five-bar mechanism is provided in

Fig. 4.6.

4.2.2 Singularities of the line-based visual servoing controller

It is known that the singularity conditions appear when the inverse or forward geometric model

degenerates. The geometric models involved in this new controller are based on the fact that we can

rebuild the end-effector pose by knowing the intersection point between the two lines L1 and L2

depicted in Fig 4.1. Therefore, the singularities appear when these two lines are parallel (intersection

point at infinity) or coincide (infinity of possible intersection points). Such singularity conditions

are equivalent to the Type 2 singularity conditions of the five-bar mechanism (Fig. 4.5(a)).

4.2.3 Discussion on the control schemes

At this step, it appears that the new controller has several advantages with respect to the approach

proposed in [7] that should be clearly pointed out:

1. contrary to the past approach, the new one does not need the use of the geometric parameters

of the robot (except the radius of the observed cylinder) for estimating the platform pose.

This is a great advantage because we only need to accurately calibrate the observed cylinders,

not the entire robot, for obtaining the best robot accuracy,

2. the singularities of the new controller coincide with those of the real mechanism, which is a

great advantage with respect to the past approach, for which the singularities are different

and thus lead to the decrease of the reachable workspace.

In the next Section, the two control schemes are compared in terms of robustness to measure-

ment noise in order to clearly demonstrate which type of controller is the best.
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4.3 Comparative analysis of the controller performance

In order to do a comparative analysis of the two control approaches, it has been created an Adams

model of a five-bar mechanism with the following set of parameters: l1i = 0.3 m as length of

the legs attached to the ground, l2i = 0.35 m as length of the legs attached to the end-effector,

lOAi
= 0.275 m as distance between O and Ai (Fig. 4.1). The workspace is plotted in Fig. 4.6. Both

the leg-direction-based controller (case 1) and the line-based controller (case 2) have been applied

to such a model.

4.3.1 Robustness to measure noise near the leg-direction-based con-

troller singularity

We added noise on the measurements in order to compare the performance of both types of con-

troller. The noise model is described thereafter.

The extraction of the Plücker coordinates of the leg line is based on the equations of the leg edges.

In the simulation, they are projected to the image plane and converted from meter to pixel. Then,

the edge line intersections with image boundary are computed: the coordinates of the intersection

points have to be rounded due to the pixel accuracy. A new equation of the edge line is then

recomputed taking into account the error introduced in the intersection points between the edge

line and the image boundary.

In this subsection the results of the leg-direction-based and the line-based visual servoing ap-

proaches subjected to measurement noise are shown. The measurements error chosen is given by

a pixel accuracy equal to 1. Then, it has been chosen the initial end-effector pose as (x0,y0) =

(0,0.196)m and a set of desired positions Cd of the end-effector near the singularity of the hidden

robot of the leg-direction-based controller:

Cd1 = (−0.172,0.030)m

Cd2 = (−0.050,0.080)m

Cd3 = (0.036,0.082)m

Cd4 = (0.092,0.070)m

Cd5 = (0.193,0.013)m

The initial position, the desired positions and the final positions got with the controller of case 2

are shown inside the plot of the workspace in Fig. 4.6 (from left to right, in black: Cd1...Cd5). The

results of all the simulations are then shown in the Table (4.3.1): for each desired position, the final

position and the error got with both the controller are shown. In the Table (4.3.1): Cd is the set of

desired positions, Cf1 and Cf2 are the set of the final positions in the controllers of case 1 and case

2 respectively, e1(tf ) and e2(tf ) are the errors of the controllers of case 1 and case 2 respectively.

The error is computed as the norm of the difference between the final position (the final time

chosen is tf = 3s) and the desired position. The graphs on Figs. 5.26, 5.33, 5.29, 5.30, 4.11 show

the convergence of the end-effector pose of both controller in the cases Cd1,Cd2,Cd3,Cd4,Cd5.

Upon the results, it is readily found that the singularity of the hidden robot of the controller of

case 2 is much more robust to measurement noise, which allows to access, with this new controller,

the same workspace zones as the real robot (contrarily to the controller of case 1).
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Cd Cf1 Cf2 e1(tf ) e2(tf )

(-0.172,

0.030)

(-0.157,

0.040)

(-0.173,

0.031)

0.0184 0.0013

(-0.05,

0.080)

(-0.027,

0.083)

(-0.050,

0.080)

0.0232 0.0004

(0.036,

0.082)

(0.061,

0.078)

(0.036,

0.083)

0.0255 0.0007

(0.092,

0.070)

(0.107,

0.065)

(0.092,

0.070)

0.0158 0.0003

(0.193,

0.013)

(0.227,

-0.020)

(0.193,

0.013)

0.0471 0.0001

4.3.2 Crossing the hidden robot singularity

In this subsection, the end-effector desired position is chosen in such a way that the end-effector

should cross the hidden robot singularity (singularity of the controller of case 1) shown in the

Fig. 4.6. It is shown that in the case of leg-direction-based approach the legs direction converges to

the desired one, but the end-effector position does not. While in the case of the line-based approach

also the end-effector pose converges to the desired one. This is due to the fact that, in the controller

of case 1, the five-bar mechanism converges to another assembly mode of its hidden robot.

The end-effector initial position is the same of the subsection (4.3.1), while the chosen desired

position is Cd = (0.104,0.036)m. The results of the simulations are shown in Fig. 4.12.
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Figure 4.4: Examples of Type 1 singularity for the five-bar mechanism (a) and its corresponding
hidden robot (b)
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Figure 4.5: Examples of Type 2 singularity for the five-bar mechanism (a) and its corresponding
hidden robot (b)
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Figure 4.6: Singularity loci of the five-bar mechanism and its corresponding hidden robot for the
following set of parameters: l1i = 0.3 m, l2i = 0.35 m, lOAi

= 0.275 m.
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(a) End-effectorposeerrorintheleg-direction-basedcontroller.
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Figure 4.7: Error in the case of measurement noise with desired position near the singularity of the
leg-direction-based controller: Cd1 = (−0.172,0.030)m
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End-effector pose error in the leg-direction-based controller.
End-effector pose error in the line-based controller.
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Figure 4.8: Error in the case of measurement noise with desired position near the singularity of the
leg-direction-based controller: Cd2 = (−0.050,0.080)m
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End-effector pose error in the leg-direction-based controller.
End-effector pose error in the line-based controller.
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Figure 4.9: Error in the case of measurement noise with desired position near the singularity of the
leg-direction-based controller: Cd3 = (0.036,0.082)m
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End-effector pose error in the leg-direction-based controller.
End-effector pose error in the line-based controller.
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Figure 4.10: Error in the case of measurement noise with desired position near the singularity of
the leg-direction-based controller: Cd4 = (0.092,0.070)m
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End-effector pose error in the leg-direction-based controller.
End-effector pose error in the line-based controller.
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Figure 4.11: Error in the case of measurement noise with desired position near the singularity of
the leg-direction-based controller: Cd5 = (0.193,0.013)m

43

End-effector pose error in the leg-direction-based controller.
End-effector pose error in the line-based controller.
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Figure 4.12: Crossing the hidden robot singularity: Cd = (0.104,0.036)m
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Errors of the leg-direction-based controller.
Errors of the line-based controller.


Chapter 5

Line-based visual servoing of the

MEPaM

5.1 Design of MEPaM

There are a lot of parallel manipulators which have been developed during the past three decades.

Among them, there are parallel manipulators with 3-dof, 4-dof, 5-dof and 6-dof. 6-dof parallel

manipulators with six legs, such as the Gough–Stewart (GS) platform, have high stiffness and

accuracy but a small workspace and a frequent limb interference.

In order to overcome these limitations, 6-dof manipulators with three legs were introduced. To

achieve six-dof with only three legs requires actuators to be mounted on the moving limbs, thus

increasing the mass and inertia of the moving parts. Some 6-dof manipulators with three legs have

been proposed, [30][31][32][33][34][35][36] but most of them have actuators not allocated on the

ground.

MEPaM has an innovative design (Fig. 5.1). The actuators are mounted on the base instead of

the moving limbs, reducing their mass and inertia. It can preserve six-dof thanks to planetary-belt

systems, which transmit power to the moving legs. There are three planetary-belt systems, and

each one provides two-dof in a plane and is driven by two motors: a lower motor drives the carrier

A via a short stiff belt, and a upper motor drives the sun pulley via a long stiff belt. The planetary-

belt system ends with the lever arm B, whose end is attached to a cylindrical joint perpendicular

to the driving plane of the system. Then, one universal joint links every cylindrical joint to a vertex

of the triangular end-effector.

5.2 Model in Adams

As for the five-bar mechanism, the simulator of the MEPaM has been developed in Adams envi-

ronment. The plant inputs are the joint velocities, while the outputs are the coordinates of two

points for each of the three legs and the angular coordinates of the three actuators q1, q2 and q3.
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Figure 5.1: Left: Virtual model of MEPaM (one leg is hidden for clarity); Right: The actuation
forces applied on the moving platform of MEPaM

5.3 Visual servoing of MEPaM

5.3.1 Forward kinematics based on the actuators angles

The following equations and the Fig. 5.2 are useful to introduce the kinematics of MEPaM, already

analyzed in [37].

Figure 5.2: Left: The belt-pulley transmission of MEPaM; Right: The end-effector of MEPaM
connected to A1, A2 and A3

MEPaM has six motors, which correspond to six angles: θ1a,θ1b,θ2a,θ2b,θ3a and θ3b of the

Fig. 5.2. Then, there are the angles of the carrier and the planet, which are q1a, q1b, q2a, q2b, q3a

and q3b. As we can see on the left of the Fig. 5.2, the Cartesian coordinates of A1 are

1A1x = w +d1cosq1a +d2cosq1b (5.1)

1A1z = w +d1sinq1a +d2sinq1b (5.2)
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where (w,w) are the Cartesian coordinates of the sun center. Due to the planetary transmission,

we have
θ1b − q1a

q1b − q1a
= 1 (5.3)

Chosen a proper reference for θ1a, we have q1a = θ1a. So, the equation (5.3) becomes q1b = θ1b.

Then, the carrier and the planet motions can be controlled independently by motor 1A and 1B.

Eqs. (5.1) and (5.2) become
iAix = w +d1cosθia +d2cosθib (5.4)

iAiz = w +d1sinθia +d2sinθib (5.5)

for i = 1,2,3.

The frame assignment for the driving planes as well as the end-effector is shown in Fig. 5.2 (right).

Three fixed frames, F1, F2 and F3. are attached to the base in an equilateral triangle formation,

while a moving frame F4 is attached to the triangular end-effector of side length d3. ai and bi are

the Cartesian coordinate vectors of points Ai and Bi, respectively. An upper-left index is used to

indicate in which frame the vector is expressed. Since each cylindrical joint is perpendicular to the

corresponding plane, we have

1b1 =






1A1x

l1
1A1z




 ,2 b2 =






2A2x

l2
2A2z




 ,3 b3 =






3A3x

l3
3A3z




 (5.6)

From Fig.5.2, the transformation matrices between frames F1, F2 and F3 are given by

1
2T =2

3 T =3
1 T =









cos(2π/3) −sin(2π/3) 0 d0

sin(2π/3) cos(2π/3) 0 0

0 0 1 0

0 0 0 1









(5.7)

The position of all the vertices of the platform can be transformed into F1,

1bi =1
i Tibi (5.8)

for i = 2,3. The geometric constraints on the device are given by

∥
∥1bi −1 bj

∥
∥ = d2

3 (5.9)

for i = 1,2,3 and j = i+1 (mod 3).

The constraint equation, Eq. 5.9, contain only three variables li, i = 1,2,3, and can be written in

the form

D2l22 +D1l2 +D0 = 0 (5.10)

E2l23 +E1l3 +E0 = 0 (5.11)

F2l23 +F1l3 +F0 = 0 (5.12)

where Dj ,Ej ,Fj(j = 0,1,2) arefunctions of l1, l2 and l1, respectively, as well as d3, Aix and Aiz

(i = 1,2,3). By means of dialytic elimination, the system of equations 5.10, 5.11, 5.12 can be reduced

to a univariate polynomial of order four in the variable l1

G4l41 +G3l41 +G2l21 +G1l21 +G0 = 0 (5.13)
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Once Eq. 5.13 has been solved for l1, substitution of the result into Eqs. 5.10, 5.11, 5.12 will

allow for determination of l2 and l3. The complexity of Eqs. 5.9 is relatively low as compared to the

direct kinematics problem in most six-dof parallel manipulators. Solutions of li for i = 1,2,3 can be

used to evaluate the position and orientation of the end-effector. The position of the end-effector is

simply the origin of F4, given by 1b1 = [A1x, l1,A1z]T The orientation of the end-effector is given

by 1
4Q = [i, j,k] where

i =
1b2 −1 b1

‖1b2 −1 b1‖ (5.14)

j =
(1b3 −1 b1)− iiT (1b3 −1 b1)

∥
∥
∥(1b3 −1 b1)− iiT (1b3 −1 b1)

∥
∥
∥

(5.15)

k = i× j (5.16)

The direct kinematics of MEPaM is solved.

5.3.2 Forward kinematics based on Plücker coordinates

The objective of the thesis is to use the information of the Plücker coordinates instead of the joint

angles, therefore the forward kinematic problem has to be solved using them. The method will be

the same of subsection 5.3.1, but iAi is computed using the Plücker coordinates of the legs.

For finding iAi as a function of (ui,hi), the following formula has to be applied,

iAi =i
0 T ·0 Ai (5.17)

with 0Ai which is given by the intersection between the ith leg and the ith plane (Eq. 5.18).

The general formula which gives the point of intersection between a line and a plane, both

expressed in Plücker coordinates, is

Plane:

ax+ by + cz +dw = 0 with d = 1

[N : n] = [(a : b : c) : d]

Line:

[u,h]

Point of intersection:

Ai = (−h×N −n ·u : u ·N) (5.18)

5.3.3 Line-based visual servoing of the MEPaM

The part concerning the simulation of the camera, the extraction of the Plücker coordinates,

the visual primitive, the error and the control law, are the same of the five-bar mechanism case

(subsection 4.1.3) with the only difference that the legs to be considered are three instead of two.

Furthermore, in this case the point to be controlled is not simply the interaction point of the legs,

then the interaction matrix is computed differently than in the case of the five-bar mechanism.
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5.3.4 Interaction matrix

The matrix MT
l can be obtained deriving the following equations

iBix(x,y,z,φ1,φ2,φ3)−i Aix(u1,u2,u3,h1,h2,h3) = 0 (5.19)

iBiz(x,y,z,φ1,φ2,φ3)−i Aiz(u1,u2,u3,h1,h2,h3) = 0 (5.20)

with (x,y,z,φ1,φ2,φ3) = X are the position coordinates and the Roll-Pitch-Yaw angles of the

platform, with i = 1,2,3 and the other terms as below.

iAi and iBi are computed with respect to the ith frame, shown in the Fig. 5.3.

For finding iBi, the formula is

iBi =i
E T ·E Bi =i

0 T ·0E T ·E Bi (5.21)

where 0
ET = is given by a rotation R = R(z,φ1)R(y,φ2)R(x,φ3) (Roll-Pitch-Yaw angles) and a

translation of (x,y,z).

The translational matrices are

0
ET =










cφ1cφ2 cφ1sφ2sφ3 − sφ1cφ3 cφ1sφ2cφ3 + sφ1sφ3 x

sφ1cφ2 sφ1sφ2sφ3 +cφ1cφ3 sφ1sφ2cφ3 −cφ1sφ3 y

−sφ2 cφ2sφ3 cφ2cφ3 z

0 0 0 1










(5.22)

1
0T =










0 1 0 0

−1 0 0 r1

0 0 1 0

0 0 0 1










(5.23)

2
0T =










c(7
6π) s(7

6π) 0 r2
2 c(7

6π)−
√

3 r2
2 s(7

6π)

−s(7
6π) c(7

6π) 0 − r2
2 s(7

6π)−
√

3 r2
2 c(7

6π)

0 0 1 0

0 0 0 1










(5.24)

3
0T =










c(11
6 π) s(11

6 π) 0 r3
2 c(11

6 π)+
√

3 r3
2 s(11

6 π)

−s(11
6 π) c(11

6 π) 0 − r3
2 s(11

6 π)+
√

3 r3
2 c(11

6 π)

0 0 1 0

0 0 0 1










(5.25)

The Cartesian coordinates of the vertices of the platform with respect to the platform frame

(Fig. 5.4) are

EB1 =








0.043301300000000

0

0








, EB2 =








−0.021650650000000

0.037500025816891

0








, EB3 =








−0.021650650000000

−0.037500025816891

0
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Figure 5.3: The three frames of the three legs. iAi and iBi are calculated with respect to the ith
frame.

Figure 5.4: Platform frame.

For finding iAi as a function of (ui,hi), the Eq. 5.17 has to be used.

Deriving Eq. 5.17, I obtained

A · τp +P · l̇ = 0 (5.26)

and therefore the interaction matrix

MT = −P + ·A (5.27)

where P is

P =



















−h2z 0 0 h1z 0 0 0 0 u2x 0

0 −u1x

0 −h2z 0 0 h1z 0 0 0 u2y 0

0 −u1y

0 0 0 −h1x −h1y 0 −u2x −u2y 0 0

0 0

−u2y u2x 0 u1y −u1x 0 0 0 0 0

0 0



















(5.28)
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5.3.5 Inverse Jacobian

For finding the inverse Jacobian, the following equations have to be derived.

iBix(x,y,z,φ1,φ2,φ3)−i Aix(q1a, q∗

1b, q2a, q∗

2b, q3a, q∗

3b) = 0 (5.29)

iBiz(x,y,z,φ1,φ2,φ3)−i Aix(q1a, q∗

1b, q2a, q∗

2b, q3a, q∗

3b) = 0 (5.30)

Please note that iBix and iBiz are the same of Eq.5.21, while iAi is as follows

iAix = [wxi +d1icos(qia)+d2icos(qia + q∗

ib)] (5.31)

iAiz = [wzi +d1isin(qia)+d2isin(qia + q∗

ib)] (5.32)

Deriving Eq.5.29, it leads to

A · ẋ+B · q̇ = 0 (5.33)

Jinv = −B−1 ·A (5.34)

5.4 Serial and parallel singularities of the real robot

The serial and parallel singularities can be found from the determinant of the Jacobian matrices

of serial and parallel manipulators [38]. The Jacobian matrices are related as follows

JSΘ̇ = JP t (5.35)

where JS is the Jacobian matrix of serial manipulators, JP is the Jacobian matrix of parallel

manipulators, Θ̇ is the vector of active joints rates and t is the twist of the moving platform. The

serial singularity is found from the Jacobian matrix of serial manipulators which is obtained by

differentiating the Eqs. (5.4) and (5.5) with respect to time

Js =







J1 02X2 02X2

02X2 J2 02X2

02X2 02X2 J3







, where Ji =




−d1sinθia −d2sinθib

d1cosθia d2cosθib





Putting the determinant of JS equal to 0 as follows

(d1d2)3
3∏

i=1

sin(θia −θib) = 0 (5.36)

we find θia −θib = 0 or π.

Then, there is serial singularity when the arms are fully extended or folded: in such a configu-

ration, the triangular end effector is not able to move in the arms direction, and it loses one-dof.

Concerning the parallel singularities, in [37] they were determined from geometric conditions de-

rived by Grassmann – Cayley algebra (GCA) [39]. The procedure, omitted for brevity, leads to

some geometric conditions for MEPaM’s singularities. Considering Fig. 5.5, Right, let
∏

1 be the

plane passing through B1 and spanned by vectors u and z.

Let
∏

3 be the plane passing through B3 and spanned by vectors w and z. Let L1 be the intersec-

tion line of planes
∏

1 and
∏

3. Let L2 be the line passing through point B2 and along v. MEPaM

reaches a parallel singularity if and only if at least one of the following conditions is verified:
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• The four points of the tetrahedron of corners B1, B2, B3, and z are coplanar, so the moving

platform is vertical as in Fig. 5.5, Left

• The lines L1 and L2 intersect as in Fig. 5.5, Right

Figure 5.5: Left: A singular configuration of MEPaM where its moving platform is vertical; Right:
A singular configuration of MEPaM where lines L1 and L2 intersect

An interesting feature of the manipulator is that the parallel singularity is independent on

the position of the end-effector. Moreover, the design of the device prevents the end-effector from

reaching the parallel singularities thanks to the physical limits of the universal joints.

5.5 Line-based controller singularities: hidden robot model

of MEPaM

In this subsection, there is the singularity analysis of the hidden robot model of MEPaM by using

Gröbner bases (GB).

Subsection 5.5.1 describes the manipulator under study. Subsection 5.5.2 is devoted to its

singularity analysis with Gröbner bases. Finally, the parallel singularities of the manipulator are

plotted in its orientation workspace.

5.5.1 Description of the hidden robot

Fig. 5.6 shows the hidden robot model of MEPaM. It is composed of an equilateral moving platform

connected to the base with three identical legs. Each leg is made by three orthogonal prismatic

joints and one spherical joint, the first two prismatic joints being actuated. P stands for a prismatic

joint whereas S stands for a spherical joint. An underline letter denotes an actuated joint. Therefore,

the manipulator is named 3-PPPS manipulator and provides six-degree-of-freedom motions, i.e.,

three translations and three rotations. The parametrization follows.

Let C1, C2 and C3 be the corners of the moving platform (MP) of side length r. Let Fp (Cp,Xp,Yp,Zp)

be the frame attached to the moving platform, its origin Cp being the centroid of the MP. Yp is

parallel to line (C2C3) and Zp is normal to the MP. Accordingly,
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Figure 5.6: The 3-PPPSmanipulator

c1p =






2r
√

3/6

0

0




 , c2p =






−r
√

3/6

r/2

0




 , c3p =






−r
√

3/6

−r/2

0




 (5.37)

are the Cartesian coordinate vectors of points C1, C2 and C3 expressed in Fp. Likewise, let

Fb (O,X,Y,Z) be the frame attached to the base and

a1b =






x1

y1

0




 , a2b =






0

y2

z2




 , a3b =






x3

0

z3




 (5.38)

be the Cartesian coordinate vectors of points A1, A2 and A3.

Orientation Space

The orientation space can be fully represented with the variables (Q2,Q3,Q4), a subset of the

quaternions coordinates. Indeed, the quaternions represent the rotations of the platform with

a rotation axis ~uand an angle θ. The relation between the quaternions and the axis and angle
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representation can be found in [15]:

Q1 = cos(θ/2), Q2 = ux sin(θ/2), Q3 = uy sin(θ/2), Q4 = uz sin(θ/2) (5.39)

where u2
x +u2

y +u2
z = 1 and 0 ≤ θ ≤ π.

Thus, each rotation can be mapped onto a point of the unit ball in the space defined by the

variables (Q2,Q3,Q4)with the following bijection:

Φ : S×]0,π] → B \{






0

0

0




}






ux

uy

uz




 ,θ 7→






Q2 := ux sin(θ/2)

Q3 := uy sin(θ/2)

Q4 := uz sin(θ/2)




 (5.40)

where S is the unit sphere in a 3-dimension space, and B is the closed unit ball.

When θis equal to zero, the corresponding rotation matrix is the identity that does not depend

on the rotation axis ~u. It also maps to the center of B in the quaternions representation.

Geometric Model

Let cb =
[

cx cy cz

]T

be the Cartesian coordinate vector of point C, the centroid of the MP,

expressed in Fb. The following equations characterize the geometric model of the 3-PPPS manip-

ulator:

cx −1/3
√

3Q1
2 −1/3

√
3Q2

2 +1/6
√

3−Q2Q3 +Q1Q4 −x1 = 0 (5.41a)

cy −1/3
√

3Q2Q3 −1/3
√

3Q1Q4 −Q1
2 −Q3

2 +1/2−y1 = 0 (5.41b)

cy −1/3
√

3Q2Q3 −1/3
√

3Q1Q4 +Q1
2 +Q3

2 −1/2−y2 = 0 (5.41c)

cz −1/3
√

3Q2Q4 +1/3
√

3Q1Q3 +Q3Q4 +Q1Q2 −z2 = 0 (5.41d)

cx +2/3
√

3Q1
2 +2/3

√
3Q2

2 −1/3
√

3−x3 = 0 (5.41e)

cz +2/3
√

3Q2Q4 −2/3
√

3Q1Q3 −z3 = 0 (5.41f)

Q1
2 +Q2

2 +Q3
2 +Q4

2 −1 = 0 (5.41g)

5.5.2 Singularity analysis with Gröbner Bases

In this subsection, we focus on the analysis of the parallel singularities of the 3-PPPSmanipulator

using the Jacobian and Gröbner bases. We derive the algebraic relations of the singularities satisfied

by the orientation variables.

Jacobian Formulation

The formula we use to define the parallel singularities is the determinant of a Jacobian matrix.

This criterion was introduced in [38], where parallel singularities were referred to singularities of

the first type. Equations (5.41a)-(g) depend on six joint variables T = (x1,y1,y2,z2,x3,z3), six

pose variables (cx, cy, cz,Q2,Q3,Q4)and one passive variable (Q1). We denote by Kthe union of

the pose and the passive variables. Let Abe the Jacobian matrix of these seven equations with
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respect to K, i.e.,

A =

(
∂Fi

∂K

)

=



























1 0 0 −2

3

√
3Q2 −Q3 −Q2 Q1 −2

3

√
3Q1 +Q4

0 1 0 −1

3

√
3Q3 −1

3

√
3Q2 −2Q3 −1

3

√
3Q1 −1

3

√
3Q4 −2Q1

0 1 0 −1

3

√
3Q3 −1

3

√
3Q2 +2Q3 −1

3

√
3Q1 −1

3

√
3Q4 +2Q1

0 0 1 −1

3

√
3Q4 +Q1

1

3

√
3Q1 +Q4 −1

3

√
3Q2 +Q3

1

3

√
3Q3 +Q2

1 0 0
4

3

√
3Q2 0 0

4

3

√
3Q1

0 0 1
2

3

√
3Q4 −2

3

√
3Q1

2

3

√
3Q2 −2

3

√
3Q3

0 0 0 2Q2 2Q3 2Q4 2Q1



























(5.42)

Then, let B be the Jacobian matrix of Eqs. (5.41a)-(g) with respect to the joint variables. It ap-

pears that B is the negative identity matrix. Denoting by F (K,T) the vector of seven polynomials

on the left-hand side of Eqs. (5.41a)-(g), we have:

F (K,T) = 0 (5.43)

Differentiating Eq. (5.43) with respect to time we obtain:

AK̇− Ṫ = 0 (5.44)

In particular, we can infer from Eq. (5.44) that parallel singularities occur when the determinant

of Avanishes:

det(A) = −8Q4

√
3Q3

3 +48Q2
2Q3Q1 −48Q2Q3

2Q4

−24
√

3Q2
2Q3Q4 +48Q4Q2Q1

2 +24
√

3Q2Q1Q4
2

+24Q3

√
3Q1

2Q4 −48Q3Q1Q4
2 −24Q2Q1

√
3Q3

2

+8
√

3Q4
3Q3 −8

√
3Q2

3Q1 +8Q2

√
3Q1

3 = 0

(5.45)

Besides, it turns out that the 3-PPPS manipulator does not have any serial singularity as matrix

B is always invertible.

Singularities in the Workspace

The singularities of this mechanism can be represented in terms of the pose variables. To this end,

we need to eliminate the joint and passive variables from Eq. (5.45) and Eqs. (5.41a)-(g). This can

be achieved with methods based on Gröbner basis theory.

Gröbner basis for elimination Let P be a set of polynomials in the variables (x1,y1,y2,z2,x3,z3)and

(cx, cy, cz, Q2 ,Q3, Q4). Moreover, let V be the set of common roots of the polynomials in P,

and let W be the projection of V on the workspace. It might not be possible to represent W by

polynomial equations. Let W be the smallest set defined by polynomial equations that contains

W. Our goal is to compute the polynomial equations defining W.

These polynomial equations are computed with Gröbner-basis theory. A Gröbner basis of a

polynomial system is a polynomial system equivalent to the first one, and satisfying some additional
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specific properties. The Gröbner basis of a system depends on an ordering on the monomials. In

our case, if we choose an elimination ordering eliminating K, then the Gröbner basis of P will

contain exactly the polynomials defining W.

Equations of the parallel singularities in the workspace We can now use the elimination of

the previous paragraph for our problem to obtain the polynomial equations defining implicitly the

parallel singularities in the workspace. Let us consider the polynomial set:

{

F (K,T) = [0,0,0,0,0,0,0]T

det(A) = 0
(5.46)

We compute a Gröbner basis of system (5.46) with respect to elimination ordering eliminat-

ing K. This computation yields directly the relation satisfied by the parallel singularities in the

orientation workspace, namely,

− Q2
2 +9Q2

2Q4
2 +5Q2

4 +9Q3
2Q2

2

+ 16Q3
6Q2

2 +44Q3
4Q2

4 +32Q3
2Q2

6 −24Q3
4Q2

2

− 40Q3
2Q2

4 +16Q4
6Q3

2 +28Q4
4Q3

4 +16Q4
2Q3

6

+ 16Q4
6Q2

2 +48Q4
4Q3

2Q2
2 +72Q4

2Q3
4Q2

2 +20Q4
4Q2

4

+ 64Q4
2Q3

2Q2
4 +8Q4

2Q2
6 −24Q4

4Q3
2 −24Q4

2Q3
4

− 48Q4
2Q3

2Q2
2 −16Q4

2Q2
4 +9Q4

2Q3
2 +16Q4

2
√

3Q3Q2

+ 40
√

3Q4
4Q3

3Q2 +48
√

3Q4
2Q3

5Q2 +40
√

3Q4
4Q3Q2

3 +80
√

3Q4
2Q3

3Q2
3

+ 32
√

3Q4
2Q3Q2

5 −16
√

3Q4
4Q3Q2 −60

√
3Q4

2Q3
3Q2 −52

√
3Q4

2Q3Q2
3

− 8Q2
6 +4Q2

8 −4
√

3Q2
3Q3 −16

√
3Q3

5Q2
3

− 24
√

3Q3
3Q2

5 −8
√

3Q3Q2
7 +20

√
3Q3

3Q2
3 +12

√
3Q3Q2

5

− 24Q4
4Q2

2 = 0 (5.47)

We can notice that these equations depend only on the orientation variables (Q2, Q3, Q4). This

means that the parallel singularities do not depend on the position of the centroid of the moving

platform. As a matter of fact, the parallel singularities of the 3-PPPS manipulator can be repre-

sented in its orientation workspace only, the latter being characterized with variables (Q2,Q3,Q4)as

shown in Fig. 5.7.

5.6 Results

In this section, some examples of simulation results have been done. With the position control

scheme presented in section 5.3.3: the end-effector converges correctly from the initial position to

the desired position, with the error of the Plücker coordinates of the legs converging to 0. These

results have been got with a model in Adams of MEPaM with the following nominal parameters

(in meters):

ri = 0.165;

d1 = [0.1375,0.1375,0.1375];

d2 = [0.1375,0.1375,0.1375];

wx = [0,0,0];

wz = [0.110,0.110,0.110];
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Figure 5.7: The parallel singularities of the 3-PPPSmanipulator in the orientation workspace: given

a point M, vector
−−→
OM defines the orientation axis and its Euclidean norm ‖−−→

OM‖ is the sine of the
half-angle of rotation

The initial position and orientation of the platform is:

Xd1=[0, 0, 0.180, -pi/4, 0, 0] (Fig. 5.13(a)).

The desired positions and orientations of the platform are chosen in the workspace, without

making the manipulator to cross the singularity of the hidden robot model (which is the same as

the singularity of the real robot):

Xd1=[-0.051, -0.016, 0.223, -0.577, 0.022, 0.722] (Fig. 5.13(b))

Xd2=[0.052, 0.027, 0.174, -0.888, 0.298, 0.554]

Xd3=[4.2e-05, 0.049, 0.329, -0.520, 0.271, 0.013]

Xd4=[-0.027, 0.045, 0.246, -1.231, -0.200, 0.806]

Xd5=[0.043, 0.059, 0.259, -1.096, -0.448, -1.200]

The error converges faster in the case of λ = 10 than in the case of λ = 1 (Figs. 5.8, 5.9, 5.10,

5.11, 5.12).
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Figure 5.8: Xd1=[-0.051, -0.016, 0.223, -0.577, 0.022, 0.722]
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Figure 5.9: Xd2=[0.052, 0.027, 0.174, -0.888, 0.298, 0.554]
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Figure 5.10: Xd3=[4.2e-05, 0.049, 0.329, -0.520, 0.271, 0.013] ]
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Figure 5.11: Xd4=[-0.027, 0.045, 0.246, -1.231, -0.200, 0.806]
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Figure 5.12: Xd5=[0.043, 0.059, 0.259, -1.096, -0.448, -1.200]
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Figure 5.13: Initial position Xd0 and desired position Xd1.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis has been in the framework of a collaboration project with the Monash University

(Melbourne, Australia).

The aim of this project was to make a position controller of MEPaM, the haptic device based

on a parallel mechanism developed at Monash University. For estimating the configuration of the

robot and the position of the end-effector, the forward kinematic problem of parallel robots yields

multiple solutions. Therefore, it is better to use exteroceptive sensors to estimate the end-effector

position.

Past research works show that the robot end-effector pose can be effectively estimated by vision.

The most common approach consists of the direct observation of the end-effector pose. However,

for haptic devices, the direct observation of the platform may not be easy due to the presence of

the user hand while it is generally not a problem to observe its legs that are most often designed

with slim and rectilinear rods.

A first step in this direction was made by some researchers of the IRCCyN Robotics Team where

vision was used to derive a visual servoing scheme based on the observation of the legs directions.

Nevertheless, this approach has two major drawbacks:

• it is not suitable for some PKM families (e.g. MEPaM, whose legs directions are constant

even if the end-effectors pose changes),

• it involves the presence of some models of robots, different from the real one, "‘hidden"’ into

the controller (named "‘hidden robot model"’).

For overcoming both these problems, in this thesis we have proposed another visual servoing

approach, based on the extraction of the Plücker coordinates of the legs lines. The new line-based

approach has been applied to a five-bar mechanism and to MEPaM.

Being the five-bar mechanism suitable for both the approaches, it has been possible to develop

both the controllers using Simulink and to do a comparative analysis: it has been proven that the

new approach is the best one because its hidden robot model has the same singularities as the

real robot, therefore it is much more robust to the measurement noise near the singularities of the

hidden robot of the old approach and it can also pass through them.

Then, the new approach has been applied to MEPaM: some results of simulations have been shown

and its hidden robot model has been analyzed.
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Figure 6.1: The open-loop force control.
Symbols: virtual environment impedance Zenv, penetration of the avatar x through the virtual
environment xenv, desired force Fd, admittance Z−1

h , inverse Jacobian JT which maps Fd into
desired torque commands τd, which are applied to the haptic device.

6.2 Future Work

Throughout the course of this thesis, some new ideas came out for the future development of the

project.

One idea is to develop a new control scheme based just on the interaction matrix but not on

the Jacobian matrix: in that way, the controller will be completely independent to the geometric

parameters of the robot like the length of the links. Therefore, in a real environment, the noise due

to the error on the geometric parameters will not be relevant at all.

Another hint could be to implement the controller using an object-oriented approach for speeding

up the computations in Matlab.

Another idea is to develop a visual-based force control for MEPaM. Some researcher at the Monash

university have already develop an impedance force controller (Fig 6.1): to turn it into a vision-

based force controller, it will be necessary to arrange at least one camera for observing the legs

of the robot and to calibrate it and the block for solving the direct kinematic problems should be

replaced with the one based on the Plücker coordinates described in Section 5.3.2.
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