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Abstract

This master thesis deals with the comparison of the planar parallel manipulators in

the term of their stiffness. The manipulators under study are the 2-DOF planar par-

allel manipulators, i.e., the RRRRR and the RPRPR, and the 3-DOF planar parallel

manipulators, i.e., the 3-RRR, the 3-RPR, the 3-RPR. The stiffness matrix of each

manipulator is calculated based on the Virtual Joint Modeling (VJM) method.

An optimization problem is proposed to determine optimum geometric parameters

of the parallel manipulators which minimize the mass in motion and compactness

under several specification factors, such as the size of regular dexterous workspace, the

deformations, and the passive joint reactions.

The optimal design parameters are used to calculate manipulator’s displacements.

The results are compared to find the best architecture of planar parallel manipulator

that has the best stiffness.

Keywords: Parallel manipulators, Stiffness analysis, Virtual Joint Modeling (VJM)

method

8



Introduction

Context

Over the last decades, robots have become an integral part of industrial sectors,

especially in manufacturing process. Based on their mechanical structure, robots are

divided into two: the classical structure called serial manipulator and the parallel ma-

nipulator. Robots with serial structure can be modeled as an open-loop kinematic chain

with several rigid bodies linked together in series by either revolute or prismatic joints

driven by actuators [9]. Generally, one end of the chain is attached to a supporting base

while the other end is free and attached with a tool to perform tasks or manipulate

objects. Meanwhile, a parallel structure robot is defined as a closed-loop kinematic

chain whose base and end-effector are connected by several kinematic chains [14].

According to [11], paradigm of parallel robot is defined as hexapod-type robot that

has 6-DOF. However, the machine industries recently discover the potential applica-

tions of parallel robots with less than 6-DOF called lower mobility parallel robot [10].

These type of robots are very useful to handle simple tasks, such as pick-and-place

operation. A lower mobility parallel manipulator has become very interesting topic

since it has simple architecture and control system which are related to better speed

performance, lower manufacturing and operating cost, and lighter in the total mass.

Nowadays, speed machining, stiffness, acceleration capacities, and payload to weight

ratio have become crucial factors in manufacturing process. However, most of serial

robots cannot meet those factors. Due to this reason, parallel robots have become a

better solution since they offer higher rigidity/stiffness and lower mass/inertia param-

eters [16]. These features are induced by their specific kinematic structure, which not

only resists kinematic chain error manipulation but also allows convenience actuators

placement nearer the base [17].

Stiffness analysis has become important evaluation factor since it represents the po-

sition and orientation robot accuracy due to external forces and torques. Moreover, [16]

defined the stiffness analysis as an evaluation method of the effect of applied external

forces and torques on the compliance end-effector displacement, which numerically is

defined as ”stiffness matrix” K. This matrix gives the relation between displacement

9



(both translation and rotation displacement) and the static forces/torques causing the

transition.

There are several approaches exist for computation of the stiffness matrix, such

as the finite element analysis (FEA), the matrix structural analysis (MSA), and the

virtual joint method (VJM). However, the stiffness analysis method implemented in

this thesis is the virtual joint method taken from the paper of [16]. The method is

based on the expansion of the traditional rigid body by adding virtual joints, which

describe the elastic deformation of the manipulator components.

The aims of this master thesis are to analyze the stiffness models and to determine

optimum structural and geometry parameters of five lower mobility parallel manipu-

lators. The manipulators are divided into two different categories based on number of

their degree of freedom. The first category is 2-DOF parallel manipulator that consists

of RRRRR and RPRPR robots. The second category is 3-DOF parallel manipulator

that consists of 3-RRR, 3-RPR, and 3-RPR. In addition, at the end of this thesis a

stiffness comparison is also conducted to determine the best structure among them.

Organization of the Thesis Report

This thesis report includes mainly four chapters. The first chapter provides the the-

oretical background about parallel manipulator, their general characteristics, and their

types. This chapter also includes the stiffness analysis, especially a details description

about virtual joint modeling method which will be used in this research.

The second chapter reviews the manipulator architecture of the five planar parallel

manipulators which are under study in this thesis. The inverse geometric models for

each manipulator are also explained in this chapter.

The third chapter explains about implementation of Virtual Joint Model (VJM)

method for calculating stiffness matrix of each manipulator. At the end of this chapter,

The comparisons between the output of VJM model and the RDM6 software for each

manipulator are given.

The fourth chapter describes the design optimization problems of each manipulator

under study. This chapter introduces the details information regarding objective func-

tions, design parameters and constrain functions. In addition, the optimization results

and the comparison results are provided at the end of this chapter.

Eventually, the last chapter presents the important points about this thesis report

as the conclusion.
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Chapter 1

Theoretical Background

In general, a manipulator is an agent used to manipulate objects. The word ma-

nipulating means to move, to arrange, or to change something from its initial condi-

tion/position. If those two definitions are combined the term of manipulator can be

defined as an agent used to change initial condition/position an object. In addition,

IFToMM defines a manipulator in the term of robot kinematics as a device for gripping

and controlling movement of an object [11].

A manipulator is generated either in the form of serial or parallel based on its struc-

tural configuration. A serial manipulator is a manipulator constitutes of a succession

of rigid bodies, which are linked together with their successor and predecessor by 1-

DOF joint [14]. A famous example of serial manipulator is SCARA robot as shown

in figure 1.1. Meanwhile, a parallel manipulator is a mechanism composed by a mo-

bile/moving platform as the end effector and a fixed based, which are linked together

by several independent close loop kinematics chains called legs [14], as illustrate in

figure 1.2.

Fig. 1.1: Epson SCARA Robot(courtesy Epson)
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Fig. 1.2: Parallel Kinematic Chains

1.1 Types of Parallel Manipulator

There are three types of parallel manipulator based on its movement:

� Planar parallel manipulator : This type of manipulator is composed of a moving

platform with 3-DOF or less that generates planar motion with respect to its

base. Generally, the generated motions of this type of manipulator are two linear

translations and one rotation about the normal of its moving platform plane. An

example of this type of manipulator is shown in figure 1.3.

Fig. 1.3: Planar Parallel Manipulator [15],[2]

� Spatial parallel manipulator : This type of manipulator is composed of a moving

platform which has more than or equal to three degree of freedom. Generally, a

spatial parallel manipulator has the ability to move in three dimensional spaces.

There are various architecture example of this kind of robot. Here, figure 1.4 is

shown an example of spatial parallel manipulator.

12



Fig. 1.4: 3-PPRR Spatial Parallel Manipulator [7]

� Hybrid parallel manipulator : This type of manipulator commonly is formed by

combination of close and open chain mechanisms. The design purpose is to

overcome the workspace limitation. An illustration of hybrid parallel manipulator

is shown in figure 1.5.

Fig. 1.5: Hybrid Parallel Manipulator [18]

1.2 Lower Mobility Parallel Manipulators

Parallel manipulators have become a better solution for solving many industrial prob-

lems, especially on machining process, due to their better stiffness, acceleration ca-

pacity, payload to weight ratio, and machining speed [16] in comparison with classical

structure of serial manipulators. In fact, not all the industrial task require 6-DOF

since as for some simpler tasks 2-DOF translation is sufficient. A lower mobility par-
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allel manipulator which posses less than 6-DOF has become better solution because of

simpler-built architecture and simpler control system.

Fig. 1.6: Delta Robot (courtesy OMRON)

One of common example of simple industrial task is pick-and-place operation. This

operation is usually solved just only less than or equal to 4-DOF (three translations

and one rotation). A famous designed pick-and-place manipulator is Delta robot (refer

to figure 1.6). This robot has 4-DOF: three translations along x, y, and z axis and

one orientation along z axis. Figure 1.7 illustrates 2D version of Delta robot designed

by [12] that is built only by revolute joints that are cheaper than prismatic joint in the

term of construction cost. This architecture also has low-mass links, which allows the

moving platform to achieve a high acceleration.

Fig. 1.7: Skecth of 2D version of Delta Robot
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1.2.1 Two-DOF Parallel Manipulator

For simpler pick-and-place task, such as moving an object from one conveyor to other

working places, a 2-DOF parallel manipulator is sufficient. Generally, for a 2-DOF

pick-and-place task, the manipulator handles the object in x and y axis plane with at

the same time maintaining the orientation of the object.

Fig. 1.8: Five-bar and Brog̊ardh Design of 2-DOF Planar Parallel Manipulator [5]

Fig. 1.9: Five-bar of 2-DOF Planar Parallel Manipulator

The most leading 2-DOF planar parallel manipulators [13] are the Five-bar mech-

anisms with either prismatic or revolute actuators. Figure 1.9 is a famous example

of 2-DOF Five-bar planar parallel manipulator. In the case of revolute actuators, the

manipulator is composed of five revolute joints, RRRRR, where the actuated joints are

fixed to the base, as illustrated in figure 1.9. The output variables of this manipulator

is a 2-DOF planar motion of a point on the end effector.

1.2.2 Three-DOF Parallel Manipulator

For some more advanced pick-and-place operations that are composed of 3 different

types of motions, a 3-DOF parallel manipulator is needed. A 3-DOF can be built

of three configuration types: 2 translation and one orientation motion (2T1R) or 2

15



orientations and one translation motion (2R1T) or 3 translation motions (3T). Both

of them have different advantage. For 3-DOF with 2T1R operation, the manipulator

is able to handle an object and not only translate it along x and z axis directions but

also rotate it around z axis. For 3-DOF with 3T motions, the manipulator is able to

handle an object and translate it along x, y, and z axis directions. While, for 3-DOF

with 2R1T operation, the manipulator is able to handle an object, translate it along

z axis direction, and rotate it in two different axis. Application example of 3-DOF

translation is for rapid tracking because the robot should be able to handle the object

to any position in space within its workspace. An example of 3-DOF 2T1R motion is

for pick-and-place operation in which the manipulator can handle an object in the x

and z planes, and change its orientation in z axis before placing it in somewhere within

the workspace area, such as figure 1.10.

Fig. 1.10: The 2T1R Pick-and-Place Motions

Examples of planar parallel manipulator architectures with 3-DOF 2T1R are 3-

RRR, 3-RPR, or even 3-PRR manipulator. Those three manipulators are distinguished

by the fact that they own simple architecture and are also simple to control. But, they

posses weakness to carry out a large payload whose weight is normal to the plane of

motion [6]. Figure 1.11 shows an example of 3-RRR manipulator called The Agile Eye

developed for rapid camera orientate by Laval University.

1.3 Stiffness Analysis of Virtual Joint Method

Stiffness analysis aims to evaluate the effect of the applied external forces and torques

on the compliance displacement of the end-effector, which is numerically defined as stiff-

ness matrix K. The matrix indicates the relation between displacement (both transla-

tion and rotation) and the static forces/torques causing the transition [16]. The stiffness

depends on the direction of forces or torques on the manipulator configuration.

There are several approaches exist to calculate the stiffness matrix that depend on
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Fig. 1.11: The Agile Eye Manipulator

the modeling assumption and computational technique:

� Finite element analysis (FEA)

� Matrix structural analysis (MSA)

� Virtual joint method (VJM)

In this study, the calculation of stiffness matrix is done by a new method proposed

by [16]. This method is built based on a multidimensional lumped-parameter model

(VJM) that replaces the link flexibility by localize 6-DOF virtual spring that describe

both the linear/rotation deflection and coupling between them.

1.3.1 Methodology

Let jT ij+1 be denoted as a transformation matrix from frame j to frame j+1 for

ith leg of the manipulator. Let us take Five-bar manipulator (see figure 1.12) as an

example. Each kinematic chain of the RRRRR can be considered as a serial architecture

as shown in figure 1.13. The transformation matrix from origin O to the end-effector

E, in rigid case is written as:

0Ti
E =0 Ti

B.
BTi

1.
1Ti

2.
2Ti

3.
3Ti

4.
4Ti

E (1.1)

where i = 1,2. In this equation, Rz represents the rotation joint at z axis and the

actuator is denoted as Rz.

In the flexible case, deformation of kinematic chain’s components will case small

displacement from rigid position. Therefore, an additional term have to introduce while

defining the kinematic chain’s transformation matrix to describe this phenomena [16].

Let denote δvij as small displacement from frame j to frame j+1 in 3 axes, and is
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Fig. 1.12: Five-bar Manipulator Model

Fig. 1.13: Schematic Diagram of a Five-bar Robot

Fig. 1.14: Flexible Model of a Five-bar Robot
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written as:

δvij =

[
δpij

δϕij

]
(1.2)

where pij = [pijx, p
i
jy, p

i
jz]

T represents the linear displacement of frame j origin to frame

j+1 origin, and ϕij = [ϕijx, ϕ
i
jy, ϕ

i
jz]

T represent the small rotation displacement taking

frame j into frame j+1. Moreover, it is assumed that the displacement is close to zero

where sin(ϕ) ≈ ϕ and cos(ϕ) ≈ 1. The product of six transformation matrices (three

translations and three rotations) for all the small displacement, Vi
j, is written as:

Vi
j =


1 −ϕijz ϕijy pijx

ϕijz 1 −ϕijx pijy

−ϕijy ϕijx 1 pijz

0 0 0 1

 (1.3)

Therefore, matrix Vi
j is considered as 6-DOF virtual joint with small displacement

in three translations and three rotations. Then, matrix Vi
j is inserted between the

transformation matrices where deflections happen as virtual spring model. Based on

the previous kinematic chain, the locations to introduce small displacement are shown

as:

1. Between frame 1 and 2: As the revolute joint is an actuator, Vi
1a is introduced

to describe the displacement caused by control loop stiffness. This control loop

stiffness will only influence the rotation about z axis. Hence, δvi1a can reduce

to single parameter which result δvi1a = ϕ1z. Besides, Vi
1b is introduce to de-

scribe the displacement in three translations and rotations caused by actuator

mechanical stiffness.

2. frame 2 and frame 3: Vi
2 represents the translation and rotation deflection of the

first link.

3. Between frame 4 and frame E : Similar to the first link , the second link deflections

are describe by Vi
4 introduced into the kinematic chain.

Hence, the new transformation matrix for the flexible model can be written as:

0Ti
E =0 Ti

B.
BTi

1.V
i
1.

1′Ti
2.V

i
2.

2′Ti
3.

3Ti
4.V

i
4.

4′Ti
E (1.4)

where Vi
1 = Vi

1a.V
i
1b
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1.3.2 Differential Kinematic Model

Differential kinematic model describing relations between the end-effector location

and small variations in the joint variables [16]. The general equation of differential

kinematic model for each ith kinematic chain is:

δti = Jiθ.δθi + J iq.δqi (1.5)

where δti = [δpiE, δϕ
i
E]T represents end-effector translation, δpiE = [δpiEx

, δpiEy
, δpiEz

]T ,

and rotation, δϕiE = [δϕiEx
, δϕiEy

, δϕiEz
]T , displacement with respect to the Cartesian

axes. All passive joints variations in a kinematic chain are located in qi. The actuated

joint is represent by displacement variables in Jiθ.

1.3.3 Displacement Characteristic

The deformation of the link or the control stiffness of the actuator results in the

frame displacements. These displacements are modeled individually by its response to

the applied force. In general, the Hooke’s Law defines:

F = K . x (1.6)

where F is external forces, K is stiffness matrix, and x is displacement. When the

displacement is expressed as a functional of forces, then compliance coefficient, C, is

introduced, and is equal to the inverse of stiffness, K−1. The compliance matrices of

the intermediate legs and the ith link of the moving platform are calculated by means

of the stiffness model of a cantilever beam, namely

Ki−1 =



L/EA 0 0 0 0 0

0 L2/3LIz 0 0 0 L2/2LIz

0 0 L3/3LIy 0 −L2/2LIy 0

0 0 0 L/GIx 0 0

0 0 −L2/2LIy 0 L/EIy 0

0 L2/2LIz 0 0 0 L/EIz


(1.7)

L is the length of the beam. A is the cross section area of the beam. Iz = Iy is the

polar moment of inertia about y and z axes. Ix = Iz +Iy is the polar moment of inertia

about the longitudinal axis of the beam. E is the Young modulus of the material and

G is its shear modulus.
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1.3.4 Kineostatic and Stiffness Model

Equation 1.6 can be interpreted as the definition of virtual forces within the kine-

matic chain. Consider the Five-bar manipulator’s leg, the virtual reactions at each

location of frame displacement are expressed as:

τ iθ1 = Ki
ctr.δv

i
1a

[τ iθ2 , . . . , τ
i
θ7

]T = Ki
act.δv

i
1b

[τ iθ8 , . . . , τ
i
θ13

]T = Ki
l1.δv

i
2

[τ iθ14 , . . . , τ
i
θ19

]T = Ki
l2.δv

i
3 (1.8)

Ki
act, K

i
l1, K

i
l2 are 6x6 matrices. Ki

ctr and Ki
act are the control loop stiffness and

actuator mechanical stiffness respectively while Ki
l1 and Ki

l2 are the link stiffness. For

convenience, the virtual reactions for each component are collected into:

τ iθ = Ki
θ.δθ

i (1.9)

where Ki
θ = diag(Ki

ctr,K
i
act,K

i
l1,K

i
l2) and τ iθ = [τ iθ1 , . . . , τ

i
θ19

]T . Similarly, for passive

joints within the same kinematic chain, the passive reactions are expressed as:

τ iq = τ iq1 = 0 (1.10)

Assume that forces fi is applied at the end of the kinematic chain and result in a

displacement δxi. Then the work done by the external forces is equal to the virtual

work done by virtual reactions, since there is no reaction from passive joint. Hence,

the magnitude of work done can be expressed as:

fi
T

.δxi = τ i
T

θ .δθ
i

(fi
T

Jiθ).δθ
i + (fi

T

Jiq).δq
i = τ i

T

θ .δθ
i (1.11)

Since there are no reaction in passive joints, the equilibrium condition may written as:

Jiθf
iT = τ i

T

θ

Jiqf
iT = 0 (1.12)

Hence, the elastostatic model is completed with four matrix equations that consist of

equation 1.5, equation 1.8, equation 1.10, and equation 1.12, where fi or δxi are treated

as known, while other variables are unknown. A unique solution for the system given

fi might not possible as the kinematic chain is separated from the parallel manipulator,

and gains some degree of freedoms. However, whenδx
i is known, both external forces,
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fi, and internal variables τ iθ, δθ
i, and δqi, can be calculated

The model can be reduced into two equations by eliminating the δθi using equa-

tion 1.5, equation 1.8, and equation 1.12. The system equations are rewritten as:[
Siθ Jiq

JiTq 0

] [
fi

δqi

]
=

[
δxi

0

]
(1.13)

where Siθ = Jiθ[Kθ]
−1JiTθ . Consequently, inverting the first left-hand side matrix gives

the Cartesian stiffness of the kinematic chain, Ki
C , and the passive joint displacement,

δq of the kinematic chain. Let Hi be denoted as the result of inverting the first left-hand

side matrix. The Cartesian stiffness is a 6x6 sub-matrix located at top left hand corner

of Hi matrix, which corresponded to Siθ location. Inverse of the Hi matrix depends

on the rank of matrix Jq. Matrix Jθ is non-singular if six displacement variables are

introduced in at least one location. Hence, when Jq is singular, it physically means

that the kinematic chain is in singular configuration resulting no unique solution for

the passive joint, qi.

After obtaining the Cartesian stiffness matrix, Ki
C for all manipulator’s legs indi-

vidually, the stiffness for the entire manipulator is determine as the summation of all

kinematic chain stiffness matrices

Km =
n∑
i=1

Ki
C (1.14)

where n is the number of manipulator’s legs.
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Chapter 2

Manipulators Architecture

There are five manipulators under study which are distinguished by their number of

DOF. The first group is the manipulators with 2-DOF and the second group is the

manipulators with 3-DOF. The 2-DOF manipulators are RRRRR and RPRPR. The

3-DOF manipulators are 3-RRR, 3-RPR, and 3-RPR. The goals of this chapter are to

provide explanation of manipulators architectures and their inverse geometric models.

2.1 Architecture of RRRRR

There are in total five revolute joints are installed in this manipulator (refer to fig-

ure 2.1). From five revolute joints, two of them are attached to the base (Point A

and C) as the actuators. The others are considered as passive revolute joints. This

manipulator is intended to position the end effector located in point E in the plane of

motion, the xy plane.

The inputs of this manipulator are rotation angle of two revolute joints q1 and

q2. Moreover, the Cartesian coordinates of point E, i.e., xE and yE are the output

variables. The actuators are placed aligned along the x axis of the reference frame.

Distance between the two actuators is denoted as d. Rotation angles of the passive

joints are denoted as Ψ1, Ψ2, and Ψ3. Point O is the origin of reference frame and

overlapping with point A.

Several important parameters describing the manipulator geometry according to

figure 2.1:

� L1: length of first intermediate links, i.e., L1 = AB = CD;

� L2: length of second intermediate links, i.e., L2 = BE = DE;

� rout: the cross section outer radius for both first and second intermediate links;

� rin: the cross section inner radius for both first and second intermediate links;

23



Fig. 2.1: RRRRR Manipulator Geometry Model

2.1.1 Inverse Geometric Model of RRRRR Manipulator

Based on RRRRR model in figure 2.1, the close loop vector equations can be written

as:
~OE = ~OA+ ~AB + ~BE (2.1)

~OE = ~OC + ~CD + ~DE (2.2)

Equation 2.1 and equation 2.2 can be expressed algebraically as:(
xE
yE

)
=

(
xA
yA

)
+

(
L1 cos q1
L1 sin q1

)
+

(
L2 cos Ψ1

L2 sin Ψ1

)
(2.3)

(
xE
yE

)
=

(
xC
yC

)
+

(
L1 cos q2
L1 sin q2

)
+

(
L2 cos Ψ2

L2 sin Ψ2

)
(2.4)

Coordinate of point A is (0, 0) because it overlaps with the origin point of reference

frame. On the other hand, coordinate of point C is (d, 0).

The inverse geometric models are expressed as follow:

q1 = 2 tan−1

(
−B1 ±

√
A2

1 +B2
1 + C2

1

C1 − A1

)
(2.5)
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with,

A1 = −2xEL1

B1 = −2yEL1

C1 = x2E + y2E + L2
1 − L2

2

q2 = 2 tan−1

(
−B2 ±

√
A2

2 +B2
2 + C2

2

C2 − A2

)
(2.6)

with,

A2 = −2(d− xE)L1

B2 = −2yEL1

C2 = x2E + y2E + L2
1 − L2

2 − 2xEd

It should be noted that if A2
i +B2

i ≤ C2
i , i = 1, 2, the system can not assembly.

2.2 RPRPR Architecture

A RPRPR manipulator is composed by two prismatic joints and three revolute joints

as shown in figure 2.2. The prismatic joints are acted as the actuators. From three

revolute joints, two of them are attached to the base (Point A and C), and the last is

acted as the end-effector (Point C). The plane of motion of this manipulator is in the

xy plane.

The displacements of the two prismatic joints, i.e., r1 and r2 are the input variables

whereas the Cartesian coordinates of point E, i.e., xE and yE is the output variable.

The revolute joints attached to the base are placed aligned along the x axis of reference

frame. Distance between them is denoted as d. Rotation angles of the passive joints

are denoted as θ1, θ2, and θ3. Point O is the origin of reference frame.
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Fig. 2.2: RPRPR Manipulator Geometry Model

The parameters describing manipulator geometry are:

� L1: length of first intermediate links, i.e., L1 = AB - ( r1
2

) = CD - ( r2
2

);

� L2: length of second intermediate links, i.e., L2 = BE - ( r1
2

) = DE - ( r2
2

);

� rout: the cross section outer radius of both intermediate links;

� rin: the cross section inner radius of both intermediate links

2.2.1 Inverse Geometric Model of RPRPR Manipulator

As shown in figure 2.2, the close loop vector equations of this manipulator can be

written as:
~OE = ~OA+ ~AB + ~BE (2.7)

~OE = ~OC + ~CD + ~DE (2.8)

Equation 2.7 and equation 2.8 can be expressed algebraically as:(
xE
yE

)
=

(
LT1 cos θ1
LT1 sin θ1

)
(2.9)

(
xE
yE

)
=

(
d

0

)
+

(
LT2 cos θ2
LT2 sin θ2

)
(2.10)
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with,

LT1 = L1 + L2 + r1

LT2 = L1 + L2 + r2

The inverse geometric models of RPRPR are expressed as follow:

r1 =
√
x2E + y2E − (L1 + L2) (2.11)

r2 =
√

(xE − d)2 + y2E − (L1 + L2) (2.12)

2.3 3-RRR Architecture

The 3-RRR manipulator with three identical chains is shown in figure 2.3. Each of

the kinematic chains is the RRR-type and consists of three revolute joints. The first

revolute joints of each legs are acted as actuators and attached to the base at point P, Q,

and R. This manipulator is intended to position and to orient the equilateral triangle-

shaped platform ABC in the plane of motion. The geometric center of the moving

platform ABC is denoted by P, which is the operation point of the manipulator.

The rotation angles of the three actuate revolute joints, i.e., θ1, θ2, and θ3, are

the input variables while the Cartesian coordinates of point P, i.e., xp and yp, and the

orientation of the moving platform, i.e., Φ, are the output variables. The base-platform

is also an equilateral triangle with vertices P, Q, and R. Point O is the origin of reference

frame. Below are the parameters describing the 3-RRR manipulator geometry:

� L1: length of first intermediate links, i.e., L1 = PD = QE = RF;

� L2: length of second intermediate links, i.e., L2 = DA = EB = FC;

� a: a side length of the triangle-shaped base platform PQR, i.e., a = PQ = QR

= RP;

� h: a side length of the triangle-shaped end-effector platform ABC, i.e., h = AB

= BC = CA;

� rout: the cross section outer radius of both first and second intermediate links;

� rin: the cross section inner radius of both first and second intermediate links;

� rTool: the cross section radius of end-effector platform link
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Fig. 2.3: 3-RRR Manipulator Geometry Model

2.3.1 Inverse Geometric Model of 3-RRR Manipulator

Knowing the geometric parameters of the mechanism, i.e., L1, L2, a, and h, its Inverse

Geometric Model (IGM) gives relation between the actuators displacement,θ1, θ2, and

θ3, and the moving platform pose, i.e., xp, yp, and Φ.

Having the value of the moving platform pose, the coordinates of the vertices A, B,

and C can be expressed as following:xA = xp − h√
3

cos(φ+ π
6
)

yA = yp − h√
3

sin(φ+ π
6
)

(2.13)

xB = xA + h cosφ

yB = yA + h sinφ
(2.14)

xC = xA + h cos(φ+ π
3
)

yC = yA + h sin(φ+ π
3
)

(2.15)

The close loop vector equations of this manipulator can be written as:

~OA = ~OP + ~PD + ~DA (2.16)

~OB = ~OQ+ ~QE + ~EB (2.17)

~OC = ~OR + ~RF + ~FC (2.18)
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Equations 2.16, equation 2.17, and equation 2.18 can be expressed algebraically as:(
xA
yA

)
=

(
xp
yp

)
+

(
L1 cos θ1
L1 sin θ1

)
+

(
L2 cos(θ1 + Ψ1)

L2 sin(θ1 + Ψ1)

)
(2.19)

(
xB
yB

)
=

(
xQ
yQ

)
+

(
L1 cos θ2
L1 sin θ2

)
+

(
L2 cos(θ2 + Ψ2)

L2 sin(θ2 + Ψ2)

)
(2.20)(

xC
yC

)
=

(
xR
yR

)
+

(
L1 cos θ3
L1 sin θ3

)
+

(
L2 cos(θ3 + Ψ3)

L2 sin(θ3 + Ψ3)

)
(2.21)

with (
xQ
yQ

)
=

(
a

0

)
(
xR
yR

)
=

(
a cos(π

3
)

a sin(π
3
)

)

The inverse geometric models of 3-RRR manipulator are expressed as:

θ1 = 2 tan−1

(
−B1 ±

√
A2

1 +B2
1 + C2

1

C1 − A1

)
(2.22)

with,

A1 = −2xAL1

B1 = −2yAL1

C1 = x2A + y2A + L2
1 − L2

2

θ2 = 2 tan−1

(
−B2 ±

√
A2

2 +B2
2 + C2

2

C2 − A2

)
(2.23)

with,

A2 = −2L1(xB − xQ)

B2 = −2L1(yB − yQ)

C2 = x2B + y2B + L2
1 − L2

2 + x2Q + y2Q − 2(xBxQ + yByQ)
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θ3 = 2 tan−1

(
−B3 ±

√
A2

3 +B2
3 + C2

3

C3 − A3

)
(2.24)

with,

A3 = −2L1(xC − xR)

B3 = −2L1(yC − yR)

C3 = x2C + y2C + L2
1 − L2

2 + x2R + y2R − 2(xCxR + yCyR)

For equations 2.22, 2.23, and 2.24, the following constraint should be satisfied

∀x, y, s.t. A2
i +B2

i ≥ C2
i , i = 1, 2, 3

2.4 3-RPR Architecture

The geometric model of the 3-RPR manipulator is shown in figure 2.4. The manipulator

has three identical chains. Each chain is the RPR-type and consist of one prismatic

joint and two revolute joints. The first revolute joints of each chain are actuated and

attached to the base at point P, Q, and R. This manipulator has 3-DOF which are two

translations and one orientation in the plane of motion. The shape of both the base

and the end-effector platforms is the equilateral triangle.

The rotation angles of the three actuated revolute joints attached to the base are

denoted as θ1, θ2, and θ3. These rotation angles are the input variables of this manip-

ulator. While, the output variables are the Cartesian coordinate of point P, i.e., xp,

and yp, and orientation of the moving platform, i.e., Φ. Points P, Q, and R are the

vertices of triangle-shape base platform, and points A, B, and C are the vertices of

triangle-shape end-effector platform. Point O is the origin of reference frame.
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Fig. 2.4: 3-RPR Manipulator Geometry Model

Here are the parameters describing manipulator geometry:

� L1: length of first intermediate links, i.e., L1 = PD - ( r1
2

) = QE - ( r2
2

) = RF -

( r3
2

);

� L2: length of second intermediate links, i.e., L2 = DA - ( r1
2

) = EB - ( r2
2

) = FC -

( r3
2

);

� a: a side length of the triangle-shaped base platform PQR, i.e., a = PQ = QR

= RP;

� h: a side length of the triangle-shaped end-effector platform ABC, i.e., h = AB

= BC = CA;

� rout: the cross section outer radius of first intermediate links;

� rin: the cross section inner radius of first intermediate links and at the same time

the cross section radius of prismatic joints and second intermediate links;

� rTool: the cross section radius of end-effector platform link

2.4.1 Inverse Geometry Model of 3-RPR Manipulator

Knowing the pose of moving platform, xp, yp, and Φ, we intend to calculate the actuated

joints values. The coordinates of point A, B, and C can be calculated by applying the
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equation 2.13, 2.14, and 2.15. Then, the close loop vector equations can be written as:

~OA = ~OP + ~PD + ~DA (2.25)

~OB = ~OQ+ ~QE + ~EB (2.26)

~OC = ~OR + ~RF + ~FC (2.27)

Equation 2.25, equation 2.26, and equation 2.27 can be expressed as:(
xA
yA

)
=

(
xp
yp

)
+

(
LT1 cos θ1
LT1 sin θ1

)
(2.28)

(
xB
yB

)
=

(
xQ
yQ

)
+

(
LT2 cos θ2
LT2 sin θ2

)
(2.29)(

xC
yC

)
=

(
xR
yR

)
+

(
LT3 cos θ3
LT3 sin θ3

)
(2.30)

where

xQ = a

yQ = 0

xR = a cos(
π

3
)

yR = a sin(
π

3
)

LT1 = L1 + L2 + r1

LT2 = L1 + L2 + r2

LT3 = L1 + L2 + r3

The inverse geometric model of 3-RPR manipulator are expressed as:

θ1 = tan−1

(
yA
xA

)
(2.31)

θ2 = tan−1

(
yB − yQ
xB − xQ

)
(2.32)

θ3 = tan−1

(
yC − yR
xC − xR

)
(2.33)
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2.5 3-RPR Architecture

The architecture model of the 3-RPR manipulator is same with the 3-RPR manipulator.

The different is on 3-RPR manipulator the actuators are the prismatic joints that effect

the definition of the input variables. For this manipulator, the input variables are the

displacement of three prismatic joints attached to the base, i.e., r1, r2, and r3. The

other parameters of this manipulator are exactly same with the 3-RPR manipulator.

2.5.1 Inverse Geometric Model of 3-RPR Manipulator

Since the inputs of this manipulator are the displacement of prismatic joints, the inverse

geometric models of this manipulator are defined as:

r1 =
√
x2A + y2A − (L1 + L2) (2.34)

r2 =
√

(xB − xQ)2 + (yB − yQ)2 − (L1 + L2) (2.35)

r3 =
√

(xC − xR)2 + (yC − yR)2 − (L1 + L2) (2.36)
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Chapter 3

Stiffness Matrix

This chapter is concerned with the stiffness analysis of the parallel manipulators. The

stiffness of the manipulators is analyzed using the Virtual Joint Modeling (VJM) pre-

sented in [16].

3.1 Stiffness Matrix of The RRRRR Manipulator

To obtain the stiffness model of the RRRRR manipulator using VJM method, we

should consider its general schematic that is composed of four intermediate bars and

five revolute joints as shown in figure 3.1.

Fig. 3.1: Schematic Diagram of A RRRRR

According to the flexible model of VJM method, each kinematic chain of the

RRRRR can be considered as serial structure as shown in Figure 3.2 that contains

sequentially:

� a rigid link between the manipulator base and the ith actuated joint described

by the constant homogeneous transformation matrix Ti
Base;
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� a 1-DOF actuated joint, defined by the homogeneous matrix function Va(q
i
0)

where qi0 is the actuated coordinate;

� a 1-DOF virtual spring describing the actuator mechanical stiffness , which is

defined by the homogeneous matrix function Vs1(θ
i
0) where θi0 is the virtual spring

coordinate;

� a first rigid leg of length L1 linking the actuated joint and the first passive joint,

which is described by the constant homogeneous transformation matrix Ti
L1

;

� a 6-DOF virtual spring describing the first leg stiffness, which is defined by the

homogeneous matrix function Vs2(θ
i
1....θ

i
6) with θ1,θ2, θ3, and θ4,θ5, θ6, being the

virtual spring coordinates corresponding to the spring translation and rotation

deflections;

� a 1-DOF passive revolute joint allowing one rotation angle qi1, which is described

by the homogeneous matrix function Vr1(q
i
1);

� a second rigid leg of length L2 linking the previous passive joint and the second

passive joint, which is described by the constant homogeneous transformation

matrix Ti
L2

;

� a 6-DOF virtual spring describing the second leg stiffness, which is defined by

the homogeneous matrix function Vs3(θ
i
7....θ12

i) with θ7,θ8, θ9, and θ10,θ11, θ12,

being the virtual spring coordinates corresponding to the spring translation and

rotation deflections of this leg.

� a 1-DOF passive revolute joint allowing one rotation angle qi2, which is described

by the homogeneous matrix function Vr2(q
i
2);

� a identity transformation matrix Ti
End

The mathematical expression defining the end-effector location subject to variations

of all defined coordinates of the ith kinematic chain can be written as follows:

Ti = Ti
Base Va(q

i
0) Vs1(θ

i
0) Ti

L1
Vs2(θ

i
1....θ

i
6) Vr1(q

i
1) Ti

L2
Vs3(θ

i
7....θ12

i) Vr2(q
i
2) Ti

End

(3.1)

However, for this research context the affect of actuated joint is omitted because of

the RDM6 software that we use for validating our deflection results can not simulate it.

So, the homogeneous matrix of Va(q
i
0) and Vs1(θ

i
0) are omitted from our transformation

matrix.
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The kineostatic model of the ith leg of the RRRRR can be reduced to a system of:[
Siθ Jiq

JiTq 0

] [
fi

δqi

]
=

[
δxi

0

]
(3.2)

where Siθ = JiθK
i−1

θ Ji
T

θ describes the spring compliance relative to the centroid of the

moving platform, and the Jiq takes into account the passive joint influence on the

moving platform.

The Ki−1

θ matrix , of size 12 x 12, describe the compliance of virtual springs and

takes the form:

Ki−1

θ =

[
Ki−1

L1
06x6

06x6 Ki−1

L2

]
(3.3)

where Ki−1

L1
and Ki−1

L2
are the 6 x 6 stiffness matrix of the ith of first and second leg.

Fig. 3.2: Schematic Diagram of A RRRRR

Jiθ of size 6 x 12 is the Jacobian matrix related to the virtual springs and Jiq of size

6 x 2 is the Jacobian matrix related to the passive joints.

The Cartesian stiffness matrix K of the RRRRR is found with a simple addition of

Ki matrices, namely:

K =
2∑
i=1

Ki (3.4)

3.2 Stiffness Matrix of The RPRPR Manipulator

The general schematic of the RPRPR manipulator is shown in figure 3.3. The

manipulator is composed of four intermediate bars, two prismatic joints and three

revolute joints. Figure 3.4 shows the flexible model of the PRPR manipulator. By

considering the model, the mathematical expression defining the end-effector location
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Fig. 3.3: Schematic Diagram of A PRPR

of the ith kinematic chain can be written as follow:

Ti = Ti
Base Vr1(q

i
1) Ti

L1
Ti
r1

Ti
L2

Vs1(θ
i
1....θ

i
6) Vr2(q

i
2) Ti

End (3.5)

where:

� Ti
Base is constant homogeneous matrix described the rigid link between manipu-

lator base with the passive revolute joint;

� Vr1(q
i
1) describes the first 1-DOF passive revolute joint allowing one rotation

angle qi1;

� Ti
L1

describes the first rigid link L1 linking passive revolute joint and the actuated

prismatic joint;

� Ti
ri

describes the prismatic joint of ith kinematic chain. The prismatic joint is

considered as another rigid body since the RDM6 software can not simulate the

effect of prismatic joint to the stiffness calculation;

� TL2 describes the second rigid link L2 linking the prismatic joint and the last

passive revolute joint;

� Vs1(θ
i
1....θ

i
6) describes the summation of the first rigid body, the actuated pris-

matic joint, and the second rigid body stiffness.

� Vr2(q
i
2) describes the second 1-DOF passive revolute joint allowing one rotation

angle qi2;
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� Ti
End describes the transformation matrix from the last passive joint to the end-

effector of the manipulator.

Fig. 3.4: Schematic Diagram of A RPRPR

The Ki−1

θ matrix , of size 6 x 6, describe the compliance of virtual springs and takes

the form:

Ki−1

θ = Ki−1

(L1+ri+L2)
(3.6)

where Ki−1

(L1+ri+L2)
is the summation of the first leg, the prismatic joint, and the second

leg stiffness matrix which whose size is 6 x 6.

Jiθ of size 6 x 6 is the Jacobian matrix related to the virtual springs and Jiq of size

6 x 2 is the Jacobian matrix related to the passive joints.

3.3 Stiffness Matrix of The 3-RRR Manipulator

The general schematic of the 3-RRR manipulator is shown in figure 3.5. The

manipulator is composed of the mobile platform connected to a fixed base by three

identical kinematic chains.

Figure 3.6 shows the flexible model of the 3-RPR manipulator. By considering

that model, the mathematical expression defining the end-effector location of the ith

kinematic chain can be written as follow:

Ti = Ti
Base Ti

act1
Ti
L1

Vs1(θ
i
1....θ

i
6) Vr1(q

i
1) Ti

L2
Vs2(θ

i
7....θ

i
12) Vr2(q

i
2) Ti

h Vs3(θ
i
13....θ

i
18)

(3.7)

where:

� Ti
Base is constant homogeneous matrix describing the rigid link between manip-

ulator base with the passive revolute joint;

� Tact1 describes transformation matrix of the actuate revolute joint;

� Ti
L1

describes the first rigid link L1 linking passive revolute joint and the actuated

prismatic joint;
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Fig. 3.5: Schematic Diagram of A 3-RRR

� Vs1(θ
i
1....θ

i
6) is a 6-DOF virtual spring describing the first leg stiffness;

� Vr1(q
i
1) describes the first 1-DOF passive revolute joint allowing one rotation

angle qi1;

� TL2 describes the second rigid link L2 linking the prismatic joint and the last

passive revolute joint;

� Vs2(θ
i
7....θ

i
12) is a 6-DOF virtual spring describing the second leg stiffness;

� Vr2(q
i
2) describes the second 1-DOF passive revolute joint allowing one rotation

angle qi2;

� Ti
End describes the transformation matrix from the last passive joint to the end-

effector of the manipulator.

� Ti
h describes transformation matrix of the link which is connecting the last passive

revolute joint to the centroid of the moving platform.

� Vs3(θ
i
13....θ

i
18) is a 6-DOF virtual spring describing the end-effector platform stiff-

ness;

The Ki−1

θ matrix , of size 18 x 18, describe the compliance of virtual springs and

takes the form:

Ki−1

θ =

Ki−1

L1
06x6 06x6

06x6 Ki−1

L2
06x6

06x6 06x6 Ki−1

h

 (3.8)
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Fig. 3.6: Schematic Diagram of A 3-RRR

where Ki−1

L1
and Ki−1

L2
are the 6 x 6 stiffness matrix of the first and second leg of the

ith kinematic chain. Ki−1

h is the 6 x 6 stiffness matrix of the end-effector link of the

ith kinematic chain.

Jiθ of size 6 x 18 is the Jacobian matrix related to the virtual springs and Jiq of size

6 x 2 is the Jacobian matrix related to the passive joints.

3.4 Stiffness Matrix of The 3-RPR Manipulator

The general schematic of the 3-RPR manipulator is shown in figure 3.7. The ma-

nipulator is composed of four intermediate bars, two prismatic joints and three revolute

joints.

Fig. 3.7: Schematic Diagram of A 3-RPR

Figure 3.8 shows the flexible model of the 3-RPR manipulator. By considering

the model, the mathematical expression defining the end-effector location of the ith

kinematic chain can be written as follow:

Ti = Ti
Base Ti

act1
Ti
L1

Vr1(q
i
1) Ti

L2
Vr2(q

i
2) Ti

h Vs1(θ
i
1....θ

i
6) (3.9)
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where:

� Ti
Base is constant homogeneous matrix describing the rigid link between manip-

ulator base with the passive revolute joint;

� Tact1 describes transformation matrix of the actuate revolute joint;

� Ti
L1

describes the first rigid link L1 linking passive revolute joint and the actuated

prismatic joint;

� Vr1(q
i
1) describes the first 1-DOF passive revolute joint allowing one translation;

� TL2 describes the second rigid link L2 linking the prismatic joint and the last

passive revolute joint;

� Vr2(q
i
2) describes the second 1-DOF passive revolute joint allowing one rotation

angle qi2;

� Ti
h describes transformation matrix of the link which is connecting the last passive

revolute joint to the centroid of the moving platform.

� Vs1(θ
i
1....θ

i
6) is a 6-DOF virtual spring describing the end-effector link stiffness;

Fig. 3.8: Schematic Diagram of A 3-RPR

The Ki−1

θ matrix , of size 18 x 18, describe the compliance of virtual springs and

takes the form:

Ki−1

θ = Ki−1

h (3.10)

where Ki−1

h is the 6 x 6 stiffness matrix of the end-effector link of the ith kinematic

chain.

Jiθ of size 6 x 6 is the Jacobian matrix related to the virtual springs and Jiq of size

6 x 2 is the Jacobian matrix related to the passive joints.
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3.5 Stiffness Matrix of The 3-RPR Manipulator

The general schematic of the 3-RPR manipulator is shown in figure 3.9. The ma-

nipulator is composed of four intermediate bars, two prismatic joints and three revolute

joints.

Fig. 3.9: Schematic Diagram of A 3-RPR

Figure 3.10 shows the flexible model of the 3-RPR manipulator. By considering

the model, the mathematical expression defining the end-effector location of the ith

kinematic chain can be written as follow:

Ti = Ti
Base Vr1(q

i
1) Ti

L1
Ti
r1

Ti
L2

Vs1(θ
i
1....θ

i
6) Vr2(q

i
2) Ti

h Vs2(θ
i
7....θ

i
12) (3.11)

where:

� Ti
Base is constant homogeneous matrix describing the rigid link between manip-

ulator base with the passive revolute joint;

� Vr1(q
i
1) describes the first 1-DOF passive revolute joint allowing one translation;

� Ti
L1

describes the first rigid link L1 linking the passive revolute joint and the

actuated prismatic joint;

� Ti
ri

describes the prismatic joint of ith kinematic chain. The prismatic joint is

considered as another rigid body since the RDM6 software can not simulate the

effect of prismatic joint to the stiffness calculation;

� TL2 describes the second rigid link L2 linking the prismatic joint and the last

passive revolute joint;

42



� Vs1(θ
i
1....θ

i
6) is a 6-DOF virtual spring describing the stiffness link composed of

the first and second leg and the prismatic joint;

� Vr2(q
i
2) describes the second 1-DOF passive revolute joint allowing one rotation

angle qi2;

� Ti
h describes transformation matrix of the link which is connecting the last passive

revolute joint to the centroid of the moving platform.

� Vs2(θ
i
7....θ

i
12) is a 6-DOF virtual spring describing the second leg stiffness;

Fig. 3.10: Schematic Diagram of A 3-RPR

The Ki−1

θ matrix , of size 12 x 12, describe the compliance of virtual springs and

takes the form:

Ki−1

θ =

[
Ki−1

(L1+ri+L2)
06x6

06x6 Ki−1

h

]
(3.12)

where Ki−1

h is the 6 x 6 stiffness matrix of the end-effector link of the ith kinematic

chain. Ki−1

(L1+ri+L2)
is the summation of the first leg, the prismatic joint, and the second

leg stiffness matrix which whose size is 6 x 6.

Jiθ of size 6 x 12 is the Jacobian matrix related to the virtual springs and Jiq of size

6 x 2 is the Jacobian matrix related to the passive joints.

3.6 Stiffness Calculation and Comparison

Using the VJM model in the previous section, we developed MATLAB functions

for calculating stiffness matrix. Furthermore, to verify if our models are correct, we

compare our output with RDM6 software. Table below shows the output of VJM

model and RDM6. As we can see, the outputs of our developed model are same with

the output of RDM6.
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Table 3.1: Comparison of Displacements Results Generated by the VJM Model and the
RDM6 Software for RRRRR

d = 2 L1 = 1 L2 = 1.5 rf = 0.01 rl = 0.01
RPRPR EEpos = [0,2 1,5]

W = [Fx Fy Fz Mx My Mz] W = [10 0 0 0 0 0] W = [0 -10 0 0 0 0 0] W = [0 10 0 0 0 0 0]
Displacement MATLAB RDM6 MATLAB RDM6 MATLAB RDM6

δx 1.19E-03 1.19E-03 -2.54E-04 -2.55E-04 2.54E-04 2.55E-04
δy 2.54E-04 2.55E-04 -6.35E-03 -6.35E-03 6.35E-03 6.35E-03
δz 0 0 0 0 0 0
δϕx 0 0 0 0 0 0
δϕy 0 0 0 0 0 0
δϕz 2.16E-06 0 3.89E-03 0 3.89E-03 0

RPRPR EEpos = [-0,6 1,65]
W = [Fx Fy Fz Mx My Mz] W = [10 0 0 0 0 0] W = [0 -10 0 0 0 0 0] W = [0 10 0 0 0 0 0]

Displacement MATLAB RDM6 MATLAB RDM6 MATLAB RDM6
δx 1.03E-03 1.03E-03 -3.14E-04 -3.14E-04 3.14E-04 3.14E-04
δy 3.14E-04 3.14E-04 -2.57E-03 -2.57E-03 2.57E-03 2.57E-03
δz 0 0 0 0 0 0
δϕx 0 0 0 0 0 0
δϕy 0 0 0 0 0 0
δϕz -2.79E-04 0 -7.65E-04 0 -7.65E-04 0

Table 3.2: Comparison of Displacements Results Generated by the VJM Model and the
RDM6 Software for RPRPR

d = 2 L1 = 1 L2 = 1.5 rf = 0.01 rl = 0.01
RPRPR Eepos = [0,2 2,75]

W = [Fx Fy Fz Mx My Mz] W = [10 0 0 0 0 0] W = [0 -10 0 0 0 0 0] W = [0 0 0 0 0 10]
Displacement MATLAB RDM6 MATLAB RDM6 MATLAB RDM6

δx 1.91E-06 1.91E-06 9.07E-08 9.069E-08 0 0
δy -9.07E-08 -9.07E-08 -2.56E-07 -2.561E-07 0 0
δz 1.07E-15 0 1.11E-16 0 0 0
δϕx 1.03E-17 0 1.07E-18 0 0 0
δϕy 0 0 0 0 0 0
δϕz -5.97E-07 0 -6.18E-08 0 6.06E-03 0

RPRPR Eepos = [-0,5 2,9]
W = [Fx Fy Fz Mx My Mz] W = [10 0 0 0 0 0] W = [0 -10 0 0 0 0 0] W = [0 10 0 0 0 0 0]

Displacement MATLAB RDM6 MATLAB RDM6 MATLAB RDM6
δx 2.28E-06 2.29E-06 -2.72E-07 -2.72E-07 0 0
δy 2.72E-07 2.72E-07 -2.98E-07 2.98E-07 0 0
δz 3.61E-15 0 -3.56E-16 0 0 0
δϕx 1.36E-18 0 -1.34E-19 0 0 0
δϕy 0 0 0 0 0 0
δϕz -7.49E-07 0 7.39E-08 0 5.95E-03 0
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Table 3.3: Comparison of Displacements Results Generated by the VJM Model and the
RDM6 Software for 3-RRR

L1 = 1 L2 = 1.5 rf = 0.01 rl = 0.01 BaseWidth = 7 EEwidth = 2
3-RRR Eepos = [3.6 2.696 0.4363]

W = [Fx Fy Fz Mx My Mz] W = [10 0 0 0 0 0] W = [0 -10 0 0 0 0 0] W = [0 0 0 0 0 10]
Displacement MATLAB RDM6 MATLAB RDM6 MATLAB RDM6

δx 2.12E-02 2.13E-02 3.02E-02 3.04E-02 3.98E-02 4.00E-02
δy -3.02E-02 -3.04E-02 -5.42E-02 -5.45E-02 -6.89E-02 -6.93E-02
δz 0 0 0 0
δϕx 0 0 0 0
δϕy 0 0 0 0
δϕz 3.98E-02 4.00E-02 6.89E-02 6.93E-02 9.23E-02 9.28E-02

3-RRR Eepos = [3 2 0.3491]
W = [Fx Fy Fz Mx My Mz] W = [10 0 0 0 0 0] W = [0 -10 0 0 0 0 0] W = [0 0 0 0 0 10]

Displacement MATLAB RDM6 MATLAB RDM6 MATLAB RDM6
δx 1.53E-02 1.58E-02 -2.58E-02 -2.70E-02 3.20E-02 3.34E-02
δy 2.58E-02 2.67E-02 -6.47E-02 -6.82E-02 6.97E-02 7.41E-02
δz 0 0 0 0 0 0
δϕx 0 0 0 0 0 0
δϕy 0 0 0 0 0 0
δϕz 3.20E-02 3.34E-02 -6.97E-02 -7.41E-02 8.80E-02 9.22E-02

Table 3.4: Comparison of Displacements Results Generated by the VJM Model and the
RDM6 Software for 3-RPR and 3-RPR

EEw = 2 Basew = 7 L1 = 1 L2 = 0,75 rf = 0.01 rl = 0.01
Eepos = [3.5 2.5 0.3142]

W = [10 0 0 0 0 0] W = [0 -10 0 0 0 0] W = [0 0 0 0 0 10]
MATLAB MATLAB MATLAB

Displacement Ract Pact RDM6 Ract Pact RDM6 Ract Pact RDM6
δx 1.45E-03 3.60E-04 3.59E-04 1.91E-05 1.40E-04 1.40E-04 -1.03E-04 -9.35E-05 -9.32E-05
δy -1.91E-05 -1.40E-04 -1.40E-04 -2.01E-03 -3.78E-04 -3.78E-04 -6.50E-05 -4.24E-05 -4.27E-05
δz 0 0 0 0 0 0 0 -1.90E-16 0
δϕx 0 0 0 0 0 0 0 2.40E-18 0
δϕy 0 0 0 0 0 0 0 0 0
δϕz -1.03E-04 -9.35E-05 -9.32E-05 6.50E-05 4.24E-05 4.27E-05 7.87E-04 8.22E-04 8.22E-04

Eepos = [3.1 2.9 0.4363]
W = [10 0 0 0 0 0] W = [0 -10 0 0 0 0] W = [0 0 0 0 0 10]

MATLAB MATLAB MATLAB
Displacement Ract Pact RDM6 Ract Pact RDM6 Ract Pact RDM6

δx 1.03E-03 6.27E-04 6.27E-04 -3.08E-04 4.84E-04 4.83E-04 -1.26E-04 7.75E-05 7.78E-05
δy 3.08E-04 -4.84E-04 -4.83E-04 -1.94E-03 -8.69E-04 -8.69E-04 -4.02E-04 -3.57E-04 -3.58E-04
δz 0 0 0 0 0 0 0 3.50E-16 0
δϕx 0 0 0 0 0 0 0 -8.60E-19 0
δϕy 0 0 0 0 0 0 0 0 0
δϕz -1.26E-04 7.75E-05 7.78E-05 4.02E-04 3.57E-04 3.58E-04 8.65E-04 9.67E-04 9.67E-04
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Chapter 4

Design Optimization

This chapter aims to compare the manipulators in the term of their intrinsic stiffness

properties. The first comparison is for 2-DOF parallel manipulators between RRRRR

and RPRPR. The second comparison is for 3-DOF planar parallel manipulator between

3-RRR, 3-RPR, and 3-RPR.

In order to do the comparison, each manipulator has to design under the same

specifications. Moreover, in this study context the selected specifications are the fixed

size of regular dexterous workspace, deformations under a certain load, and the passive

joints reactions. The general specifications should be fulfilled by all the manipulators

are shown in table 4.1.

Table 4.1: General Specifications for The Manipulators

Regular Workspace Size 300 mm x 300 mm

Deformation under
F = [10, 10, 0] N and [1, 1, 1] mm, [1, 1, 1] deg

moment M = [0 0 1] N.m

Admissible joint reactions 10 N

4.1 Optimization Objective

The general optimization problem in this study context is to find the best design of

manipulator in order to minimize its total mass in motion and compactness. The best

manipulator design is determine by optimizing the geometric parameters of a manip-

ulator. In order to achieve that goal, the workspace of the mechanism is discretized,

then the considered performance and constraints are measured, evaluated, and verified

for each point.
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4.1.1 Mass in Motion of the Manipulators

Mass in motion of the manipulators are considered as the first objective function of this

optimization problem. Mass of manipulators are function related dimension parameters

such as cross-sectional area and length of links. In general, the mass in motion of a

manipulator is determined by number of links, size of platform, and types of links

composing a manipulator.

Therefore, the first objective function of the design optimization problem is written

as:

f1(x) =
mt

mmax

→ min (4.1)

where x is the design variables vector that consists of the geometric parameters of a

manipulator. mt is total mass in motion of several manipulator’s parameters. mmax is

the maximum value of mass in motion of an evaluated manipulator.

The general mathematical expression of mt and mmax are:

mt = mpf + a . mb + b . mpj (4.2)

mmax = ρ . Amax . Lmax (4.3)

where mpf is the mass of the platform. mb is the mass of an intermediate bar. mpj

is the mass of a prismatic joint. a is the number of intermediate bars installed to the

manipulator. b is number of prismatic joint installed to the manipulator. ρ is density

value of used material. Amax is the maximum area of the calculated object. Lmax is

the maximum length of the calculated object.

4.1.2 Compactness of The Manipulators

The second objective function of optimization problem is compactness of the manip-

ulator. This objective function is related to the projection size of a manipulator into

the plane of motion as the manipulator is expected to be as compact as possible.

Compactness of a manipulator is defined by the rectangle-shaped area that covers

the manipulator at a given configuration. As illustration, compactness of the RRRRR

manipulator as shown in figure 4.1 is the grey area marked as A5bar.

As it mention before, the calculated area depends on the specific manipulator’s

pose. Where for the case of Five-bar robot, the area is calculated when the different

angles between q1 and q2 is equal to π/2, or we called it home position. The details

compactness formulation of each manipulator will be explained on the next part.

Generally, the second objective function of the design optimization problem is writ-
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ten as:

f2(x) =
Acompactness

Amax
→ min (4.4)

where Acompactness is the manipulator compactness area at the home position. Amax is

compactness maximum value.

Fig. 4.1: Bounding box and home configuration of RRRRR manipulator

4.2 Design Variables

Design variables are variables which are affected the calculation of objective functions.

From previous section, we knew that the objective functions are mass in motion and

compactness. Based on this information the design variables can be determine generally

such as length of links, cross-section type, cross-section radius, and platform size. Fur-

thermore, the details of design variables determination will be explained independently

for each manipulator in the next section.

4.3 Optimization Constraints

The optimization constraints are divided into two types: linear constraints and non-

linear constraints. Linear constraints are straight forward constraint, which usually

related to geometric relation, such as cross section. Meanwhile, nonlinear constraints

are function(s) of the design variable, which have certain degree of mathematical com-

putation to obtain the constraint conditions.

The linear constraint used in this optimization problem is related to the cross-

section type of the intermediate links which are spherical hollow shaped. A spherical
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hollow cross-section is defined by two radius, i.e., rout as the outer radius and rin as

the inner radius. Illustration of spherical hollow cross section can be seen in figure 4.2.

Physically, the outer radius should be greater than inner radius such that it can be

written as:

rout ≥ rin + c (4.5)

Fig. 4.2: Circular hollow link

where c is any constant value that greater than zero and rout and rin are design

variable of optimization problem.

The nonlinear constraints used are the displacements of end-effector when an ex-

ternal wrench applied, passive joint reaction to the applied wrench, and the specified

size of largest regular dexterous workspace (LRDW).

4.3.1 Largest Regular Dexterous Workspace

The largest regular dexterous workspace (LRDW) is the largest manipulator’s workspace

area in which the geometric and/or kinematic constraints are respected thoroughly. In

the scope of this research, the design constraints/objectives that need to be respected

are:

1. The assembly of the manipulator should be possible.

2. The displacement constraints.

3. The passive joints reaction constraint.

Furthermore, the minimum length and height specification of regular workspace, RW,

is define as wl and wh, respectively. These two parameters define the minimum desired

size of regular dexterous workspace, RDW.

RDW = wl . wh (4.6)
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Algorithm 1: Largest Dexterous Workspace Determination

Data: {Ωij}, {Gij}, dx, dy
Result: lLRDW , hLRDW , (i0, j0)
Φij = 0;
for {i = 1 & ∀j} ∪ {j = 1 & ∀i} do

Φij = Ωij;
end

for i = 2 : N0 do
for j = 2 : N0 do

if Ωij = 1 then
Φij = 1 + min{Φi−1,Φj−1,Φi−1,j−1}

end

end

end

Find d = max (Φij − 1);
(i0, j0) = argmax (Φij);
Retrieve from the grid {Gij} the desired square bounded by the indices
(i0 − d, j0 − d) and (i0, j0);
Give lLRDW = dx . d and hLRDW = dy . d ;

In order to find the largest dexterous workspace, algorithm 1 of [4] is used for the

given design variables. The input of this algorithm are the workspace grid, {Gij},
which includes the manipulator workspace RDW = wl x wh and possesses uniform but

different steps along the Cartesian axes, namely (lG = dx.N0 and hG = dy.N0), where

lG and hG define the length and height of the workspace grid, dx and dz define the

discretisation precision, and N0 is the number of nodes in each direction. In addition,

the 2D binary matrix Ωij = {0, 1} is defined to indicate if the constraints at node {Gij}
are satisfied or not. Ωij = 1 means the corresponding design constraints/objectives

are all satisfied, and Ωij = 0 otherwise. For computation convenience, Ωij = 0 if

{Gij} /∈ RDW .

Hence, the original problem it to find the largest sub-matrix inside {Ωij} containing

non-zero value only. Moreover, the algoritm 1 utilizes an additional integer matrix

{Φij} that define the candidate solutions with the vertex (i,j).

The output of algorithm 1 is the length and height of manipulator’s LRDW (lLRDW

and hLRDW ). Therefore, using these two values and then comparing it with the pre-

scribe regular workspace height and length (wl and hl) we can define the constraint

functions as

lLRDW ≥ wl (4.7)

hLRDW ≥ hl (4.8)
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4.3.2 Deformation Constraints

The position and orientation deformations are assessed by using the stiffness parameters

of the manipulator. Let defines δx, δy, and δz as position deformation error and δΦx,

δΦy, and δΦz as orientation deformation error of the end-effector subjected to external

forces (Fx, Fy, and Fz) and torques (τx, τy, and τz). The constraints related to the

deformation of manipulator are defined as follows:

f3(x) =



δxmin ≤ δx ≤ δxmax

δymin ≤ δy ≤ δymax

δzmin ≤ δz ≤ δzmax

δΦxmin
≤ δΦx ≤ δΦxmax

δΦymin
≤ δΦy ≤ δΦymax

δΦzmin
≤ δΦz ≤ δΦzmax

(4.9)

where (δxmax, δymax, δzmax) being the maximum allowable position errors, (δxmin, δymin,

δzmin) the minimum allowable position error, (δΦxmax , δΦymax , δΦzmax) the maximum

allowable orientation errors, and (δΦxmin
, δΦymin

, δΦzmin
) the minimum allowable posi-

tion errors of the end-effector. These deformation constraints can be expressed in term

of the components of the mechanism stiffness matrix and wrench applied to the end

effector. The deformation specification range is set to be:

δxmax = δymax = 10−3m (4.10)

δxmin = δymin = −10−3m (4.11)

δΦz = 1 deg (4.12)

These specifications should be satisfied if forces equal to 10 N are applied to x and

y axis and 1 Nm torque is applied to z axis when the manipulator is in home position.

4.3.3 Passive Joints Reaction Constraints

The passive joints reaction calculate the reaction(s) value of passive joints due to ap-

plied of external wrench (force(s) and moment(s)) for a given/specific manipulator’s

configuration. The value of passive joint i reaction forces (Ri) should lied below an

admissible reaction value(Radm) since the excessively high values leading to the break-

down of the manipulator.

Ri ≤ Radm (4.13)

For guarantying that our mechanism is strong enough to resist the external wrench
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equation 4.13 must be considered as one of constraint equation of this optimization

design. The problem is lied on how to calculate the value of reaction forces Ri to

guarantee the output optimize design can resist a given external wrench.

Fig. 4.3: Determination of passive joints reaction for the planar 3-RPR manipulator

According to [3], the reaction forces Ri in the platform passive joints (denoted as

point A, B, and C in figure 4.3) is related to the external wrench, wT = [fT ;C]T (f is

the external force and C is the scalar value of the external moment applied on the end

effector) applying the Newton-Euler equations at any point Q. For example of 3−RPR
manipulator in figure 4.3, the description of force and moment are

f =
3∑
i=1

Ri (4.14)

C = −(d
T

QAR1 + d
T

QBR2 + d
T

QCR3) (4.15)

where d
T

QA, d
T

QB, and d
T

QC on equation 4.15are described the coordinates of vector
−→
QA,

−−→
QB, and

−→
QC respectively. the double arrows in figure 3 show direction reaction for

each passive joints. In addition, direction of reaction forces of different types of joint

configurations is explained on paper of [3]. Taking into consideration of Ri = Ri ri

where ri is a dimensionless unit vector and ||Ri|| = Ri then applying the Newton-Euler

equations at point A, it comes that

w = −

[
r1 r2 r3

d
T

AAr1 d
T

ABr2 d
T

ACr3

] R1

R2

R3

 = −
[

sw1 sw1 sw1

]
R = −AT R

(4.16)
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According to [14, 8], matrix A at Eq. 4.16 is parallel jacobian matrix founded from

differentiation close loop equations of the manipulator with respect to end effector

coordinates.

The reaction forces R of passive joint are calculated refer to Eq. 4.16 as

R = −A−T w (4.17)

A−1 = [st1st1st1], with sTti = [vTi , ωi] (4.18)

combining Eq. 4.17 and 4.18 then applying for manipulator in figure 4.3 R1

R2

R3

 = −

 vT1 ω1

vT2 ω2

vT3 ω3

 .[ f

C + CG

]
(4.19)

where Ri is reaction force on passive joints. vTi and ωi are linear velocity vector and

scalar angular velocity of each passive joints. f is external vector forces applied to

the manipulator. C is scalar external moments applied to the manipulator, and CG is

external moments applied to point G . Taking an example of norm of R1 of the reaction

force at point A (first limb of 3−RPR manipulator)

R1 = −(vT1 f + ω1 (C + CG))

R1 = −(vT1 f + ω1 (C + d
T

GA) f)

R1 = −((vT1 + ω1 d
T

GA) f + ω1C) (4.20)

For a give norm f of external force f and a given value C of external moment, and

for any direction of vector f, the maximum value of R1max of R1 as:

R1max = f
√
||v1||2 + ( ω1 b1)2 − 2||v1|| | ω1 b1| cos β1 + | ω1 C| (4.21)

where b1 is distance between application point of the external wrench, G, and passive

joint at point A. β1 is angle between vector v1 and ω1 dGA (see figure 4.4), where Ii

is the position of the instantaneous center of rotation (ICR) of the manipulator when

limb 1 is disconnected. The method to determine position of ICR is explained on [1].

Put equation 4.22 as reference and generalizing the approach to the other legs, the

general equation becomes

Rimax = f
√
||vi||2 + ( ωi bi)2 − 2||vi|| | ωi bi| cos βi + | ωi C| (4.22)
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Fig. 4.4: Instantaneous system equivalent to the planar 3-RPR manipulator

Based on equation 4.22 and for a given mechanism configuration, it is possible to

find admissible ranges for f and C, in order to avoid the breakdown of the platform

of each passive joint location in a manipulator. Therefore, the maximum values of

reaction forces of each passive joints can be verified if it was in the range of admissible

value or not (refer to equation 4.13).

4.4 General Optimization Problem Statement

The general optimization problem for all the manipulators can be stated as:

Finding the optimum design parameter x of the five manipulators (RRRRR, RPRPR,

3-RRR, 3-RPR, and 3-RPR) in order to minimize the total mass in motion and

compactness with subject to several design constraints, i.e., largest regular dexterous

workspace, deformation constraints, and passive joints reaction constraints.
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Mathematically, the problem is written as:

minimize f1(x) = mt

mmax

f2(x) =
Amanipulator

Amax

over x = [rout rin rTool L1 L2 EEwidth Basewidth]
T

subject to g1 = rout ≥ rin + 0.001

g2 = lLRDW ≥ wl

g3 = hLRDW ≥ wh

g4 = δxmin ≤ δx ≤ δxmax

g5 = δymin ≤ δy ≤ δymax

g6 = δΦzmin
≤ δΦz ≤ δΦzmax

g7 = R1max ≤ Radm

g8 = R2max ≤ Radm

xlb ≤ x ≤ xub

(4.23)

where xlb and xub are lower and upper bounds of x, respectively.

4.5 Optimization Problem of RRRRR Manipulator

The objective of this optimization problem is to find optimal design variables of

RRRRR manipulator that minimize its total mass in motion and compactness. Fig-

ure 4.5 shows the model with its parameters of the RRRRR used in this optimization

problem.

Fig. 4.5: RRRRR Model and Parameters
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4.5.1 Objective Function

The first objective function of the optimization problem corresponds to the total

mass in motion of the RRRRR manipulator. Mass is a function of manipulator di-

mensions, i.e., length of links, cross section type and area. In this case, both first and

second intermediate links (L1 and L2) are consider to have a same type of cross section

which is spherical hollow with radius routLi
and rinLi

(for i = 1,2).

routL1
= routL2

rinL1
= rinL2

(4.24)

Fig. 4.6: Circular Hollow Section Model and Parameter

where rout1 and rout2 are outer radius of first and second intermediate links. rin1 and

rin2 are inner radius of first and second intermediate links.

The total mass in motion of the RRRRR manipulator, mt, is composed of the mass

of two first bar, mL1, and the mass of two second bar, mL2. The total mass in motion

calculation is:

mt = 2mL1 + 2mL2 (4.25)

with,

mL1 = ρ π (r2outL1
− r2inL1

) L1 (4.26)

mL2 = ρ π (r2outL2
− r2inL2

) L2 (4.27)

where ρ is density of material used, which in this case is stainless steel (ρ= 7860 kg/m3).

L1 and L2 are length of first and second intermediate links of the manipulator.

The second objective function corresponds to the size of projection of RRRRR

into the plane of motion as the manipulator should be as compact as possible. The

RRRRR compactness calculates the amount of surface area ARRRRR of the rectangle-

shaped bounding box as it shown as grey area in figure 4.7. The calculation is done

when the manipulator is in the home position. In this position the value of ε is equal

to π/2 and the end-effector is in the middle of point A and C.
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The surface area ARRRRR is expressed as:

ARRRRR = bbH . bbL (4.28)

where bbH and bbL are height and length of bounding rectangle and take the form:

bbH = L1 sin(q1) + L2 sin(ψ1) (4.29a)

bbL = L2 cos(ψ1)− L2 cos(ψ2) (4.29b)

q1 = arccos(−(L2/
√

2)− (d/2)

L1

) (4.29c)

ψ1 = π/4 (4.29d)

ψ2 = 3π/4 (4.29e)

Fig. 4.7: Bounding Box of The RRRRR

4.5.2 Design Variables

The design variables of this optimization problem are the design parameters of the

RRRRR that affect mt as well as ARRRRR, namely:

x1 = [rout rin L1 L2]
T (4.30)

4.5.3 Optimization Problem Formulation of RRRRR Manipulator

From tabel 4.1, the RRRRR is designed to cover a rectangular shaped workspace,

called Regular Workspace (RW ) of length and height equal to 300 mm (wl and wh).
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Moreover, at the home configuration the maximum deformation and admissible joint

reactions under external forces F and moments M should be also satisfied.

The optimization problem aims to find the design variable vector x1 that minimize

the total mass in motion mtRRRRR
and the surface area ARRRRR while the length and

height of LRDW are bigger or equal to wl and wh. The deformations under external

forces and moments should be less or equal to 1 mm and 1 deg, respectively. The

passive joint reaction for a given external wrench should not greater than 10 N.

As a summary, the optimization problem can be written in mathematical form as:

minimize f1(x) = mtRRRRR

f2(x) = ARRRRR

over x1 = [rout rin L1 L2]
T

subject to g1 = rout ≥ rin + 0.001

g2 = lLRDW ≥ wl

g3 = hLRDW ≥ wh

g4 = δxmin ≤ δx ≤ δxmax

g5 = δymin ≤ δy ≤ δymax

g6 = δΦzmin
≤ δΦz ≤ δΦzmax

g7 = R1max ≤ Radm

g8 = R2max ≤ Radm

xlb ≤ x1 ≤ xub

(4.31)

where xlb and xub are lower and upper bounds of x1, respectively.

4.5.4 Results

The MATLAB function fmincon was used to solve this optimization problem. Using

this function and by providing several initial parameters, the optimal set of design

parameters are found. The optimal design variables of this problem and the associated

mass in motion and surface are ARRRRR are given in Table 4.2. Figure 4.8 shows the

optimum 2D design of the RRRRR with its LRDW.

Table 4.2: Optimal Design Parameters of The RRRRR

rout (m) rin (m) L1 (m) L2 (m) mt (kg) ARRRRR (m2) lLRDW (m) hLRDW (m)

0.025 0.015 0.9019 0.9391 36.3223 1.9936 0.44 0.44
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Fig. 4.8: Optimal Design of The RRRRR and Largest Regular Dexterous Workspace

4.6 Optimization Problem of RPRPR Manipulator

This optimization problem aims to find optimal design variables of the RPRPR ma-

nipulator that minimize its total mass in motion and compactness. Figure 4.9 shows

the RPRPR manipulator model and its parameters.

Fig. 4.9: RPRPR Model and Parameters

4.6.1 Objective Functions

Same with the RRRRR, the first objective function is to find the minimum mass of

motion. The mass in motion of the RPRPR manipulator is composed by the mass of

first and second intermediate links mL1 and mL2 , and the mass of prismatic joints, mr1

and mr2 .
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In this problem, the cross section of first intermediate links is spherical hollow

section. The cross section of second intermediate links and the passive joints are solid

spherical section. It is also considered that the radius of the prismatic joints and the

second intermediate links are same and equal to inner radius of the first intermediate

links. This relation can be written as:

rinL1
= rprismatic = rL2 (4.32)

Therefore, the total mass of motion of RPRPR manipulator is

mt = 2mL1 + 2mL2 + mr1 + mr2 (4.33)

with,

mL1 = ρ π (r2out − r2in) L1 (4.34)

mL2 = ρ π r2in L2 (4.35)

mr1 = ρ π r2in r1 (4.36)

mr2 = ρ π r2in r2 (4.37)

where ρ is material density. L1 and L2 are the length of first and second intermediate

links. r1 and r2 are the length of prismatic joints. rout is the outer radius of the first

links. rin is the inner radius of first link and also the radius of both the prismatic joints

and the second intermediate links.

The second objective function corresponds to compactness of the manipulator. The

goal is to minimize the surface area ARPRPR. Figure 4.10 shows the area of ARPRPR

as the rectangle shaped bounding box. The surface area ARPRPR is expressed as:

ARPRPR = bbH . bbW (4.38)

where

bbH = (L1 + L2 + r1) sin θ1 (4.39)

bbW = (L1 + L2 + r1) cos θ1 + (L1 + L2 + r2) cos(θ2 −
π

2
) (4.40)

4.6.2 Design Variables

The design variables of this optimization problem are:

x2 = [rout rin L1 L2]
T (4.41)
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Fig. 4.10: Bounding Box of The RPRPR

4.6.3 Optimization Problem Formulation of RPRPR Manipulator

The optimization problem of RPRPR manipulator can be formulated as follows,

minimize f1(x) = mtRPRPR

f2(x) = ARPRPR

over x2 = [rout rin L1 L2]
T

subject to g1 = rout ≥ rin + 0.001

g2 = lLRDW ≥ wl

g3 = hLRDW ≥ wh

g4 = δxmin ≤ δx ≤ δxmax

g4 = δymin ≤ δy ≤ δymax

g5 = δΦzmin
≤ δΦz ≤ δΦzmax

g6 = R1max ≤ Radm

g7 = R2max ≤ Radm

xlb ≤ x ≤ xub

(4.42)

where xlb and xub are lower and upper bounds of x2, respectively.

4.6.4 Results

The optimum design parameters for this optimization problem are shown in Table 4.3.

Figure 4.11 shows the optimum 2D design of RPRPR with its LRDW.
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Table 4.3: Optimal Design Parameters of The PRPR

rout (m) rin (m) L1 (m) L2 (m) mt (kg) ARRRRR (m2) lLRDW (m) hLRDW (m)

0.025 0.0012 0.4998 0.3946 15.4386 2 0.38 0.38

Fig. 4.11: Optimal Design of The PRPR and Largest Regular Dexterous Workspace

4.7 Optimization Problem of 3-RRR Manipulator

Optimization problem of 3-RRR manipulator is to find optimal design variables that

minimize its total mass in motion and compactness. Figure 4.12 shows model and

parameter of the 3-RRR manipulator.

Fig. 4.12: RRRRR Model and Parameters
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4.7.1 Objective Functions

Total mass in motion as the first objective function is composed of three identical leg

and end effector. Each leg of 3-RRR manipulator is composed by two cylindrical links

that have circular hollow type cross section. The end effector is assumed to be made

up of three circular bars. Hence, total mass of motion of 3-RRR manipulator is:

mt = mEE + 3mL1 + 3mL2 (4.43)

with,

mEE = 3 ρ π r2Tool r (4.44)

mL1 = ρ π (r2out − r2in) L1 (4.45)

mL2 = ρ π (r2out − r2in) L2 (4.46)

mEE is the end-effector mass composed of two components which are rTool which is

radius of the end-effector bar, and r which is the length from last passive joint (point

A, B, and C) to mid point of end-effector. mL1 is mass of the first intermediate link.

mL2 is mass of the second intermediate link. Moreover, mass of first and second links

are composed by three components: rout as the outer radius of cross section, rin as

the inner radius of cross section, and Li (i=1,2) as the length of first and second

intermediate links.

The second objective function is compactness of the manipulator. Compactness of

the 3-RRR is determine by the size of bounding box area, A3RRR (shown at figure 4.13).

A3RRR = bbH . bbW (4.47)

where

bbH = |L2 sin(θ1 + Ψ1)|+
EEwidth

√
3

2
+ |L2 sin(θ3 + Ψ3)|+ |L1 cos θ3| (4.48)

bbW = |L1 cos θ1|+ |L2 cos(θ1 + Ψ1)|+ EEwidth + |L2 cos(θ2 + Ψ2)| (4.49)

EEwidth = r
√

3 (4.50)

4.7.2 Design Variables

The design variables of the optimization problem are the components of vector x3,

namely,

x3 = [rout rin rTool L1 L2 EEwidth Basewidth]
T (4.51)
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Fig. 4.13: Bounding Box of The 3-RRR Manipulator

The EEwidth and BaseWidth are dimension of equilateral triangle shaped of the base

platform and the end-effector platform, respectively.

4.7.3 Optimization Problem Formulation of 3-RRR Manipulator

The 3-RRR manipulator optimization problem can be formulated as follows,

minimize f1(x) = mt3RRR

f2(x) = A3RRR

over x3 = [rout rin rTool L1 L2 EEwidth Basewidth]
T

subject to g1 = rout ≥ rin + 0.001

g2 = lLRDW ≥ wl

g3 = hLRDW ≥ wh

g4 = δxmin ≤ δx ≤ δxmax

g4 = δymin ≤ δy ≤ δymax

g5 = δΦzmin
≤ δΦz ≤ δΦzmax

g6 = R1max ≤ Radm

g7 = R2max ≤ Radm

g8 = R3max ≤ Radm

xlb ≤ x ≤ xub

(4.52)

where xlb and xub are lower and upper bounds of x3, respectively.
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4.7.4 Results

The optimal design parameters obtained for this optimization problem are given in

Table 4.4. In addition, Table 4.5 provides value of objective functions. The 2D design

of the 3-RRR manipulator with its LRDW is shown in figure 4.14.

Table 4.4: Optimal Design Parameters of The 3-RRR

rout (m) rin (m) rTool (m) L1 (m) L2 (m) BaseWidth (m) EEWidth (m)

0.0575 0.0075 0.0431 0.635 0.615 2.5 1

Table 4.5: Objective Function Results

mt (kg) ARRRRR (m2) lLRDW (m) hLRDW (m)

325.789 5.8289 0.35 0.35

Fig. 4.14: Optimal Design of The 3-RRR and Largest Regular Dexterous Workspace

4.8 Optimization Problem of 3-RPR Manipulator

Optimization problem of 3-RPR manipulator is to find the optimal design variables

that minimize its total mass in motion and compactness. Figure 4.15 shows model and

parameter of the 3-RPR manipulator.
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Fig. 4.15: 3-RPR Model and Parameters

4.8.1 Objective Functions

Total mass in motion as the first objective function is composed of three identical legs

and a moving platform. Here, the mass of moving platform is denoted as mEE. Each

manipulator’s leg consists of 2 bars, L1 and L2, and prismatic joint, ri (i=1,..,3). In

general, the total mass in motion mt of 3-RPR is equal to

mt = mEE + 3mL1 + 3mL2 +
3∑
i=1

mri (4.53)

with

mEE = 3 ρ π r2Tool r (4.54)

mL1 = ρ π (r2out − r2in) L1 (4.55)

mL2 = ρ π r2in L2 (4.56)

mri = ρ π r2in ri (4.57)

where rTool is radius of the end effector bars, r is the length from center point to vertices

point of end-effector platform. rout is the outer radius of first intermediate link. rin

is the inner radius of second intermediate link. L1 is the length of first intermediate

link, L2 is length of second intermediate link, ri is length of prismatic joints (There are

three prismatic joint installed in this manipulator. One for each legs).

The second objective function is the compactness of manipulator. Compactness of

manipulator is determine by the size of bounding box area A3RPR.
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Fig. 4.16: Bounding Box of The 3-RPR Manipulator

The bounding box A3RPR calculation is expressed as follow

A3RPR = bbH . bbW (4.58)

bbH and bbW are the length and the height of the bounding box rectangle and take the

form:

bbH = |L1 + L2 + r1) sin θ1|+
EEwidth

√
3

2
+ |(L1 + L2 + r3) sin θ3| (4.59)

bbW = |L1 + L2 + r1) cos θ1|+ EEwidth + |L1 + L2 + r2) cos θ2| (4.60)

EEwidth = r
√

3 (4.61)

4.8.2 Design Variables

The decision variables of the optimization problem are the components of vector x4

x4 = [rout rin rTool L1 L2 EEwidth Basewidth]
T (4.62)

4.8.3 Optimization Problem of 3-RPR Manipulator

The 3-RPR manipulator optimization problem can be formulated as follows,
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minimize f1(x) = mt3RPR

f2(x) = A3RPR

over x4 = [rout rin rTool L1 L2 EEwidth Basewidth]
T

subject to g1 = rout ≥ rin + 0.001

g2 = lLRDW ≥ wl

g3 = hLRDW ≥ wh

g4 = δxmin ≤ δx ≤ δxmax

g4 = δymin ≤ δy ≤ δymax

g5 = δΦzmin
≤ δΦz ≤ δΦzmax

g6 = R1max ≤ Radm

g7 = R2max ≤ Radm

g8 = R3max ≤ Radm

xlb ≤ x ≤ xub

(4.63)

where xlb and xub are lower and upper bounds of x4, respectively.

4.8.4 Results

The optimal design parameters and the objective function results are given in Table 4.6

and 4.7. Figure 4.17 shows the optimal 2D design of the 3-RPR manipulator and its

LRDW.

Table 4.6: Optimum Design Parameters of The 3-RPR

rout (m) rin (m) rTool (m) L1 (m) L2 (m) BaseWidth (m) EEWidth (m)

0.0239 0.0139 0.01 0.5 0.5 3.0785 1

Table 4.7: Objective Results

mt (kg) A3RPR (m2) lLRDW (m) hLRDW (m)

57.9781 8.2073 0.42 0.42

4.9 Optimization Problem of 3-RPR Manipulator

Optimization problem of 3-RPR manipulator is to find the optimal design variables

that minimize its total mass in motion and compactness. Figure 4.18 shows the 3-RPR

manipulator model and its design parameters.
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Fig. 4.17: Optimal Design of The 3-RPR and Largest Regular Dexterous Workspace

Fig. 4.18: 3-RPR Model and Parameters

4.9.1 Objective Functions

Objective functions of this optimization are similar with the other manipulators.

The first is to minimize total mass in motion and the second is to minimize compactness

of the robot. Due to similarity of manipulator architecture and parameters between
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3-RPR and 3-RPR, the mathematical equations to calculate mass in motion and com-

pactness of 3-RPR are not written again. One can directly refer it to the previous

chapter.

Fig. 4.19: Bounding Box of The 3-RPR Manipulator

4.9.2 Design Variables

The design variables of the optimization problem are the components of vector x5.

x = [rout rin rTool L1 L2 EEwidth Basewidth]
T (4.64)

70



4.9.3 Summary

The 3-RPR manipulator optimization problem can be formulated as follows,

minimize f1(x) = mt3RPR

f2(x) = A3RPR

over x4 = [rout rin rTool L1 L2 EEwidth Basewidth]
T

subject to g1 = rout ≥ rin + 0.001

g2 = lLRDW ≥ wl

g3 = hLRDW ≥ wh

g4 = δxmin ≤ δx ≤ δxmax

g4 = δymin ≤ δy ≤ δymax

g5 = δΦzmin
≤ δΦz ≤ δΦzmax

g6 = R1max ≤ Radm

g7 = R2max ≤ Radm

g8 = R3max ≤ Radm

xlb ≤ x ≤ xub

(4.65)

where xlb and xub are lower and upper bounds of x5, respectively.

4.9.4 Results

The optimal design parameters result obtained form fmincon function in MATLAB

with several starting points are shown in table 4.8. Table 4.9 shows the results of

mass in motion and compactness calculation for a given optimum parameters. The

corresponding 2D optimum desing of the 3-RPR and LRDW are depict in figure 4.20.

Table 4.8: Optimum Design Parameters of The 3-RPR

rout (m) rin (m) rTool (m) L1 (m) L2 (m) BaseWidth EEWidth

0.0175 0.0075 0.01 0.5015 0.5154 3.0785 1

Table 4.9: Objective Results

mt (kg) ARRRRR (m2) lLRDW (m) hLRDW (m)

46.1527 8.2073 0.44 0.44
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Fig. 4.20: Optimal Design of The 3-RPR and Largest Regular Dexterous Workspace

4.10 Displacement Comparison of 2-DOF Planar Parallel Ma-

nipulator

In this section, a comparison between the RRRRR and the RPRPR manipulator in the

term of displacements factor is done. The purpose of this comparison is to determine

which manipulator’s architecture has a better stiffness.

To do the comparison, the external forces, in the magnitude of 10 N, and moments,

in the magnitude of 1 Nm, are applied to the end-effector of the optimum design of

the manipulators. The comparison is also performed in several locations within the

workspace of the manipulators. The determination of test locations is important part

because we should guarantee that those locations are reachable by both the manipula-

tors before performing displacement analysis.

The determination of testing locations is performed by finding intersection area in

the workspace of both manipulators. In figure 4.8 and figure 4.11, the workspace area

of RRRRR and RPRPR are denoted by yellow area. By intersecting the workspace

area of both manipulator we are able to choose several test points.

Table 4.10 and 4.11 shows displacement analysis for for 4 testing points. Table 4.12

and 4.13 informs mean and maximum displacement for both manipulators.

According to data on table 4.12, the RRRRR manipulator has bigger displacement

value than the RPRPR manipulator for both linear displacement and rotation angle.
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The similar condition is found for the mean linear displacement and rotation angle of

the RRRRR manipulator. Therefore, the RPRPR manipulator has a better architec-

ture than the RRRRR manipulator in the term of stiffness since it has lower value for

both linear displacement and rotation angle.
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Fig. 4.21: Displacement Error of The RRRRR, Fx = 10N Fy = 10N Mz = 1Nm

Fig. 4.22: Displacement Error of The RPRPR, Fx = 10N Fy = 10N Mz = 1Nm

Fig. 4.23: The 2-DOF Comparison of Maximum Deformation at Several Points
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Fig. 4.24: The 2-DOF Comparison of Maximum Deformation for Several Wrench

Fig. 4.25: The 2-DOF Comparison of Mean Deformation at Several Points

Fig. 4.26: The 2-DOF Comparison of Mean Deformation for Several Wrench
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4.11 Displacement Comparison of 3-DOF Planar Parallel Ma-

nipulator

There are three 3-DOF planar parallel manipulators under study in this thesis: the 3-

RRR, 3-RPR, and the 3-RPR manipulator. In this chapter, a displacement comparison

is done for those three manipulators. The goal of this comparison is to determine which

manipulator’s architecture has a better stiffness.

Previous section already explained about the important of testing points determi-

nation. The selected testing points should lay inside the intersection workspace area

of the three manipulators. Since this will guarantee that the points are reachable by

those three manipulators.

Figure 4.20, 4.17, and 4.14 denote the workspace of these three manipulators as

yellow area. By intersecting these areas, we can determine the testing points. In this

case, four points inside the area are selected as shown in table 4.14.

Table 4.14, 4.15, and 4.16 shows the linear and rotation displacement at several

points under subject of several combination of forces and moments. In addition, Ta-

ble 4.17 and table 4.18 show the maximum and mean of displacement.

According to table 4.17, the 3-RRR manipulator has the smallest both linear and

rotation displacements value comparing to the others. Similar condition is found for the

mean deformation value. Therefore, the 3-RRR manipulator has a better architecture

than the 3-RPR and the 3-RPR manipulators in the term of stiffness because it has

smallest linear and rotation displacement value.
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Fig. 4.27: Displacement Error of The 3-RRR, Fx = 10N Fy = 10N Mz = 1Nm

Fig. 4.28: Displacement Error of The 3-RPR, Fx = 10N Fy = 10N Mz = 1Nm

Fig. 4.29: Displacement Error of The 3-RPR, Fx = 10N Fy = 10N Mz = 1Nm
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Fig. 4.30: The 3-DOF Comparison of Maximum Deformation at Several Points

Fig. 4.31: The 3-DOF Comparison of Maximum Deformation for Several Wrench

Fig. 4.32: The 3-DOF Comparison of Mean Deformation at Several Points

Fig. 4.33: The 3-DOF Comparison of Mean Deformation for Several Wrench
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Chapter 5

Conclusions

The subject of this thesis was to analyze the manipulator’s stiffness and to compare

the manipulators in the term of their intrinsic stiffness properties. For this thesis,

there are five manipulators under study, which are the RRRRR, the RPRPR, the

3-RRR, the 3-RPR, and the 3-RPR manipulators. Furthermore, stiffness models of

these manipulator were successfully built with Virtual Joint Modeling method. Beside,

the stiffness models of the manipulators were also constructed with RDM6 software

for preliminary validation process. This validation process was done to verify if the

developed stiffness models are correct or not.

Optimization of these five manipulators was conducted to find the optimum manip-

ulator’s parameters that meet two objective functions. In this case of study, the objec-

tive functions that aim to be realized, i.e., to minimize the total mass in motion and

to minimize the compactness of the manipulator. In addition, the manipulators were

also designed under the same specifications, which are the size of regular workspace,

deformation maximum under a certain load, and the passive joint reactions.

Using their optimum design, the manipulators were compared in the term of their

displacements with subject to a given forces and moments. For the 2-DOF manipulator,

the comparison is conducted between the RRRRR and the RPRPR manipulator. The

result of this comparison is the architecture of RPRPR manipulator was stiffer than

the RRRRR manipulator. For the 3-DOF manipulator, the comparison is conducted

among 3-RRR, the 3-RPR, and the 3-RPR manipulators. The result shows that the

3-RRR architecture has the lowest displacements value. This means that in the term

of stiffness the 3-RRR architecture is the best among others.
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