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Abstract

This master thesis deals with the comparison of the planar parallel manipulators in
the term of their stiffness. The manipulators under study are the 2-DOF planar par-
allel manipulators, i.e., the RRRRR and the RPRPR, and the 3-DOF planar parallel
manipulators, i.e., the 3-RRR, the 3-RPR, the 3-RPR. The stiffness matrix of each
manipulator is calculated based on the Virtual Joint Modeling (VJM) method.

An optimization problem is proposed to determine optimum geometric parameters
of the parallel manipulators which minimize the mass in motion and compactness
under several specification factors, such as the size of regular dexterous workspace, the
deformations, and the passive joint reactions.

The optimal design parameters are used to calculate manipulator’s displacements.
The results are compared to find the best architecture of planar parallel manipulator
that has the best stiffness.

Keywords: Parallel manipulators, Stiffness analysis, Virtual Joint Modeling (VJM)
method



Introduction

Context

Over the last decades, robots have become an integral part of industrial sectors,
especially in manufacturing process. Based on their mechanical structure, robots are
divided into two: the classical structure called serial manipulator and the parallel ma-
nipulator. Robots with serial structure can be modeled as an open-loop kinematic chain
with several rigid bodies linked together in series by either revolute or prismatic joints
driven by actuators [9]. Generally, one end of the chain is attached to a supporting base
while the other end is free and attached with a tool to perform tasks or manipulate
objects. Meanwhile, a parallel structure robot is defined as a closed-loop kinematic
chain whose base and end-effector are connected by several kinematic chains [14].

According to [11], paradigm of parallel robot is defined as hexapod-type robot that
has 6-DOF. However, the machine industries recently discover the potential applica-
tions of parallel robots with less than 6-DOF called lower mobility parallel robot [10].
These type of robots are very useful to handle simple tasks, such as pick-and-place
operation. A lower mobility parallel manipulator has become very interesting topic
since it has simple architecture and control system which are related to better speed
performance, lower manufacturing and operating cost, and lighter in the total mass.

Nowadays, speed machining, stiffness, acceleration capacities, and payload to weight
ratio have become crucial factors in manufacturing process. However, most of serial
robots cannot meet those factors. Due to this reason, parallel robots have become a
better solution since they offer higher rigidity /stiffness and lower mass/inertia param-
eters [16]. These features are induced by their specific kinematic structure, which not
only resists kinematic chain error manipulation but also allows convenience actuators
placement nearer the base [17].

Stiffness analysis has become important evaluation factor since it represents the po-
sition and orientation robot accuracy due to external forces and torques. Moreover, [16]
defined the stiffness analysis as an evaluation method of the effect of applied external
forces and torques on the compliance end-effector displacement, which numerically is

defined as ”stiffness matrix” K. This matrix gives the relation between displacement



(both translation and rotation displacement) and the static forces/torques causing the
transition.

There are several approaches exist for computation of the stiffness matrix, such
as the finite element analysis (FEA), the matrix structural analysis (MSA), and the
virtual joint method (VJM). However, the stiffness analysis method implemented in
this thesis is the virtual joint method taken from the paper of [16]. The method is
based on the expansion of the traditional rigid body by adding virtual joints, which
describe the elastic deformation of the manipulator components.

The aims of this master thesis are to analyze the stiffness models and to determine
optimum structural and geometry parameters of five lower mobility parallel manipu-
lators. The manipulators are divided into two different categories based on number of
their degree of freedom. The first category is 2-DOF parallel manipulator that consists
of RRRRR and RPRPR robots. The second category is 3-DOF parallel manipulator
that consists of 3-RRR, 3-RPR, and 3-RPR. In addition, at the end of this thesis a

stiffness comparison is also conducted to determine the best structure among them.

Organization of the Thesis Report

This thesis report includes mainly four chapters. The first chapter provides the the-
oretical background about parallel manipulator, their general characteristics, and their
types. This chapter also includes the stiffness analysis, especially a details description
about virtual joint modeling method which will be used in this research.

The second chapter reviews the manipulator architecture of the five planar parallel
manipulators which are under study in this thesis. The inverse geometric models for
each manipulator are also explained in this chapter.

The third chapter explains about implementation of Virtual Joint Model (VJM)
method for calculating stiffness matrix of each manipulator. At the end of this chapter,
The comparisons between the output of VJM model and the RDM6 software for each
manipulator are given.

The fourth chapter describes the design optimization problems of each manipulator
under study. This chapter introduces the details information regarding objective func-
tions, design parameters and constrain functions. In addition, the optimization results
and the comparison results are provided at the end of this chapter.

Eventually, the last chapter presents the important points about this thesis report

as the conclusion.
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Chapter 1

Theoretical Background

In general, a manipulator is an agent used to manipulate objects. The word ma-
nipulating means to move, to arrange, or to change something from its initial condi-
tion/position. If those two definitions are combined the term of manipulator can be
defined as an agent used to change initial condition/position an object. In addition,
IFToMM defines a manipulator in the term of robot kinematics as a device for gripping
and controlling movement of an object [11].

A manipulator is generated either in the form of serial or parallel based on its struc-
tural configuration. A serial manipulator is a manipulator constitutes of a succession
of rigid bodies, which are linked together with their successor and predecessor by 1-
DOF joint [14]. A famous example of serial manipulator is SCARA robot as shown
in figure 1.1. Meanwhile, a parallel manipulator is a mechanism composed by a mo-
bile/moving platform as the end effector and a fixed based, which are linked together
by several independent close loop kinematics chains called legs [14], as illustrate in

figure 1.2.

FES

g
-
N _

| - —

Fig. 1.1: Epson SCARA Robot(courtesy Epson)
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Moving platform

Fig. 1.2: Parallel Kinematic Chains

1.1 Types of Parallel Manipulator

There are three types of parallel manipulator based on its movement:

e Planar parallel manipulator: This type of manipulator is composed of a moving
platform with 3-DOF or less that generates planar motion with respect to its
base. Generally, the generated motions of this type of manipulator are two linear
translations and one rotation about the normal of its moving platform plane. An

example of this type of manipulator is shown in figure 1.3.

Mobile
Platform

Mobile
Platform

Leg 1 Leg2 Leg 1

Fig. 1.3: Planar Parallel Manipulator [15],[2]

e Spatial parallel manipulator: This type of manipulator is composed of a moving
platform which has more than or equal to three degree of freedom. Generally, a
spatial parallel manipulator has the ability to move in three dimensional spaces.
There are various architecture example of this kind of robot. Here, figure 1.4 is

shown an example of spatial parallel manipulator.

12
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Fig. 1.4: 3-PPRR Spatial Parallel Manipulator [7]

o Hybrid parallel manipulator: This type of manipulator commonly is formed by
combination of close and open chain mechanisms. The design purpose is to
overcome the workspace limitation. An illustration of hybrid parallel manipulator

is shown in figure 1.5.

Fig. 1.5: Hybrid Parallel Manipulator [18]

1.2 Lower Mobility Parallel Manipulators

Parallel manipulators have become a better solution for solving many industrial prob-
lems, especially on machining process, due to their better stiffness, acceleration ca-
pacity, payload to weight ratio, and machining speed [16] in comparison with classical
structure of serial manipulators. In fact, not all the industrial task require 6-DOF

since as for some simpler tasks 2-DOF translation is sufficient. A lower mobility par-

13



allel manipulator which posses less than 6-DOF has become better solution because of

simpler-built architecture and simpler control system.

Fig. 1.6: Delta Robot (courtesy OMRON)

One of common example of simple industrial task is pick-and-place operation. This
operation is usually solved just only less than or equal to 4-DOF (three translations
and one rotation). A famous designed pick-and-place manipulator is Delta robot (refer
to figure 1.6). This robot has 4-DOF: three translations along x, y, and z axis and
one orientation along z axis. Figure 1.7 illustrates 2D version of Delta robot designed
by [12] that is built only by revolute joints that are cheaper than prismatic joint in the
term of construction cost. This architecture also has low-mass links, which allows the

moving platform to achieve a high acceleration.

Passive proximal link

Mowvable platform End-effector

Fig. 1.7: Skecth of 2D version of Delta Robot
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1.2.1  Two-DOF Parallel Manipulator

For simpler pick-and-place task, such as moving an object from one conveyor to other
working places, a 2-DOF parallel manipulator is sufficient. Generally, for a 2-DOF
pick-and-place task, the manipulator handles the object in x and y axis plane with at

the same time maintaining the orientation of the object.

{a) (b)

Fig. 1.9: Five-bar of 2-DOF Planar Parallel Manipulator

The most leading 2-DOF planar parallel manipulators [13] are the Five-bar mech-
anisms with either prismatic or revolute actuators. Figure 1.9 is a famous example
of 2-DOF Five-bar planar parallel manipulator. In the case of revolute actuators, the
manipulator is composed of five revolute joints, RRRRR, where the actuated joints are
fixed to the base, as illustrated in figure 1.9. The output variables of this manipulator

is a 2-DOF planar motion of a point on the end effector.

1.2.2 Three-DOF Parallel Manipulator

For some more advanced pick-and-place operations that are composed of 3 different
types of motions, a 3-DOF parallel manipulator is needed. A 3-DOF can be built

of three configuration types: 2 translation and one orientation motion (2T1R) or 2

15



orientations and one translation motion (2R1T) or 3 translation motions (3T). Both
of them have different advantage. For 3-DOF with 2T1R operation, the manipulator
is able to handle an object and not only translate it along x and z axis directions but
also rotate it around z axis. For 3-DOF with 3T motions, the manipulator is able to
handle an object and translate it along x, y, and z axis directions. While, for 3-DOF
with 2R1T operation, the manipulator is able to handle an object, translate it along
z axis direction, and rotate it in two different axis. Application example of 3-DOF
translation is for rapid tracking because the robot should be able to handle the object
to any position in space within its workspace. An example of 3-DOF 2T1R motion is
for pick-and-place operation in which the manipulator can handle an object in the x
and z planes, and change its orientation in z axis before placing it in somewhere within

the workspace area, such as figure 1.10.

Fig. 1.10: The 2T1R Pick-and-Place Motions

Examples of planar parallel manipulator architectures with 3-DOF 2T1R are 3-
RRR, 3-RPR, or even 3-PRR manipulator. Those three manipulators are distinguished
by the fact that they own simple architecture and are also simple to control. But, they
posses weakness to carry out a large payload whose weight is normal to the plane of
motion [6]. Figure 1.11 shows an example of 3-RRR manipulator called The Agile Eye

developed for rapid camera orientate by Laval University.

1.3 Stiffness Analysis of Virtual Joint Method

Stiffness analysis aims to evaluate the effect of the applied external forces and torques
on the compliance displacement of the end-effector, which is numerically defined as stiff-
ness matriz K. The matrix indicates the relation between displacement (both transla-
tion and rotation) and the static forces/torques causing the transition [16]. The stiffness
depends on the direction of forces or torques on the manipulator configuration.

There are several approaches exist to calculate the stiffness matriz that depend on

16



Fig. 1.11: The Agile Eye Manipulator

the modeling assumption and computational technique:
e [inite element analysis (FEA)
o Matriz structural analysis (MSA)
e Virtual joint method (VJM)

In this study, the calculation of stiffness matrixz is done by a new method proposed
by [16]. This method is built based on a multidimensional lumped-parameter model
(VJM) that replaces the link flexibility by localize 6-DOF virtual spring that describe

both the linear/rotation deflection and coupling between them.

1.3.1 Methodology

Let JTJZ +1 be denoted as a transformation matrix from frame j to frame j+1 for
ith leg of the manipulator. Let us take Five-bar manipulator (see figure 1.12) as an
example. Each kinematic chain of the RRRRR can be considered as a serial architecture
as shown in figure 1.13. The transformation matrix from origin O to the end-effector

E, in rigid case is written as:
o =0 T, BT AT 2L AT AT, (1.1)

where ¢+ = 1,2. In this equation, R, represents the rotation joint at z axis and the
actuator is denoted as R,.

In the flexible case, deformation of kinematic chain’s components will case small
displacement from rigid position. Therefore, an additional term have to introduce while
defining the kinematic chain’s transformation matrix to describe this phenomena [16].

Let denote 5V§- as small displacement from frame j to frame j+1 in 3 axes, and is

17
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Fig. 1.13: Schematic Diagram of a Five-bar Robot

Fig. 1.14: Flexible Model of a Five-bar Robot

18



written as:

T (1.2)
0p;

where p} = [p,, p,, p%.]" represents the linear displacement of frame j origin to frame
j+1 origin, and goé» = [goél,,goéy, @%Z]T
frame j into frame j+1. Moreover, it is assumed that the displacement is close to zero

represent the small rotation displacement taking

where sin(¢) =~ ¢ and cos(p) ~ 1. The product of six transformation matrices (three

translations and three rotations) for all the small displacement, V;, is written as:

I I W N

. 1 =y, D,

—h, . 1 ph,
0 0 0 1

V= (1.3)

Therefore, matrix V; is considered as 6-DOF virtual joint with small displacement
in three translations and three rotations. Then, matrix V;- is inserted between the
transformation matrices where deflections happen as virtual spring model. Based on
the previous kinematic chain, the locations to introduce small displacement are shown

as:

1. Between frame 1 and 2: As the revolute joint is an actuator, V', is introduced
to describe the displacement caused by control loop stiffness. This control loop
stiffness will only influence the rotation about z axis. Hence, dvi, can reduce
to single parameter which result v, = ;.. Besides, V!, is introduce to de-
scribe the displacement in three translations and rotations caused by actuator

mechanical stiffness.

2. frame 2 and frame 3: V) represents the translation and rotation deflection of the
first link.

3. Between frame 4 and frame E: Similar to the first link , the second link deflections

are describe by V* introduced into the kinematic chain.

Hence, the new transformation matrix for the flexible model can be written as:
Ope, =0 %, B Vi VT VAT ST VAT, (1.4)

i _ i i
where V] =V}, .V},

19



1.3.2 Differential Kinematic Model

Differential kinematic model describing relations between the end-effector location
and small variations in the joint variables [16]. The general equation of differential

kinematic model for each ith kinematic chain is:
ot; = J5.00; + J}.0q; (1.5)

where t; = [0p, 0] represents end-effector translation, 6p% = [0p%, , 0P, , 0p%. |7,
and rotation, 0} = [0¢p,, 09} , 0¥} |, displacement with respect to the Cartesian
axes. All passive joints variations in a kinematic chain are located in g,. The actuated

joint is represent by displacement variables in J 2.

1.3.3 Displacement Characteristic

The deformation of the link or the control stiflness of the actuator results in the
frame displacements. These displacements are modeled individually by its response to

the applied force. In general, the Hooke’s Law defines:
F=K .z (1.6)

where F is external forces, K is stiffness matrix, and x is displacement. When the
displacement is expressed as a functional of forces, then compliance coefficient, C, is
introduced, and is equal to the inverse of stiffness, K™'. The compliance matrices of
the intermediate legs and the ith link of the moving platform are calculated by means

of the stiffness model of a cantilever beam, namely

[L/EA 0 0 0 0 0 ]
0  L?/3LI, 0 0 0 L?/2L1,
it |0 0 L3/3LI, 0 —L%*/2LI, 0 wn
0 0 0 L/GI, 0 0
0 0  —L?/2LI, 0 L/EI, 0
|0 L?)2LI 0 0 0 L/EL |

L is the length of the beam. A is the cross section area of the beam. I, = I, is the
polar moment of inertia about y and z axes. I, = I, + I, is the polar moment of inertia
about the longitudinal axis of the beam. E is the Young modulus of the material and

G is its shear modulus.
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1.3.4 Kineostatic and Stiffness Model

Equation 1.6 can be interpreted as the definition of virtual forces within the kine-
matic chain. Consider the Five-bar manipulator’s leg, the virtual reactions at each

location of frame displacement are expressed as:

7—91 - Kctr‘dvla

i iT _ i i
[7—92’ T 77—97} - Kact‘évlb
i i T _ i saii
[7'98, o ,7913} 11005
i i T _ i saii
[7'914, o ,7919} = K,.0v5 (1.8)
K. ., Kj, Kj, are 6x6 matrices. K’ and K are the control loop stiffness and

actuator mechanical stiffness respectively while K, and K|, are the link stiffness. For

convenience, the virtual reactions for each component are collected into:
T, = K,.50" (1.9)

K'L

act’

where K}, = diag(K!

i g i i 1T Qi :
s K, K),) and 74 = [75,,...,75,]" . Similarly, for passive

joints within the same kinematic chain, the passive reactions are expressed as:
T, =T =0 (1.10)

Assume that forces f' is applied at the end of the kinematic chain and result in a
displacement dx’. Then the work done by the external forces is equal to the virtual
work done by virtual reactions, since there is no reaction from passive joint. Hence,

the magnitude of work done can be expressed as:

' ox! = TQT.cSOi
(£ 35).00" + (£ J0).0q" = 7 .06 (1.11)

Since there are no reaction in passive joints, the equilibrium condition may written as:

T

Jf,fiT =T
Jif =0 (1.12)

Hence, the elastostatic model is completed with four matrix equations that consist of
equation 1.5, equation 1.8, equation 1.10, and equation 1.12, where ' or 0%’ are treated
as known, while other variables are unknown. A unique solution for the system given
f' might not possible as the kinematic chain is separated from the parallel manipulator,

and gains some degree of freedoms. However, whensx® is known, both external forces,
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f', and internal variables 7%, 560° and dq’, can be calculated
The model can be reduced into two equations by eliminating the §0° using equa-

tion 1.5, equation 1.8, and equation 1.12. The system equations are rewritten as:

eI
2 v | = (1.13)
JT 0| |égf 0

where S} = Jj[Ky]~'J5". Consequently, inverting the first left-hand side matrix gives
the Cartesian stiffness of the kinematic chain, K, and the passive joint displacement,
dq of the kinematic chain. Let H' be denoted as the result of inverting the first left-hand
side matrix. The Cartesian stiffness is a 6x6 sub-matrix located at top left hand corner
of H' matrix, which corresponded to Sj location. Inverse of the H' matrix depends
on the rank of matrix J,. Matrix Jy is non-singular if six displacement variables are
introduced in at least one location. Hence, when J, is singular, it physically means
that the kinematic chain is in singular configuration resulting no unique solution for
the passive joint, q'.

After obtaining the Cartesian stiffness matrix, K, for all manipulator’s legs indi-
vidually, the stiffness for the entire manipulator is determine as the summation of all

kinematic chain stiffness matrices
K, = Z K, (1.14)
i=1

where n is the number of manipulator’s legs.
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Chapter 2

Manipulators Architecture

There are five manipulators under study which are distinguished by their number of
DOF. The first group is the manipulators with 2-DOF and the second group is the
manipulators with 3-DOF. The 2-DOF manipulators are RRRRR and RPRPR. The
3-DOF manipulators are 3-RRR, 3-RPR, and 3-RPR. The goals of this chapter are to

provide explanation of manipulators architectures and their inverse geometric models.

2.1 Architecture of RRRRR

There are in total five revolute joints are installed in this manipulator (refer to fig-
ure 2.1). From five revolute joints, two of them are attached to the base (Point A
and C) as the actuators. The others are considered as passive revolute joints. This
manipulator is intended to position the end effector located in point E in the plane of
motion, the xy plane.

The inputs of this manipulator are rotation angle of two revolute joints ¢; and
@2. Moreover, the Cartesian coordinates of point E, i.e., xp and yp are the output
variables. The actuators are placed aligned along the x axis of the reference frame.
Distance between the two actuators is denoted as d. Rotation angles of the passive
joints are denoted as Wy, WUy, and V3. Point O is the origin of reference frame and
overlapping with point A.

Several important parameters describing the manipulator geometry according to

figure 2.1:
e [: length of first intermediate links, i.e., L; = AB = CD;
e [o: length of second intermediate links, i.e., Ly = BE = DE;
e 1, the cross section outer radius for both first and second intermediate links;

e r;,: the cross section inner radius for both first and second intermediate links;
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Fig. 2.1: RRRRR Manipulator Geometry Model

2.1.1 Inverse Geometric Model of RRRRR Manipulator

Based on RRRRR model in figure 2.1, the close loop vector equations can be written

as:
OE =0OA+ AB + BE (2.1)

OE =0C +CD + DE (2.2)

Equation 2.1 and equation 2.2 can be expressed algebraically as:
L4 cos Lo cos WU
TE _ TA X 1 ) q1 i 2 ) 1 (2.?))
YE Ya Lysing Ly sin Wy
T x L1 cos Locos ¥
E\ _ c n 1 ‘ q2 i 2 ' 2 (2‘ 4)
YE Yo Ly singo Lo sin Wy

Coordinate of point A is (0, 0) because it overlaps with the origin point of reference

frame. On the other hand, coordinate of point C is (d, 0).

The inverse geometric models are expressed as follow:

—By + /A3 + B} 2
q1 = 2tan™! ( ! c _12_1 1 Cl) (2.5)
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with,

Al = —2.TEL1
By = —2ypL,
C,=a% +yp+ L — L3
—By, £+ AZ + B2 + (2
¢ = 2tan? ( 2 o _22_2 2+ 2) (2.6)

with,

A2 = —2(d — LL’E)Ll
By = —2yply
Cy=a% +yp+L; — L3 — 2xpd

It should be noted that if A? + B? < C? i = 1,2, the system can not assembly.

2.2 RPRPR Architecture

A RPRPR manipulator is composed by two prismatic joints and three revolute joints
as shown in figure 2.2. The prismatic joints are acted as the actuators. From three
revolute joints, two of them are attached to the base (Point A and C), and the last is
acted as the end-effector (Point C). The plane of motion of this manipulator is in the
xy plane.

The displacements of the two prismatic joints, i.e., r; and ry are the input variables
whereas the Cartesian coordinates of point E, i.e., xp and yg is the output variable.
The revolute joints attached to the base are placed aligned along the x axis of reference
frame. Distance between them is denoted as d. Rotation angles of the passive joints

are denoted as 61, 05, and 3. Point O is the origin of reference frame.
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Fig. 2.2: RPRPR Manipulator Geometry Model
The parameters describing manipulator geometry are:
e L;: length of first intermediate links, i.e., L = AB - (%) = CD - (3);
e Ly: length of second intermediate links, i.e., Ly = BE - (%) = DE - (3);
e 7., the cross section outer radius of both intermediate links;

e r;,: the cross section inner radius of both intermediate links

2.2.1 Inverse Geometric Model of RPRPR Manipulator

As shown in figure 2.2, the close loop vector equations of this manipulator can be

written as:

OF = OA+ AB + BE (2.7)
OF =0C + CD + DE (2.8)

Equation 2.7 and equation 2.8 can be expressed algebraically as:
(asE) _ (LT1 Cf)S 01> (2.9)
YE Ly, sin6,

TR d Ly, cosby
= 2.1
() = (0)+ (5 e (210
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with,

LT1:L1+L2+T1
Ly, =Ly + Lo+ 19

The inverse geometric models of RPRPR are expressed as follow:

ro=\/rh+yh — (L + L) (211)

ro= /(g — 2 + 43 — (L + Ly) (2.12)

2.3 3-RRR Architecture

The 3-RRR manipulator with three identical chains is shown in figure 2.3. Each of
the kinematic chains is the RRR-type and consists of three revolute joints. The first
revolute joints of each legs are acted as actuators and attached to the base at point P, Q,
and R. This manipulator is intended to position and to orient the equilateral triangle-
shaped platform ABC in the plane of motion. The geometric center of the moving
platform ABC' is denoted by P, which is the operation point of the manipulator.

The rotation angles of the three actuate revolute joints, i.e., 81, 65, and 63, are
the input variables while the Cartesian coordinates of point P, i.e., z,, and y,, and the
orientation of the moving platform, i.e., ®, are the output variables. The base-platform
is also an equilateral triangle with vertices P, Q, and R. Point O is the origin of reference

frame. Below are the parameters describing the 3-RRR manipulator geometry:
e [: length of first intermediate links, i.e., L; = PD = QE = RF;
e [y length of second intermediate links, i.e., Ly = DA = EB = FC;

e a: a side length of the triangle-shaped base platform PQR, i.e., a = PQ = QR
= RP;

e h: a side length of the triangle-shaped end-effector platform ABC, i.e., h = AB
= BC = CA;

e 1, the cross section outer radius of both first and second intermediate links;
e r;,: the cross section inner radius of both first and second intermediate links;

® 7.0 the cross section radius of end-effector platform link
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Fig. 2.3: 3-RRR Manipulator Geometry Model

2.3.1 Inverse Geometric Model of 3-RRR Manipulator

Knowing the geometric parameters of the mechanism, i.e., Ly, Lo, a, and h, its Inverse

Geometric Model (IGM) gives relation between the actuators displacement,f;, 05, and

63, and the moving platform pose, i.e., x,, yp, and ®.

Having the value of the moving platform pose, the coordinates of the vertices A, B,

and C can be expressed as following:

T =T, — \% cos(¢ + )
Ya =Y, — \% sin(¢ + %)
rg =24+ h cos¢
Yp =ya+h sing
ro=1xa+h cos(¢p+ %)

Yo =ya+h sin(¢+ %)

The close loop vector equations of this manipulator can be written as:

OA=OP+ PD+ DA
OB =0Q+QF + EB
OC = OR+ RF + FC
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Equations 2.16, equation 2.17, and equation 2.18 can be expressed algebraically as:

TA T, Ly cos 91) (L2 cos(6; + \Ifl))
= + . + . 2.19
(yA) (yp> <L1 sin 60, Ly sin(6y + V) ( )
Tp xQ L cos b, Ly cos(8y + W,
= 2.20
(yB) (yQ> + (L1 sinﬁg) + (L2 sin ‘92 + \1’2 ( )

~— — —

(
(
o\ _ (%R Ly cos b3 Ly cos(05 + Vs
(yC) a (yR> " (Ll Sines) * (LQ sin(f3 + U3

) (2.21)

with

The inverse geometric models of 3-RRR manipulator are expressed as:

—B, £ JA?+ B} +C}
0, = 2tan "} 1 1 1 2.22
1 an ( L — A, ( )
with,
A1 = —QLEALl
By = —2yals
Ci=a%+vya+L7— L3
—By £ \JA2+ B2+ (2
0y = 2tan "t 2 2 2 2.23
2 an ( 02 —A2 ( )
with,

Ay = =2L1(xp — xq)
By = —2L1(ys — yo)
o=+ L — L3+ oy + 48— 2o + vane)
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—Bs + /A2 4+ B2+ (2
93:2tan1< & z _3;1: 3+C3) (2.24)

with,

Az = —2Ly (v — 2R)
Bs = —2L1(yc — yr)
Cy = x4+ yé + LT = Ly + ok + v — 2worn + yoyr)

For equations 2.22, 2.23, and 2.24, the following constraint should be satisfied

Va,y,st. A2+ B >C?i=1,23

2.4 3-RPR Architecture

The geometric model of the 3-RPR manipulator is shown in figure 2.4. The manipulator
has three identical chains. Each chain is the RPR-type and consist of one prismatic
joint and two revolute joints. The first revolute joints of each chain are actuated and
attached to the base at point P, Q, and R. This manipulator has 3-DOF which are two
translations and one orientation in the plane of motion. The shape of both the base
and the end-effector platforms is the equilateral triangle.

The rotation angles of the three actuated revolute joints attached to the base are
denoted as #;, 65, and #5. These rotation angles are the input variables of this manip-
ulator. While, the output variables are the Cartesian coordinate of point P, i.e., ),
and y,, and orientation of the moving platform, i.e., ®. Points P, Q, and R are the
vertices of triangle-shape base platform, and points A, B, and C are the vertices of

triangle-shape end-effector platform. Point O is the origin of reference frame.
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Fig. 2.4: 3-RPR Manipulator Geometry Model

Here are the parameters describing manipulator geometry:

e Ly: length of second intermediate links, i.e., Ly = DA - (%) = EB - (%) = FC -
(3);

e a: a side length of the triangle-shaped base platform PQR, i.e., a = PQ = QR
= RP;

e h: a side length of the triangle-shaped end-effector platform ABC, i.e., h = AB
= BC = CA;

e 1, the cross section outer radius of first intermediate links;

e r;,: the cross section inner radius of first intermediate links and at the same time

the cross section radius of prismatic joints and second intermediate links;

® 7.0 the cross section radius of end-effector platform link

2.4.1 Inverse Geometry Model of 3-RPR Manipulator

Knowing the pose of moving platform, z,, y,, and ®, we intend to calculate the actuated

joints values. The coordinates of point A, B, and C can be calculated by applying the
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equation 2.13, 2.14, and 2.15. Then, the close loop vector equations can be written as:

OA=OP+ PD + DA
OB =0Q+ QF + EB
OC =OR+ RF + FC

Equation 2.25, equation 2.26, and equation 2.27 can be expressed as:

(xA) B (xp> N (LT1 cOS 01)
Ya Yp Ly, sin 6y
(xB) _ (xQ> N (LT2 cos 92)
YB Yo Ly, sin 0,
(mc) B (xR> N (LT3 cos 03>
Yo YR Lr, sin 03

where

JZQ =a
Yo =10
s
Tr=a COS(g)
o
YR = a sm(g)

LT1:L1—|—L2—|—T‘1
Ly, =L+ Ly + 1
Ly, =L+ Ly + 13

The inverse geometric model of 3-RPR manipulator are expressed as:

0, = tan~! (y—A>
TA
0y = tan~! g5~ Ve
TR — XQ

’ Tc — TR
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(2.28)
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(2.30)

(2.31)
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2.5 3-RPR Architecture

The architecture model of the 3-RPR manipulator is same with the 3-RPR manipulator.
The different is on 3-RPR manipulator the actuators are the prismatic joints that effect
the definition of the input variables. For this manipulator, the input variables are the
displacement of three prismatic joints attached to the base, i.e., r, ro, and r3. The

other parameters of this manipulator are exactly same with the 3-RPR manipulator.

2.5.1 Inverse Geometric Model of 3-RPR Manipulator

Since the inputs of this manipulator are the displacement of prismatic joints, the inverse

geometric models of this manipulator are defined as:

At ya— (Lo + L) (2.34)
=/(xp — xQ + (yp — yQ)2 — (L1 + L) (2.35)
=/ (vc — 7R)? + (yo — yr)? — (L1 + Lo) (2.36)
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Chapter 3

Stiffness Matrix

This chapter is concerned with the stiffness analysis of the parallel manipulators. The
stiffness of the manipulators is analyzed using the Virtual Joint Modeling (VJM) pre-
sented in [16].

3.1 Stiffness Matrix of The RRRRR Manipulator

To obtain the stiffness model of the RRRRR manipulator using VJM method, we
should consider its general schematic that is composed of four intermediate bars and

five revolute joints as shown in figure 3.1.

BASE

R

v
(= (=)

Mobile
Platform

Fig. 3.1: Schematic Diagram of A RRRRR

According to the flexible model of VJM method, each kinematic chain of the
RRRRR can be considered as serial structure as shown in Figure 3.2 that contains
sequentially:

e a rigid link between the manipulator base and the ¢th actuated joint described

)

by the constant homogeneous transformation matrix T,.;
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a 1-DOF actuated joint, defined by the homogeneous matrix function V,(qj)

where ¢ is the actuated coordinate;

e a 1-DOF virtual spring describing the actuator mechanical stiffness , which is
defined by the homogeneous matrix function V (65) where 6} is the virtual spring

coordinate;

e a first rigid leg of length L, linking the actuated joint and the first passive joint,

which is described by the constant homogeneous transformation matrix TiLl;

e a 6-DOF virtual spring describing the first leg stiffness, which is defined by the
homogeneous matrix function Vg (6:....05) with 61,05, 05, and 04,05, 0, being the
virtual spring coordinates corresponding to the spring translation and rotation

deflections;

e a 1-DOF passive revolute joint allowing one rotation angle ¢}, which is described

by the homogeneous matrix function V,;(¢});

e a second rigid leg of length L, linking the previous passive joint and the second
passive joint, which is described by the constant homogeneous transformation

matrix T7 ;

e a 6-DOF virtual spring describing the second leg stiffness, which is defined by
the homogeneous matrix function V g(6s....0,2%) with 67,05, 6y, and 6,0,0,1, 6,2,
being the virtual spring coordinates corresponding to the spring translation and

rotation deflections of this leg.

e a 1-DOF passive revolute joint allowing one rotation angle ¢4, which is described

by the homogeneous matrix function V,5(g3);

a identity transformation matrix T, ,

The mathematical expression defining the end-effector location subject to variations
of all defined coordinates of the ith kinematic chain can be written as follows:

T =T

Base

Va(qg)) Vsl(e(i)) Til Vs2(91i-'“9é) Vrl(%) TZ'Lg ng(gé...ﬂﬂi) Vr?(q;) iEnd
(3.1)

However, for this research context the affect of actuated joint is omitted because of
the RDMG6 software that we use for validating our deflection results can not simulate it.
So, the homogeneous matrix of V,(g}) and V;(6}) are omitted from our transformation

matrix.
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The kineostatic model of the ¢th leg of the RRRRR can be reduced to a system of:

sy Ji| | f|  |&X
o) ) - 3]

0
where S} = J éKéﬁlJ’éT describes the spring compliance relative to the centroid of the

moving platform, and the Jf] takes into account the passive joint influence on the
moving platform.

The Kgl matrix , of size 12 x 12, describe the compliance of virtual springs and

S |KL 0,
K;)l:[ In 66] (3.3)

takes the form:
7;71
066 K7,
where K’; and KZL;I are the 6 x 6 stiffness matrix of the ith of first and second leg.

Base Platform (Rigid)

Ly Lz
e Rigid Body o Rigid Body o
1-DiOF

6-DOF g-D0OF
Spring Spring Spring

Fig. 3.2: Schematic Diagram of A RRRRR

JY, of size 6 x 12 is the Jacobian matrix related to the virtual springs and Jfl of size
6 x 2 is the Jacobian matrix related to the passive joints.
The Cartesian stiffness matrix K of the RRRRR is found with a simple addition of

K, matrices, namely:

K=Y K, (3.4)

2

=1

3.2 Stiffness Matrix of The RPRPR Manipulator

The general schematic of the RPRPR manipulator is shown in figure 3.3. The
manipulator is composed of four intermediate bars, two prismatic joints and three
revolute joints. Figure 3.4 shows the flexible model of the PRPR manipulator. By

considering the model, the mathematical expression defining the end-effector location
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Fig. 3.3: Schematic Diagram of A PRPR

of the 7th kinematic chain can be written as follow:

T = T%ase VH(qi) TZLl Tj"l TZ[/Q VSl(g’ieé) VTQ(Q;) TZEnd (35)
where:
e T .. is constant homogeneous matrix described the rigid link between manipu-

lator base with the passive revolute joint;

e V.1(q!) describes the first 1-DOF passive revolute joint allowing one rotation
angle qi;
° Til describes the first rigid link L, linking passive revolute joint and the actuated

prismatic joint;

° Tii describes the prismatic joint of ¢th kinematic chain. The prismatic joint is
considered as another rigid body since the RDM6 software can not simulate the

effect of prismatic joint to the stiffness calculation;

e T, describes the second rigid link Ly linking the prismatic joint and the last

passive revolute joint;

e Vi (0:...0%) describes the summation of the first rigid body, the actuated pris-

matic joint, and the second rigid body stiffness.

e V,5(¢) describes the second 1-DOF passive revolute joint allowing one rotation

angle qé;

37



e T, ., describes the transformation matrix from the last passive joint to the end-

effector of the manipulator.

Base Platform (Rigid)

|_1 |—2
Rigid Body Rigid Body o

6-DOF

|79

spring

Fig. 3.4: Schematic Diagram of A RPRPR

The Ké_l matrix , of size 6 x 6, describe the compliance of virtual springs and takes

the form:
- .

KZG = Z(L1+7”i+L2) (36)
where K’(Z +ritL,) 18 the summation of the first leg, the prismatic joint, and the second
leg stiffness matrix which whose size is 6 x 6.

, of size 6 x 6 is the Jacobian matrix related to the virtual springs and J fz of size

6 x 2 is the Jacobian matrix related to the passive joints.

3.3 Stiffness Matrix of The 3-RRR Manipulator

The general schematic of the 3-RRR manipulator is shown in figure 3.5. The
manipulator is composed of the mobile platform connected to a fixed base by three
identical kinematic chains.

Figure 3.6 shows the flexible model of the 3-RPR manipulator. By considering
that model, the mathematical expression defining the end-effector location of the ith

kinematic chain can be written as follow:

T' = Thope Toer, Tpy Var(0r--65) Vir(61) Ti, Via(07.-615) Via(63) Ty Via (6. 01s)
(3.7)

where:
e T, s constant homogeneous matrix describing the rigid link between manip-

ulator base with the passive revolute joint;
e T, describes transformation matrix of the actuate revolute joint;

° Til describes the first rigid link L, linking passive revolute joint and the actuated

prismatic joint;
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Fig. 3.5: Schematic Diagram of A 3-RRR

o Vi (0:...0%) is a 6-DOF virtual spring describing the first leg stiffness;

e V.1(q!) describes the first 1-DOF passive revolute joint allowing one rotation

angle qj;

e T, describes the second rigid link L, linking the prismatic joint and the last

passive revolute joint;
o V(0i...0%,) is a 6-DOF virtual spring describing the second leg stiffness;

e V.2(qb) describes the second 1-DOF passive revolute joint allowing one rotation

angle gj;

e T, ., describes the transformation matrix from the last passive joint to the end-

effector of the manipulator.

e T describes transformation matrix of the link which is connecting the last passive

revolute joint to the centroid of the moving platform.

o V(0is....0i) is a 6-DOF virtual spring describing the end-effector platform stiff-

ness;

The Kgl matrix , of size 18 x 18, describe the compliance of virtual springs and

takes the form: .

1
L, Osz6  Osu6
1 .1

Ky = |06 K7, Ogus (3.8)
1
06966 0616 K;l
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6-DOF 6-DOF 6-DOF
Spring

Spring Spring

Fig. 3.6: Schematic Diagram of A 3-RRR

where KZLT and KZL;l are the 6 x 6 stiffness matrix of the first and second leg of the
1th kinematic chain. K}:l is the 6 x 6 stiffness matrix of the end-effector link of the
ith kinematic chain.

i of size 6 x 18 is the Jacobian matrix related to the virtual springs and J 2 of size

6 x 2 is the Jacobian matrix related to the passive joints.

3.4 Stiffness Matrix of The 3-RPR Manipulator

The general schematic of the 3-RPR manipulator is shown in figure 3.7. The ma-
nipulator is composed of four intermediate bars, two prismatic joints and three revolute

joints.

BASE

(2)@) @,

Mobile Platform

Fig. 3.7: Schematic Diagram of A 3-RPR

Figure 3.8 shows the flexible model of the 3-RPR manipulator. By considering
the model, the mathematical expression defining the end-effector location of the ith
kinematic chain can be written as follow:

Base acty

Th Viala) T, Vialdh) T Va8l (39)
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where:

o T¢

Base 15 constant homogeneous matrix describing the rigid link between manip-

ulator base with the passive revolute joint;
e T, describes transformation matrix of the actuate revolute joint;

° T"L1 describes the first rigid link L; linking passive revolute joint and the actuated

prismatic joint;
e V,1(¢}) describes the first 1-DOF passive revolute joint allowing one translation;

e T, describes the second rigid link L, linking the prismatic joint and the last

passive revolute joint;

e V,5(q}) describes the second 1-DOF passive revolute joint allowing one rotation

angle ¢b;

e T} describes transformation matrix of the link which is connecting the last passive

revolute joint to the centroid of the moving platform.

e Vi (0:...0%) is a 6-DOF virtual spring describing the end-effector link stiffness;

Base Platform

Ls L, h

9 Rigid Body P [ Rigid Body Rigid Body

6-DOF
Spring

Fig. 3.8: Schematic Diagram of A 3-RPR

The Kgl matrix , of size 18 x 18, describe the compliance of virtual springs and
takes the form:

K, =K (3.10)

where K’}'L_1 is the 6 x 6 stiffness matrix of the end-effector link of the ¢th kinematic
chain.
é of size 6 x 6 is the Jacobian matrix related to the virtual springs and J fl of size

6 x 2 is the Jacobian matrix related to the passive joints.
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3.5 Stiffness Matrix of The 3-RPR Manipulator

The general schematic of the 3-RPR manipulator is shown in figure 3.9. The ma-
nipulator is composed of four intermediate bars, two prismatic joints and three revolute

joints.

BASE

5%
OIOID

Mobile Platform

Fig. 3.9: Schematic Diagram of A 3-RPR

Figure 3.10 shows the flexible model of the 3-RPR manipulator. By considering
the model, the mathematical expression defining the end-effector location of the ith
kinematic chain can be written as follow:

T =T

Base

Viilay) Ty, T, Th, Va(0..05) Vio(gy) T, Via(67....61)  (3.11)

where:

%

Base 15 constant homogeneous matrix describing the rigid link between manip-

ulator base with the passive revolute joint;
e V,i(¢}) describes the first 1-DOF passive revolute joint allowing one translation;

° Til describes the first rigid link L; linking the passive revolute joint and the

actuated prismatic joint;

° Tii describes the prismatic joint of ¢th kinematic chain. The prismatic joint is
considered as another rigid body since the RDM6 software can not simulate the

effect of prismatic joint to the stiffness calculation;

e T, describes the second rigid link L, linking the prismatic joint and the last

passive revolute joint;
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o Vi (0:...0%) is a 6-DOF virtual spring describing the stiffness link composed of

the first and second leg and the prismatic joint;

e V.2(qb) describes the second 1-DOF passive revolute joint allowing one rotation

angle gj;

e T describes transformation matrix of the link which is connecting the last passive

revolute joint to the centroid of the moving platform.

o V(0i...0%,) is a 6-DOF virtual spring describing the second leg stiffness;

Base Platformm [Rigid)

|_1 |—2 h
Rigid Body P Rigid Body o Rigid Body
6-D0F 6-DOF
Spring Spring

Fig. 3.10: Schematic Diagram of A 3-RPR

The Kgl matrix , of size 12 x 12, describe the compliance of virtual springs and

takes the form:

K, ' = [Kaiwﬁm) 06;61] (3.12)
0626 K},
where K};l is the 6 x 6 stiffness matrix of the end-effector link of the ¢th kinematic
chain. KE; +ritLy) 18 the summation of the first leg, the prismatic joint, and the second
leg stiffness matrix which whose size is 6 x 6.
J? of size 6 x 12 is the Jacobian matrix related to the virtual springs and J 2 of size

6 x 2 is the Jacobian matrix related to the passive joints.

3.6 Stiffness Calculation and Comparison

Using the VJM model in the previous section, we developed MATLAB functions
for calculating stiffness matrix. Furthermore, to verify if our models are correct, we
compare our output with RDM6 software. Table below shows the output of VJM
model and RDM6. As we can see, the outputs of our developed model are same with
the output of RDMG6.
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Table 3.1: Comparison of Displacements Results Generated by the VJM Model and the

RDM6 Software for RRRRR

d=2 Li=1 L2=15 rf=0.01 rl = 0.01
RPRPR EEpos = [0,2 1,5]
W = [Fx Fy Fz Mx My Mz] | W =[1000000] | W=[0-1000000] | W=[01000000]
Displacement MATLAB RDM6 MATLAB RDM6 MATLAB RDM6
Oz 1.19E-03 1.19E-03 -2.54E-04 -2.55E-04 2.54E-04 2.55E-04
Oy 2.54E-04 2.55E-04 -6.35E-03 -6.35E-03 6.35E-03 6.35E-03
0z 0 0 0 0 0 0
5pa 0 0 0 0 0 0
30y 0 0 0 0 0 0
0z 2.16E-06 0 3.89E-03 0 3.89E-03 0
RPRPR EEpos = [-0,6 1,65)
W = [Fx Fy Fz Mx My Mz] | W =[1000000] W =1[0-1000000] | W=[01000000]
Displacement MATLAB RDM6 MATLAB RDM6 MATLAB RDM6
Oz 1.03E-03 1.03E-03 -3.14E-04 -3.14E-04 3.14E-04 3.14E-04
Oy 3.14E-04 3.14E-04 -2.57E-03 -2.57E-03 2.57E-03 2.57E-03
0z 0 0 0 0 0 0
5 pn 0 0 0 0 0 0
Sy 0 0 0 0 0 0
0p2 -2.79E-04 0 -7.65E-04 0 -7.65E-04 0

Table 3.2: Comparison of Displacements Results Generated by the VJM Model and the

RDM6 Software for RPRPR

d=2 L1=1 L2=1.5 rf = 0.01 rl = 0.01
RPRPR Eepos = [0,2 2,75]
W = [FxFy Fz Mx My Mz] | W =[100000 0] W =1[0-1000000] | W=1[0000010]
Displacement MATLAB RDM6 MATLAB RDM6 MATLAB RDM6
Oz 1.91E-06 1.91E-06 9.07E-08 9.069E-08 0 0
Oy -9.07E-08 | -9.07E-08 | -2.56E-07 | -2.561E-07 0 0
Oz 1.07E-15 0 1.11E-16 0 0 0
0Pz 1.03E-17 0 1.07E-18 0 0 0
5y 0 0 0 0 0 0
0p2 -5.97E-07 0 -6.18E-08 0 6.06E-03 0
RPRPR Eepos = [-0,5 2,9]
W = [Fx Fy Fz Mx My Mz] | W =[100000 0] W =1[0-1000000] | W=1[01000000]
Displacement MATLAB RDM6 MATLAB RDM6 MATLAB RDM6
Oz 2.28E-06 2.29E-06 -2.72E-07 -2.72E-07 0 0
Oy 2.72E-07 2.72E-07 -2.98E-07 2.98E-07 0 0
0z 3.61E-15 0 -3.56E-16 0 0 0
Sz 1.36E-18 0 -1.34E-19 0 0 0
5y 0 0 0 0 0 0
0p2 -7.49E-07 0 7.39E-08 0 5.95E-03 0
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Table 3.3: Comparison of Displacements Results Generated by the VJM Model and the
RDM6 Software for 3-RRR

Ll1=1 L2=15 rf=001 1l=001 Basewign =7 EEwin =2
3RRR Ecpos = [3.6 2.696 0.4363]
W = [Fx Fy Fz Mx My Mz] | W =[100000 0] W =[0-100000 0] W =[0000010]
Displacement MATLAB RDM6 MATLAB RDM6 MATLAB RDM6
Oz 2.12E-02 2.13E-02 3.02E-02 3.04E-02 3.98E-02 4.00E-02
Oy -3.02E-02 | -3.04E-02 | -5.42E-02 | -5.45E-02 -6.89E-02 -6.93E-02
0 0 0 0 0
50m 0 0 0 0
5oy 0 0 0 0
0z 3.98E-02 4.00E-02 6.89E-02 6.93E-02 9.23E-02 9.28E-02
3-RRR Eepos = [3 2 0.3491]
W = [Fx Fy Fz Mx My Mz] | W =[100000 0] W =[0-1000000] W =[00000 10]
Displacement MATLAB RDM6 MATLAB RDM6 MATLAB RDM6
0z 1.53E-02 1.58E-02 -2.58E-02 | -2.70E-02 3.20E-02 3.34E-02
Oy 2.58E-02 2.67E-02 -6.47E-02 | -6.82E-02 6.97E-02 7.41E-02
0 0 0 0 0 0 0
5pa 0 0 0 0 0 0
3oy 0 0 0 0 0 0
0p, 3.20E-02 3.34E-02 -6.97E-02 -7.41E-02 8.80E-02 9.22E-02

Table 3.4: Comparison of Displacements Results Generated by the VJM Model and the
RDM6 Software for 3-RPR and 3-RPR

EEy, =2 Base, =7 Ll=1 L2 =0,75 rf=0.01 rl = 0.01
Eepos = [3.5 2.5 0.3142]
W=T[1000000Q] W=1[0-10000 0] W=1[00000 10]
MATLAB MATLAB MATLAB
Displacement Ract Pt RDM6 Ract Pect RDM6 Ract Pect RDM6
Oz 1.45E-03 3.60E-04 3.59E-04 1.91E-05 1.40E-04 1.40E-04 -1.03E-04 | -9.35E-05 | -9.32E-05
Oy -1.91E-05 -1.40E-04 -1.40E-04 -2.01E-03 -3.78E-04 | -3.78E-04 | -6.50E-05 | -4.24E-05 | -4.27E-05
0z 0 0 0 0 0 0 0 -1.90E-16 0
0px 0 0 0 0 0 0 0 2.40E-18 0
0y 0 0 0 0 0 0 0 0 0
0pz -1.03E-04 -9.35E-05 -9.32E-05 6.50E-05 4.24E-05 4.27E-05 7.87TE-04 8.22E-04 8.22E-04
Eepos = [3.1 2.9 0.4363)]
W =T1000000] W =10-1000 0 0] W =100000 10]
MATLAB MATLAB MATLAB
Displacement Ract Pyt RDM6 Ract Pyt RDM6 Ract Pact RDM6

O 1.03E-03 6.27E-04 6.27E-04 | -3.08E-04 | 4.84E-04 4.83E-04 | -1.26E-04 | 7.75E-05 7.78E-05
Oy 3.08E-04 -4.84E-04 -4.83E-04 | -1.94E-03 | -8.69E-04 | -8.69E-04 | -4.02E-04 | -3.57E-04 | -3.58E-04
0z 0 0 0 0 0 0 0 3.50E-16 0
0P 0 0 0 0 0 0 0 -8.60E-19 0
0y 0 0 0 0 0 0 0 0 0
0p, -1.26E-04 7.75E-05 7.78E-05 4.02E-04 3.57E-04 3.58E-04 8.65E-04 9.67E-04 9.67E-04
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Chapter 4

Design Optimization

This chapter aims to compare the manipulators in the term of their intrinsic stiffness
properties. The first comparison is for 2-DOF parallel manipulators between RRRRR
and RPRPR. The second comparison is for 3-DOF planar parallel manipulator between
3-RRR, 3-RPR, and 3-RPR.

In order to do the comparison, each manipulator has to design under the same
specifications. Moreover, in this study context the selected specifications are the fixed
size of regular dexterous workspace, deformations under a certain load, and the passive
joints reactions. The general specifications should be fulfilled by all the manipulators

are shown in table 4.1.

Table 4.1: General Specifications for The Manipulators

Regular Workspace Size 300 mm x 300 mm

Deformation under
F = [10, 10, 0] N and (1, 1, 1] mm, [1, 1, 1] deg
moment M = [0 0 1] N.m

Admissible joint reactions 10N

4.1 Optimization Objective

The general optimization problem in this study context is to find the best design of
manipulator in order to minimize its total mass in motion and compactness. The best
manipulator design is determine by optimizing the geometric parameters of a manip-
ulator. In order to achieve that goal, the workspace of the mechanism is discretized,
then the considered performance and constraints are measured, evaluated, and verified

for each point.
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4.1.1 Mass in Motion of the Manipulators

Mass in motion of the manipulators are considered as the first objective function of this
optimization problem. Mass of manipulators are function related dimension parameters
such as cross-sectional area and length of links. In general, the mass in motion of a
manipulator is determined by number of links, size of platform, and types of links
composing a manipulator.

Therefore, the first objective function of the design optimization problem is written
as:

my

fix) =

where x is the design variables vector that consists of the geometric parameters of a

— min (4.1)

mmaw

manipulator. m; is total mass in motion of several manipulator’s parameters. m,,q; is
the maximum value of mass in motion of an evaluated manipulator.

The general mathematical expression of m; and m,,,, are:
my =My +a . my+b. my; (4.2)

Mpaz = P - Amax . Lmam (43)

where m, is the mass of the platform. m; is the mass of an intermediate bar. m,;
is the mass of a prismatic joint. a is the number of intermediate bars installed to the
manipulator. b is number of prismatic joint installed to the manipulator. p is density
value of used material. A,,,, is the maximum area of the calculated object. Lmax is

the maximum length of the calculated object.

4.1.2 Compactness of The Manipulators

The second objective function of optimization problem is compactness of the manip-
ulator. This objective function is related to the projection size of a manipulator into
the plane of motion as the manipulator is expected to be as compact as possible.

Compactness of a manipulator is defined by the rectangle-shaped area that covers
the manipulator at a given configuration. As illustration, compactness of the RRRRR
manipulator as shown in figure 4.1 is the grey area marked as Aspq,-.

As it mention before, the calculated area depends on the specific manipulator’s
pose. Where for the case of Five-bar robot, the area is calculated when the different
angles between ¢; and ¢o is equal to 7/2, or we called it home position. The details
compactness formulation of each manipulator will be explained on the next part.

Generally, the second objective function of the design optimization problem is writ-
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ten as:
f (X) Acompactness
9 _ e

Amax

where Acompactness 15 the manipulator compactness area at the home position. Ay,qy is

— min (4.4)

compactness maximum value.

Fig. 4.1: Bounding box and home configuration of RRRRR manipulator

4.2 Design Variables

Design variables are variables which are affected the calculation of objective functions.
From previous section, we knew that the objective functions are mass in motion and
compactness. Based on this information the design variables can be determine generally
such as length of links, cross-section type, cross-section radius, and platform size. Fur-
thermore, the details of design variables determination will be explained independently

for each manipulator in the next section.

4.3 Optimization Constraints

The optimization constraints are divided into two types: linear constraints and non-
linear constraints. Linear constraints are straight forward constraint, which usually
related to geometric relation, such as cross section. Meanwhile, nonlinear constraints
are function(s) of the design variable, which have certain degree of mathematical com-
putation to obtain the constraint conditions.

The linear constraint used in this optimization problem is related to the cross-

section type of the intermediate links which are spherical hollow shaped. A spherical
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hollow cross-section is defined by two radius, i.e., 7., as the outer radius and r;, as
the inner radius. Illustration of spherical hollow cross section can be seen in figure 4.2.

Physically, the outer radius should be greater than inner radius such that it can be
written as:

Tout = Tin +C (45)

Fig. 4.2: Circular hollow link

where c is any constant value that greater than zero and rout and rin are design
variable of optimization problem.

The nonlinear constraints used are the displacements of end-effector when an ex-
ternal wrench applied, passive joint reaction to the applied wrench, and the specified

size of largest regular dexterous workspace (LRDW).

4.3.1 Largest Regular Dexterous Workspace

The largest regular dexterous workspace (LRDW) is the largest manipulator’s workspace
area in which the geometric and/or kinematic constraints are respected thoroughly. In
the scope of this research, the design constraints/objectives that need to be respected

are:

1. The assembly of the manipulator should be possible.
2. The displacement constraints.

3. The passive joints reaction constraint.

Furthermore, the minimum length and height specification of regular workspace, RW,
is define as w; and wy,, respectively. These two parameters define the minimum desired

size of reqular dexterous workspace, RDW.
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Algorithm 1: Largest Dexterous Workspace Determination
Data: {Qij}, {Gij}, daza dy
Result: I;rpw, hrrpw, (io, jo)

®;; = 0;

for {i=1&Vj} U {j=1&Vi} do
‘ Qi = Qi

end

for: = 2: Nydo

for j = 2: Ny do
‘ (I)” =1+ min{@i,1,®j,1,®i,17j,1}
end

end
end

Find d = maz(®;; — 1);

(d0, Jo) = argmaz(®y;);

Retrieve from the grid {G;;} the desired square bounded by the indices
(o = d,jo — d) and (io, jo);

Give ZLRDW = d$ . d and hLRDW = dy .d )

In order to find the largest dexterous workspace, algorithm 1 of [4] is used for the
given design variables. The input of this algorithm are the workspace grid, {G;;},
which includes the manipulator workspace RDW = w; x wy, and possesses uniform but
different steps along the Cartesian axes, namely (lg = d,.Ny and hg = d,.Np), where
lg and hg define the length and height of the workspace grid, d, and d, define the
discretisation precision, and Ny is the number of nodes in each direction. In addition,
the 2D binary matrix Q;; = {0, 1} is defined to indicate if the constraints at node {G;;}
are satisfied or not. ;; = 1 means the corresponding design constraints/objectives
are all satisfied, and €2;; = 0 otherwise. For computation convenience, ;; = 0 if
[Giy} & RDW.

Hence, the original problem it to find the largest sub-matrix inside {€2;;} containing
non-zero value only. Moreover, the algoritm 1 utilizes an additional integer matrix
{®,;} that define the candidate solutions with the vertex (i.j).

The output of algorithm 1 is the length and height of manipulator’s LRDW (i1 rpw
and hprpw). Therefore, using these two values and then comparing it with the pre-
scribe regular workspace height and length (w; and h;) we can define the constraint

functions as

lorpw > wy (4.7)

hrrpw > hy (4.8)
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4.3.2 Deformation Constraints

The position and orientation deformations are assessed by using the stiffness parameters
of the manipulator. Let defines dx, dy, and dz as position deformation error and 0P,
0®,, and 6P, as orientation deformation error of the end-effector subjected to external
forces (F,, F,, and F,) and torques (7., 7,, and 7,). The constraints related to the

deformation of manipulator are defined as follows:

;

0T min < 02 < 0Tmaa
0Ymin < 0Y < 0Ymaz
0Zmin < 02 < 0Zpmax
00, . <P, <P
0P, <0®, <P
| 0P, S0P, <60

Tmax

ymaac

Zmazx

where (0Zmaz, 0Ymaz, 0Zmaz) being the maximum allowable position errors, (6Zmin, 0Ymin,
0P 0P

0®, . ) the minimum allowable posi-

0Zmin) the minimum allowable position error, (0P the maximum

0P

tion errors of the end-effector. These deformation constraints can be expressed in term

Tmax? Ymax Zmax )

allowable orientation errors, and (6®

Tmin) Ymin?

of the components of the mechanism stiffness matrix and wrench applied to the end

effector. The deformation specification range is set to be:

Zmaz = OWYmaz = 1075m (4.10)
Zmin = OYmin = —107>m (4.11)
50, = 1deg (4.12)

These specifications should be satisfied if forces equal to 10 N are applied to x and

y axis and 1 Nm torque is applied to z axis when the manipulator is in home position.

4.3.3 Passive Joints Reaction Constraints

The passive joints reaction calculate the reaction(s) value of passive joints due to ap-
plied of external wrench (force(s) and moment(s)) for a given/specific manipulator’s
configuration. The value of passive joint i reaction forces (R;) should lied below an
admissible reaction value(R,4,) since the excessively high values leading to the break-

down of the manipulator.

R; < Ruim (4.13)

For guarantying that our mechanism is strong enough to resist the external wrench
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equation 4.13 must be considered as one of constraint equation of this optimization
design. The problem is lied on how to calculate the value of reaction forces R; to

guarantee the output optimize design can resist a given external wrench.

Fig. 4.3: Determination of passive joints reaction for the planar 3-RPR manipulator

According to [3], the reaction forces R; in the platform passive joints (denoted as
point A, B, and C in figure 4.3) is related to the external wrench, w’ = [f; C]T (f is
the external force and C is the scalar value of the external moment applied on the end
effector) applying the Newton-Euler equations at any point Q. For example of 3— RPR

manipulator in figure 4.3, the description of force and moment are

f=> R, (4.14)

where Hg As Hg 5, and ch on equation 4.15are described the coordinates of vector 6721,
Q@ , and @ respectively. the double arrows in figure 3 show direction reaction for
each passive joints. In addition, direction of reaction forces of different types of joint
configurations is explained on paper of [3]. Taking into consideration of R; = R; r;
where r; is a dimensionless unit vector and ||R;|| = R; then applying the Newton-Euler

equations at point A, it comes that

ry 1) rs
W= —

=T =T =T
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According to [14, 8], matrix A at Eq. 4.16 is parallel jacobian matrix founded from
differentiation close loop equations of the manipulator with respect to end effector
coordinates.

The reaction forces R of passive joint are calculated refer to Eq. 4.16 as

R=-A"Tw (4.17)

A_l = [stlstlsﬂ], with SZ; = [V?,Cdi] (418)

combining Eq. 4.17 and 4.18 then applying for manipulator in figure 4.3

R, vlT w1
f
RQ - — Vg W9 . (419)
c+CaG
Rg Vg: W3

where R; is reaction force on passive joints. v! and w; are linear velocity vector and
scalar angular velocity of each passive joints. f is external vector forces applied to
the manipulator. C is scalar external moments applied to the manipulator, and Cg is
external moments applied to point G . Taking an example of norm of R; of the reaction
force at point A (first limb of 3 — RPR manipulator)

Ri=—(If+ w (C+ Cq))
Ri=—(If+ w (C+ dgy) )
Ri=—((vF + wi dgy) £+ wi0) (4.20)

For a give norm f of external force f and a given value C of external moment, and

for any direction of vector f, the maximum value of Ry, . of R; as:

Ripee = FVIIVAIE + (w1 01)2 = 2[[va]] | w1 bi| cos B + | w; C] (4.21)

where b; is distance between application point of the external wrench, G, and passive
joint at point A. f; is angle between vector v, and w; dga (see figure 4.4), where Ii
is the position of the instantaneous center of rotation (ICR) of the manipulator when
limb 1 is disconnected. The method to determine position of ICR is explained on [1].
Put equation 4.22 as reference and generalizing the approach to the other legs, the

general equation becomes

Rimaz :f\/HVZH2 + ((JJi bl)Q — 2HV1H \wi bz’ COS 51 + \wi C’ (422)
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Fig. 4.4: Instantaneous system equivalent to the planar 3-RPR manipulator

Based on equation 4.22 and for a given mechanism configuration, it is possible to
find admissible ranges for f and C, in order to avoid the breakdown of the platform
of each passive joint location in a manipulator. Therefore, the maximum values of
reaction forces of each passive joints can be verified if it was in the range of admissible

value or not (refer to equation 4.13).

4.4 General Optimization Problem Statement

The general optimization problem for all the manipulators can be stated as:

Finding the optimum design parameter x of the five manipulators (RRRRR, RPRPR,
3-RRR, 3-RPR, and 3-RPR) in order to minimize the total mass in motion and
compactness with subject to several design constraints, i.e., largest regular dexterous

workspace, deformation constraints, and passive joints reaction constraints.
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Mathematically, the problem is written as:

minimize fi(x)
fa(x

over X
subject to gl
g2

g3

g4

go

g6

g7

g8

me
Mmax

_ manipulator

Amaz

= [rout Tin TTool Ll L2 EEwidth BaSewidth
=Tout = Tin + 0.001

]T

=lirpw = w
=hrrpw = wp

= 0Zmin < 0T < 0Zmax
= 0Ymin < 0Y < OYmaz
=00, <P, <P
= Ri,... < Radm

= Rs,... < Raim

Xp <X < Xy

(4.23)

Zmax

where x;, and x,;, are lower and upper bounds of x, respectively.

4.5 Optimization Problem of RRRRR Manipulator

The objective of this optimization problem is to find optimal design variables of

RRRRR manipulator that minimize its total mass in motion and compactness. Fig-

ure 4.5 shows the model with its parameters of the RRRRR used in this optimization

problem.

Fig. 4.5: RRRRR Model and Parameters
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4.5.1 Objective Function

The first objective function of the optimization problem corresponds to the total
mass in motion of the RRRRR manipulator. Mass is a function of manipulator di-
mensions, i.e., length of links, cross section type and area. In this case, both first and
second intermediate links (L; and Ls) are consider to have a same type of cross section

which is spherical hollow with radius ryy,, and r;,,, (for i = 1,2).

7aO’LLile - ’routLg (424)

TiTLLl - TinLQ

Fout

-

4

Fig. 4.6: Circular Hollow Section Model and Parameter

Fin

where 7,,:, and 7., are outer radius of first and second intermediate links. r;,, and
Tin, are inner radius of first and second intermediate links.

The total mass in motion of the RRRRR manipulator, m,, is composed of the mass
of two first bar, my;, and the mass of two second bar, mys. The total mass in motion

calculation is:

my =2myp; + 2myro (4.25)

with,
mp = pm (rgutm — rfnm) L1 (4.26)
Mmpz = p7 (rgutLg - 701;2771,2) L2 (427)

where p is density of material used, which in this case is stainless steel (p = 7860 kg/m?).
L1 and L2 are length of first and second intermediate links of the manipulator.

The second objective function corresponds to the size of projection of RRRRR
into the plane of motion as the manipulator should be as compact as possible. The
RRRRR compactness calculates the amount of surface area Argrrr of the rectangle-
shaped bounding box as it shown as grey area in figure 4.7. The calculation is done
when the manipulator is in the home position. In this position the value of ¢ is equal
to /2 and the end-effector is in the middle of point A and C.
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The surface area Arrrrr is expressed as:
ARrrrrR = bbyy . bbf, (4.28)

where bby and bby, are height and length of bounding rectangle and take the form:

bby = Ly sin(qr) + Lo sin(t)q) (4.29a)
bbr, = Lo cos(¢r) — Lo cos()z) (4.29b)
¢ = arccos(—(LQ/ \/§L)1_ (d/2)) (4.29¢)
Y =m/4 (4.29d)
Yo = 3m/4 (4.29)

Fig. 4.7: Bounding Box of The RRRRR

4.5.2 Design Variables

The design variables of this optimization problem are the design parameters of the

RRRRR that affect m, as well as Agrrrrr, namely:

X1 = [Fout Tin L1 Lo)" (4.30)

4.5.3 Optimization Problem Formulation of RRRRR Manipulator

From tabel 4.1, the RRRRR is designed to cover a rectangular shaped workspace,
called Regular Workspace (RW) of length and height equal to 300 mm (w; and wy,).
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Moreover, at the home configuration the maximum deformation and admissible joint
reactions under external forces F and moments M should be also satisfied.

The optimization problem aims to find the design variable vector x; that minimize
the total mass in motion My, .., and the surface area Agrrrr while the length and
height of LRDW are bigger or equal to w; and wy,. The deformations under external
forces and moments should be less or equal to 1 mm and 1 deg, respectively. The
passive joint reaction for a given external wrench should not greater than 10 N.

As a summary, the optimization problem can be written in mathematical form as:

minimize  f1(X) = Muppnpn
f2(x) = ARrrrr
over X = [Tout Tin L Lz]T

subject to gl =ry =1y, + 0.001
92 =lrrpw = W
93 =hrrow = wp
g4 = 0 min < 0x < 0% pan
95 = 0Ymin < 6Y < 0Ymaz
g6 =P, < IP, < 5P
g7 = R,... < Raim
98 = Ra,.. < Rum

max _—
Xp <X1 < Xy

(4.31)

Zmazx

where x;, and x,;, are lower and upper bounds of x;, respectively.

454 Results

The MATLAB function fmincon was used to solve this optimization problem. Using
this function and by providing several initial parameters, the optimal set of design
parameters are found. The optimal design variables of this problem and the associated
mass in motion and surface are Arrrrr are given in Table 4.2. Figure 4.8 shows the
optimum 2D design of the RRRRR with its LRDW.

Table 4.2: Optimal Design Parameters of The RRRRR

Tout (M) 7T (M) Ly (m) Ly (m) H my (kg)  ARRRRR (m?) lprow (m)  hrrpw (m)

0.025  0.015 0.9019 0.9391 | 36.3223 1.9936 0.44 0.44
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Fig. 4.8: Optimal Design of The RRRRR and Largest Regular Dexterous Workspace

4.6 Optimization Problem of RPRPR Manipulator

This optimization problem aims to find optimal design variables of the RPRPR ma-
nipulator that minimize its total mass in motion and compactness. Figure 4.9 shows

the RPRPR manipulator model and its parameters.

d

Fig. 4.9: RPRPR Model and Parameters

4.6.1 Objective Functions

Same with the RRRRR, the first objective function is to find the minimum mass of
motion. The mass in motion of the RPRPR manipulator is composed by the mass of
first and second intermediate links m, and mp,, and the mass of prismatic joints, m,,

and m,.,.
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In this problem, the cross section of first intermediate links is spherical hollow
section. The cross section of second intermediate links and the passive joints are solid
spherical section. It is also considered that the radius of the prismatic joints and the
second intermediate links are same and equal to inner radius of the first intermediate

links. This relation can be written as:

Tinpy = Tprismatic — TL2 (432>

Therefore, the total mass of motion of RPRPR manipulator is

my =2myg, + 2mp, + m, + m., (4.33)
with,
mp, =pm (rgut - T?n) Ly (434)
mr, = p T, Lo (4.35)
Mp, = p 7T T (4.36)
Myy = p T T3 To (4.37)

where p is material density. L; and Ly are the length of first and second intermediate
links. r; and ry are the length of prismatic joints. r,, is the outer radius of the first
links. 7y, is the inner radius of first link and also the radius of both the prismatic joints
and the second intermediate links.

The second objective function corresponds to compactness of the manipulator. The
goal is to minimize the surface area Arprpr. Figure 4.10 shows the area of Arprpr

as the rectangle shaped bounding box. The surface area Agprpr is expressed as:

ARPRPR = bby . bby, (438)

where
be = (Ll + L2 + 7'1) sin 01 (439)
bbw = (L1 + Lo +1r1) costy + (Ly + Ly + 13) cos(0y — g) (4.40)

4.6.2 Design Variables

The design variables of this optimization problem are:
X2 = [rout Tin Ll LZ]T (441)
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d

Fig. 4.10: Bounding Box of The RPRPR

4.6.3 Optimization Problem Formulation of RPRPR Manipulator

The optimization problem of RPRPR manipulator can be formulated as follows,

minimize fi(X) = Mippppp
fao(x) = Arprrrr
over X9 = [Tout Tin L1 Lz]T

subject to gl =row > 1y, + 0.001
92 =lrpw > w
93 =hrrow = wp
g4 = 0xmin < 0 < 0T pan
94 = 0Ymin < 0Y < 0Ymax
gh =00, . <0P, <P
g6 = Ry,... < Raim
g7 =Ra,,.. < Rum

(4.42)

Zmax

where x;, and x,;, are lower and upper bounds of x5, respectively.

4.6.4 Results

The optimum design parameters for this optimization problem are shown in Table 4.3.
Figure 4.11 shows the optimum 2D design of RPRPR with its LRDW.
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Table 4.3: Optimal Design Parameters of The PRPR

Tour () Tin (m) Ly (m) Ly (m) H my (kg)  Agrrrr (M®) lorpw (M)  hpppw (m)

0.025

0.0012

0.4998

0.3946 || 15.4386

2

0.38

0.38

Workspace of RPRPR

LRDWY

1=

¥ (m)

Fig. 4.11: Optimal Design of The PRPR and Largest Regular Dexterous Workspace

4.7 Optimization Problem of 3-RRR Manipulator

Optimization problem of 3-RRR manipulator is to find optimal design variables that
minimize its total mass in motion and compactness. Figure 4.12 shows model and

parameter of the 3-RRR manipulator.

Fig. 4.12: RRRRR Model and Parameters
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4.7.1 Objective Functions

Total mass in motion as the first objective function is composed of three identical leg
and end effector. Each leg of 3-RRR manipulator is composed by two cylindrical links
that have circular hollow type cross section. The end effector is assumed to be made

up of three circular bars. Hence, total mass of motion of 3-RRR manipulator is:

my = Mggr + 3mL1 + 3mL2 (443)
with,

MEE =3 P T Ty T (4.44)

mrp, =pm (Tgut - rz'Qn) Ly (445)

mLz = p ™ (Tcz)ut - rz'Qn) L2 (446)

mpgg is the end-effector mass composed of two components which are rp,, which is
radius of the end-effector bar, and r which is the length from last passive joint (point
A, B, and C) to mid point of end-effector. my, is mass of the first intermediate link.
my, is mass of the second intermediate link. Moreover, mass of first and second links
are composed by three components: 7., as the outer radius of cross section, r;, as
the inner radius of cross section, and L; (i=1,2) as the length of first and second
intermediate links.

The second objective function is compactness of the manipulator. Compactness of

the 3-RRR is determine by the size of bounding box area, Asgrr (shown at figure 4.13).

A3RRR - be . bbW (447)
where
EEwi 3 .
by = |Losin(6; + 0y)| + %f 4 |Lasin(fs + Wa)| + | Ly cosfs|  (4.48)
bbW = |L1 COS 91| + |L2 COS(91 + \1’1)| + EEwidth + |L2 COS(92 =+ \112)| (449)
EEuyigm =1V3 (4.50)

4.7.2 Design Variables

The design variables of the optimization problem are the components of vector xs,

namely,

X3 = [rout T'in TTool Ll L2 EEwidth Basewidth]T (451)
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Fig. 4.13: Bounding Box of The 3-RRR Manipulator

The EFE,qun and Basew;qn are dimension of equilateral triangle shaped of the base

platform and the end-effector platform, respectively.

4.7.3 Optimization Problem Formulation of 3-RRR Manipulator

The 3-RRR manipulator optimization problem can be formulated as follows,

minimize f1(X) = Mipn
f 2(X) = Asrrr
over X3 = [Tout Tin TTool Ll L2 EEwidth Basewidth]T

subject to gl =1y > 1y, + 0.001

92 =lrpw > w
93 =hrrpw > wy
g4 = 0T min < 01 < 0T pmas (4.52)

g4 = 0Ymin < 0Y < 0Ymaz
g5 =6b, < 6b, <5
96 = Ri,... < Rum
97 =Ry,... < Ruam

98 - R3maw S Radm

Xp <X < Xy

Zmax

where x;, and x,;, are lower and upper bounds of x3, respectively.
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4.7.4 Results

The optimal desi
Table 4.4. In add

gn parameters obtained for this optimization problem are given in

ition, Table 4.5 provides value of objective functions. The 2D design

of the 3-RRR manipulator with its LRDW is shown in figure 4.14.

Table 4.4: Optimal Design Parameters of The 3-RRR

Tour (M) Tin (M) 7o (M) Ly (m) Lo (m) Basewign (m) EEwigs (m)
0.0575  0.0075 0.0431 0.635 0.615 2.5 1
Table 4.5: Objective Function Results
my (kg)  Arrrrr (m*) lrpw (M)  hprpw (m)

325.789 5.8289 0.35 0.35
I ”””””””””” ”””””” S f”a’;{;’aﬁ"""’"% ”””””” |
N/ e N
e S / \ -
; i i 7 ; %
x (m)

Fig. 4.14: Optimal Design of The 3-RRR and Largest Regular Dexterous Workspace

4.8 Optimiz

ation Problem of 3-RPR Manipulator

Optimization problem of 3-RPR manipulator is to find the optimal design variables

that minimize its

parameter of the

total mass in motion and compactness. Figure 4.15 shows model and

3-RPR manipulator.
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Fig. 4.15: 3-RPR Model and Parameters

4.8.1 Objective Functions

Total mass in motion as the first objective function is composed of three identical legs
and a moving platform. Here, the mass of moving platform is denoted as mgg. Each
manipulator’s leg consists of 2 bars, L; and Lo, and prismatic joint, r; (i=1,..,3). In

general, the total mass in motion m; of 3-RPR is equal to

3

my = mpgp + 3mg, +3mg, + Z My, (4.53)
i=1
with
MpE =3 p T Thgy T (4.54)
mp, =pm (T?)ut - r?n) Ly (455)
mr, = p e, Ly (4.56)
My, = p T T, T4 (4.57)

where 77, is radius of the end effector bars, r is the length from center point to vertices
point of end-effector platform. r,,; is the outer radius of first intermediate link. r;,
is the inner radius of second intermediate link. L, is the length of first intermediate
link, Ly is length of second intermediate link, r; is length of prismatic joints (There are
three prismatic joint installed in this manipulator. One for each legs).

The second objective function is the compactness of manipulator. Compactness of

manipulator is determine by the size of bounding box area Asgrprg.
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Fig. 4.16: Bounding Box of The 3-RPR Manipulator

The bounding box Asrpr calculation is expressed as follow
AgﬁpR = be . bbW (458)

bby and bby, are the length and the height of the bounding box rectangle and take the

form:
. EE, /3 .
bby = |L1 + Ly + 1) sin 0y | + +h\/_ + [(L1 + Lz + 13) sin 0] (4.59)
bby = |L1 + Lo+ 11) cos 01| + EEyiamn + | L1 + Lo + 13) cos 65| (4.60)
EEyian = V3 (4.61)

4.8.2 Design Variables

The decision variables of the optimization problem are the components of vector x4

X4 = [rout Tin TTool Ll L2 EEwidth Basewidth}T (462)

4.8.3 Optimization Problem of 3-RPR Manipulator

The 3-RPR manipulator optimization problem can be formulated as follows,
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minimize fi(X) = Myppp
fQ(X) = A?@PR
over X4 = [Tout Tin TTool Ll L2 EEwidth Basewidth]T

subject to gl =1, >1in + 0.001
92 =lirpw = w
93 =hrrpw = wp
g4 = 0xmin < 01 < 0T pan (4.63)
94 = 0Ymin < 0Y < OYmax
g5 =80, <80, <D
g6 =Ry, < Raim
g7 = Rs,.. < Rum
98 =Rs,,.. < Rum

Zmazx

where x;, and x,;, are lower and upper bounds of x4, respectively.

4.8.4 Results

The optimal design parameters and the objective function results are given in Table 4.6
and 4.7. Figure 4.17 shows the optimal 2D design of the 3-RPR manipulator and its
LRDW.

Table 4.6: Optimum Design Parameters of The 3-RPR

Tout (m) Tin (m) T ool (m) Ly (m) L, (m) Basewiam (m) EEwiamn (m)

0.0239  0.0139 0.01 0.5 0.5 3.0785 1

Table 4.7: Objective Results

my (kg) ASEPR (m2) lLrRDW (m) hrrow (Hl)

57.9781 8.2073 0.42 0.42

4.9 Optimization Problem of 3-RPR Manipulator

Optimization problem of 3-RPR manipulator is to find the optimal design variables
that minimize its total mass in motion and compactness. Figure 4.18 shows the 3-RPR

manipulator model and its design parameters.
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Fig. 4.18: 3-RPR Model and Parameters

4.9.1 Objective Functions

Objective functions of this optimization are similar with the other manipulators.
The first is to minimize total mass in motion and the second is to minimize compactness

of the robot. Due to similarity of manipulator architecture and parameters between
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3-RPR and 3-RPR, the mathematical equations to calculate mass in motion and com-
pactness of 3-RPR are not written again. One can directly refer it to the previous

chapter.

Fig. 4.19: Bounding Box of The 3-RPR Manipulator

4.9.2 Design Variables

The design variables of the optimization problem are the components of vector x5.

X = [rout Tin TTool Ll LQ EE’width Basewidth]T (464)
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4.9.3 Summary

The 3-RPR manipulator optimization problem can be formulated as follows,

minimize fi1(X) = Myppp
fo(x) = Asrpr
over X4 = [Tout Tin TToot L1 Ly EEuyian Baseyiam]”

subject to gl =re =1y + 0.001
92 =lirpw = w
g3 = hrrpw > wp
g4 = 0Zpmin < 0L < Oan (4.65)
94 = Ymin < 6Y < OYmax
gh =00, . <P, <0P,, .

96 - leagg < Radm
97 = R2maz S Radm
98 = R3maz < Radm

where x;, and x,;, are lower and upper bounds of x5, respectively.

49.4 Results

The optimal design parameters result obtained form fmincon function in MATLAB
with several starting points are shown in table 4.8. Table 4.9 shows the results of
mass in motion and compactness calculation for a given optimum parameters. The

corresponding 2D optimum desing of the 3-RPR and LRDW are depict in figure 4.20.

Table 4.8: Optimum Design Parameters of The 3-RPR

rout (m) rin (m) rTool (m) L1 (m) L2 (m) BaseWidth EEWidth
0.0175  0.0075 0.01 0.5015 0.5154 3.0785 1

Table 4.9: Objective Results

mt (kg) ARRRRR (m2) ILRDW (m) hLRDW (m)
46.1527 8.2073 0.44 0.44
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Fig. 4.20: Optimal Design of The 3-RPR and Largest Regular Dexterous Workspace

410 Displacement Comparison of 2-DOF Planar Parallel Ma-

nipulator

In this section, a comparison between the RRRRR and the RPRPR manipulator in the
term of displacements factor is done. The purpose of this comparison is to determine
which manipulator’s architecture has a better stiffness.

To do the comparison, the external forces, in the magnitude of 10 N, and moments,
in the magnitude of 1 Nm, are applied to the end-effector of the optimum design of
the manipulators. The comparison is also performed in several locations within the
workspace of the manipulators. The determination of test locations is important part
because we should guarantee that those locations are reachable by both the manipula-
tors before performing displacement analysis.

The determination of testing locations is performed by finding intersection area in
the workspace of both manipulators. In figure 4.8 and figure 4.11, the workspace area
of RRRRR and RPRPR are denoted by yellow area. By intersecting the workspace
area of both manipulator we are able to choose several test points.

Table 4.10 and 4.11 shows displacement analysis for for 4 testing points. Table 4.12
and 4.13 informs mean and maximum displacement for both manipulators.

According to data on table 4.12, the RRRRR manipulator has bigger displacement

value than the RPRPR manipulator for both linear displacement and rotation angle.
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The similar condition is found for the mean linear displacement and rotation angle of
the RRRRR manipulator. Therefore, the RPRPR manipulator has a better architec-
ture than the RRRRR manipulator in the term of stiffness since it has lower value for

both linear displacement and rotation angle.
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Fig. 4.22: Displacement Error of The RPRPR, Fx = 10N Fy = 10N Mz = 1Nm
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Fig. 4.23: The 2-DOF Comparison of Maximum Deformation at Several Points
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Fig. 4.26: The 2-DOF Comparison of Mean Deformation for Several Wrench

75




4.11 Displacement Comparison of 3-DOF Planar Parallel Ma-

nipulator

There are three 3-DOF planar parallel manipulators under study in this thesis: the 3-
RRR, 3-RPR, and the 3-RPR manipulator. In this chapter, a displacement comparison
is done for those three manipulators. The goal of this comparison is to determine which
manipulator’s architecture has a better stiffness.

Previous section already explained about the important of testing points determi-
nation. The selected testing points should lay inside the intersection workspace area
of the three manipulators. Since this will guarantee that the points are reachable by
those three manipulators.

Figure 4.20, 4.17, and 4.14 denote the workspace of these three manipulators as
yellow area. By intersecting these areas, we can determine the testing points. In this
case, four points inside the area are selected as shown in table 4.14.

Table 4.14, 4.15, and 4.16 shows the linear and rotation displacement at several
points under subject of several combination of forces and moments. In addition, Ta-
ble 4.17 and table 4.18 show the maximum and mean of displacement.

According to table 4.17, the 3-RRR manipulator has the smallest both linear and
rotation displacements value comparing to the others. Similar condition is found for the
mean deformation value. Therefore, the 3-RRR manipulator has a better architecture
than the 3-RPR and the 3-RPR manipulators in the term of stiffness because it has

smallest linear and rotation displacement value.
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Fig. 4.29: Displacement Error of The 3-RPR,

Fx = 10N Fy = 10N Mz = 1Nm
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n Deformation Maximum of The 3-RRR, The 3-RPR,
and The 3-RPR

Orientation Deformation Maximum of The 3-RRR, The
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Fig. 4.30: The 3-DOF Comparison of Maximum Deformation at Several Points
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Fig. 4.31: The 3-DOF Comparison of Maximum Deformation for Several Wrench
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Fig. 4.32: The 3-DOF Comparison of Mean Deformation at Several Points
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Fig. 4.33: The 3-DOF Comparison of Mean Deformation for Several Wrench
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Chapter 5

Conclusions

The subject of this thesis was to analyze the manipulator’s stiffness and to compare
the manipulators in the term of their intrinsic stiffness properties. For this thesis,
there are five manipulators under study, which are the RRRRR, the RPRPR, the
3-RRR, the 3-RPR, and the 3-RPR manipulators. Furthermore, stiffness models of
these manipulator were successfully built with Virtual Joint Modeling method. Beside,
the stiffness models of the manipulators were also constructed with RDM6 software
for preliminary validation process. This validation process was done to verify if the
developed stiffness models are correct or not.

Optimization of these five manipulators was conducted to find the optimum manip-
ulator’s parameters that meet two objective functions. In this case of study, the objec-
tive functions that aim to be realized, i.e., to minimize the total mass in motion and
to minimize the compactness of the manipulator. In addition, the manipulators were
also designed under the same specifications, which are the size of regular workspace,
deformation maximum under a certain load, and the passive joint reactions.

Using their optimum design, the manipulators were compared in the term of their
displacements with subject to a given forces and moments. For the 2-DOF manipulator,
the comparison is conducted between the RRRRR and the RPRPR manipulator. The
result of this comparison is the architecture of RPRPR manipulator was stiffer than
the RRRRR manipulator. For the 3-DOF manipulator, the comparison is conducted
among 3-RRR, the 3-RPR, and the 3-RPR manipulators. The result shows that the
3-RRR architecture has the lowest displacements value. This means that in the term

of stiffness the 3-RRR architecture is the best among others.
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