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2 Abbreviations

MRI - Magnetic resonance imaging

CT - Computed Tomography

NURBS - Non Uniform Rational B-Splines

DoF - Degrees of Freedom

FEM - Finite Element Method

BEM - Boundary Element Method

CV - Computer Vision

CoM - Center of Mass

A* - A-Star

PRM - Probabilistic Roadmap Method
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3 Abstract

Manipulation of flexible objects plays an important rule in the industry. Any in-
dustry that involves the use of a deformable object will, at one certain point of
time, require robots to handle these objects. Be it handling of food items in the
food industry, folding or sorting of clothes in the textile industry, or handling of
cables in various industries etc.. every where there arises a need to study how these
objects could be manipulated. So modeling of objects has to be studied, using the
developed model to plan trajectories and motions for a robot to handle this object
has to be studies, vision based control to correctly manipulate the object using the
developed motion planning strategies has to be developed. This master thesis is a
first step into the study of an articulated object and its manipulation.

The modeling of the object is studied which is used to find the equilibrium config-
urations and hence the configuration space of the object. The configuration space
is studied and path planning algorithms are used to generate trajectories from one
equilibrium configuration to another.

The manipulation of the object using two 2R planar robots is studied. For this,
task-priority based control of redundant manipulators is studies and implemented.
Simulations and results are documented.
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4 Introduction

Contents

4.1 Topic of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Organization of the report . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3 Modeling of deformable objects . . . . . . . . . . . . . . . . . . . . . 10
4.4 Manipulation of Deformable objects . . . . . . . . . . . . . . . . . . . 11
4.5 Control Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 Topic of Research

Robots and robotic technologies have been evolving at a fast pace over the past
few decades and there is a wide range of robots specialized for different application
like manipulation, navigation, surveillance, rescue, medical treatment and the list
goes on. Manipulation of real world objects has been an important area of research
for years and robots which can manipulate rigid objects are very common in indus-
tries around the globe. Increased productivity, lowered cost and better precision
is obtained by using robots. But when it comes to manipulation of soft or flexible
objects, the robots are still not capable enough and the technologies which enable
to manipulate a soft object with the dexterity of a human hand is still to be de-
veloped. Because of this inability of perfect manipulation, the research topic of
developing the perfect technology for doing the same has been picking up pace and
is a hot topic for developments at this point of time. Several methods have been
proposed which try to solve this and although many of them succeed in its own way,
they have their own drawback making their application to a wide variety of objects
impossible. Some methods even though provides good results are computationally
expensive while some others have some other constraints.

Deformable objects are found in a wide range of industries like food industry,
garments, packaging, manufacturing, industries involving elastic objects and the list
goes on. Deformable objects are hard to manipulate because of their low stiffness
and they are susceptible to large deformations on application of force. They change
their shape and volume during handling. Thus a static model of the object cannot
be used like in the cases of rigid objects. Model based and model-free methods have
been studied for manipulation of deformable objects. The state of the art will be
detailed in the coming sections.
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4.2 Organization of the report

The rest of the report is organized as follows. In Section 4.3, the general techniques
that are used to model deformable objects are specified. In Section 4.4, the state
of the art in deformable object manipulation is discussed. In Section 5 the object
that is studied is described and elaborated. In Section 6 the modeling of the already
defined object and Lagrange formulations of modeling is elaborated. In Section 7 and
Section 8, the modeling technique is extended to objected with 3 and 4 connected
links respectively. In Section 9 the configuration space of the modeled object is
defined and in section 10 the configuration space is represented as a grid map. In
Section 11, trajectory generation techniques are studied and applied to the object
manipulation. Shortest path algorithms like A-star algorithm and Probabilistic
Roadmap Method is elaborated. In Section 12 the effect on gravity angle to the
equilibrium state of the object is studied. In Section 13 the modeling of robots,
redundant manipulation and application of 2R robots for manipulating the proposed
object is studied. In Section 14 a task-priority approach for redundant manipulators
is studied and results are plotted for different conditions and gains are tuned.
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4.3 Modeling of deformable objects

Deformable objects can be one modeled either in one dimension (lines and curves),
two dimensions (surfaces) or three dimensions (solid objects). These models are used
for different applications such as animations, image segmentation, 3D reconstruction
of bones and organs from MRI or CT scans, haptics, mechanical simulations, surgery
planning etc. [16]

All these applications are diverse and the utilization of one single modeling
method for all these is not appropriate and over the years a variety of methods
have been developed and implemented for the same. The deformable models can be
classified into three categories. Heuristic methods, Continuum-mechanical models,
and hybrid methods which combine both the previous categories.

Figure 1: Different categories of deformable object modeling - Adopted from [16]

The heuristic approaches use straightforward techniques of geometry of the de-
formable objects including their elastic properties. In the beginning these methods
used to model solid objects as hollow shells because most of the applications focused
on deformation on the surface level. This reduced the size to less than a hundredth
of its initial size. But this approximation neglects the conservation of its volume. So
later, methods like spring-mass models were extended to include changes in volume -
linked volume algorithms, tensor-mass model which used tetrahedral elements were
developed.
The continuum-mechanical approaches are more exact but they are far too complex
and computationally costly. This category has methods like Finite Element method
(FEM) which involves a discretization of the entire object and Boundary Element

Page 10



Vyshakh Palli Thazha
Master Thesis

Report

(BEM) approach which maps the calculations of the interior of the object to its
surface, thereby requiring discretization of only the surface.
The hybrid approach divides the object into parts and finds the best possible ap-
proach for each part bases on how this part is interacted with.

4.4 Manipulation of Deformable objects

A successful attempt of manipulating deformable object using indirect positioning
is presented in [23]. They use a crude model of the system and a robust control
system to nullify the inadequacies of the model.

Figure 2: Indirect positioning of deformable objects adopted from [23]

Model is made for two dimensional objects by discretizing into mesh-points and
each mesh point being connected by horizontal, vertical and diagonal springs as
shown in Fig.3. The model describes translation, orientation and deformation of the
object. Position vector of the (i, j)-th mesh point is defined as pi,j = [xi,j, yi,j]

T (i =
0, . . . ,M ; j = 0, . . . N). Coefficients kx, ky, kθ are spring constants of horizontal,
vertical, and diagonal springs. Assuming that no moment is exerted on each mesh
point. Then, the resultant force exerted on mesh point pi,j can be described as
eg.4.1.

Fi,j =
8∑

k=1

F k
i,j = − ∂U

∂pi,j
(4.1)

U denotes whole potential energy of the object. Then, function U can be calculated
by sum of all energies of springs. U can be calculated by:

∂(rm, rn, rp)

∂rm
− λ = 0 (4.2)[

∂(rm,rn,rp)

∂rp
∂(rm,rn,rp)

∂rn

]
= 0 (4.3)
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Vector rm is defined as a vector that consists of coordinate values of the manipulated
points. Vectors rp and rn are also defined for positioned and non-target points in the
similar way. Vector λ denotes a set of forces exerted on the object at the manipulated
points rm by robotic fingers.

Figure 3: Spring model of deformable object [23]

The mesh points pi,j into the following three categories(see Fig 4) in order to
formulate indirect simultaneous positioning:

• Manipulated points: are defined as the points that can be manipulated
directly by robotic fingers.

• Positioned points: are defined as the points that should be positioned indi-
rectly by controlling manipulated points appropriately.

• Non-target points: are defined as the all points except the above two points.

Figure 4: Classification of mesh points adopted from [23]

Page 12



Vyshakh Palli Thazha
Master Thesis

Report

4.5 Control Loop

A relation between positioned points and manipulated points are obtained by lin-
earizing 4.2 about an equilibrium point r0 = [rTm0, r

T
p0, r

T
n0]

T . The following equation
is obtained:

Aδrm +Bδrn + Cδrp = 0 (4.4)

where

A =

[
∂2U

∂rm∂rp
∂2U

∂rm∂rn

]
|r0 ∈ R(2p+2n)×2m (4.5)

B =

[
∂2U

∂rn∂rp
∂2U

∂rn∂rn

]
|r0 ∈ R(2p+2n)×2n (4.6)

C =

[
∂2U
∂rp∂rp
∂2U

∂rp∂rn

]
|r0 ∈ R(2p+2n)×2p (4.7)

Vector δrmis defined as an infinitesimal deviation of the manipulated points from
their equilibrium points. Vectors δrn and δrp are defined in the similar way. 4.4 can
be transformed as

F

[
δrm
δrn

]
= −Cδrp (4.8)

where F= [A B].

Figure 5: Flow of control method adopted from [23]
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An iterative control law is developed based on this linearized equation.

δrm = −SUF−1Cδrp (4.9)

δrn = −SLF−1Cδrp (4.10)

where SU = [Im 0m×n] and SL = [0n×m In]. Let rkm, rkn and rkp be positions of
manipulated points, those of non-target points, and those of positioned points at
k-th iteration, respectively. Replacing the deviations in the previous equation with
these, it becomes:

rk+1
m = rkm − dSUF−1k Ck(r

d
p − rkp) (4.11)

rkn = rk−1n − dSLF−1k−1Ck−1(r
k−1
p − rk−2p ) (4.12)

These equations are used in an iterative control loop using a vision sensor to control
the manipulated points and bring the positioned points to the desired position.

Page 14



Vyshakh Palli Thazha
Master Thesis

Report

5 Object under study

This master thesis will undertake the study of a particular type of object to under-
stand how it behaves, and what can be achieved for manipulating it with a dual arm
robot. Equilibrium configurations, which we will define later, of the object under
different conditions will be studied and the same will be used to generate trajectories
of the manipulation points on the object to conform it to a particular configuration.

The object under study will be an articulated object which has n links of equal
length attached together using revolute joints.

As can be seen from Fig. 8 ln is the length of each link and lc is the distance
of the Center of Mass (CoM) of each link from the end-point of the previous link.
q1 to qn are the angle of orientation of each link of the object till the nth link. The
relative angle between two links of the object is denoted by tr. tr1 denotes the
relative angle between the first and the second link, tr2 denotes the relative angle
between the second and the third link and so on. The angle of gravity with respect
to the object is denoted by psi.

ln

q3

q1

q2

q4

q5

tr1

tr2

tr3

tr4

[xn yn]

X

Y

lc

Psi
gravity

-Y

Figure 6: Object Under Study: Articulated Object
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6 Modeling of the Articulated Object

Contents

6.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.2 Lagrange Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.3 Equilibrium Using Lagrange Multipliers . . . . . . . . . . . . . . . . . 18

6.1 Modeling

Regarding the n-link planar object shown in Fig. 8, θk (k = 1, 2, . . . , k) is defined
to be the angle measured counterclockwise from the positive x-axis. We also define
qk to be the relative angle between links k and k − 1, and link 0 is defined to be
the positive x -axis. For the kth link, let mk, lk and lck be its mass, its length, its
distance from joint k to the center of mass (COM) of the link k respectively.
To express the kinematic and potential energy of the robot, for simplicity of deriva-
tion, we use the following notation [12] related to the lengths of links:

lki =


li, i < k,

lck, i = k,

0, i > k

(6.1)

We express (xk, yk), the coordinate of COM of link k, as

xk =
n∑
i=1

lkicosθi, yk =
n∑
i=1

lkisinθi. (6.2)

Now we know the basic equation for computing the potential energy of a system is
the product of its mass, acceleration due to gravity and and height of the COM in
the direction of gravity. So for our system we use the same expression and substitute
the height using the above found expressions of the COM. If the gravity angle is
zero, the height would be the same as the y coordinate of the COM and we obtain
the potential energy as:

P =
n∑
k=1

mkgyk =
n∑
i=1

(
n∑
k=1

mklkig

)
cosθi (6.3)

Now in a situation where the manipulation of the system leads to changes in po-
sition and orientation of both ends of the object, the gravity vector will not be in
the same direction as that of the y-axis of the previously described reference frame
of the object. This change in the orientation of the object with respect to gravity
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is incorporated into the system using rotation matrix for a rotation of ψ (the grav-
ity angle) about the z axis of the reference frame. The rotation matrix takes the
following form: [

xnew
ynew

]
=

[
cosψ −sinψ
sinψ cosψ

] [
x
y

]
(6.4)

From the above expression, we calculate the new y coordinate as:

ynew = x · sinψ + y · cosψ (6.5)

Now this expression for the new y, which is the height of the system according to
the new gravity angle is used to compute the expression for the potential energy of
the system using the equation as before. The more the number of links the potential
energy is updated accordingly.

6.2 Lagrange Formulation

The Lagrange formulation describes the behavior of a system in terms of work and
energy stored in the system. The Lagrange equations are expressed in the form:

τ =
d

dt

(
∂L

∂q̇

)T
−
(
∂L

∂q

)T
(6.6)

where

• τ is the vector of generalized forces applied on the system, which are equal to
the input joint torques or forces,

• q is the vector of generalized coordinates, which in our case will be the link
angles

• q̇ is the vector of generalized velocities, in our case this will be zero as the
system is under static conditions.

• L is called the Lagrangian

L = K − P (6.7)

K is the total Kinetic energy and P the total Potential energy (due to gravity,
deformations, etc.). Now in our study the system is under static conditions
and the formulation becomes

τ =

(
∂P

∂q

)T
(6.8)
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6.3 Equilibrium Using Lagrange Multipliers

For closed-loop robots, such as parallel robots, to which our system is analogous
to, the expression of kinetic and potential energies can be obtained using all the
joint variables including the active (qa) and the passive joint coordinates (qd). The
variables qa and qd are not independent and are linked to each other using the
geometric equations described in Section 7.

G(qa, qd) = 0 (6.9)

and

A(qa, qd)q̇d +B(qa, qd)q̇a = 0 (6.10)

where A =
[
∂G
∂qd

]
and B =

[
∂G
∂qa

]
are two matrices depending on qa and qd.

Using these, the Lagrange equations can be rewritten using the Lagrange multi-
pliers λ as

τ + BTλ = τa,where, τa =
d

dt

(
∂L

∂q̇a

)T
−
(
∂L

∂qa

)T
(6.11)

ATλ = τd,where, τd =
d

dt

(
∂L

∂q̇d

)T
−
(
∂L

∂q d

)T
(6.12)

These set of equations derived using the Lagrange formulation and the geometry
equations can be solved for all sets of [xn yn] for obtaining the equilibrium angles
and hence the configurations.

7 Study of 3-link object

Contents

7.1 Geometric Model for 4 link object . . . . . . . . . . . . . . . . . . . . 18
7.2 Equilibrium Configurations . . . . . . . . . . . . . . . . . . . . . . . . 19
7.3 Equilibrium of 3-link object using Lagrange Multipliers . . . . . . . . 20

7.1 Geometric Model for 4 link object

To begin with we study an object with 3 links. Studying the geometry of the object,
we obtain two equations linking the link angles θ1, θ2 and θ3 and the end position
of the final link given by xn and yn.

xn− ln · cosθ1 − ln · cosθ2 − ln · cosθ3 = 0 (7.1)

yn− ln · sinθ1 − ln · sinθ2 − ln · sinθ3 = 0 (7.2)
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This is similar to the Direct Geometric model for a 3R(Revolute) planar robot.

7.2 Equilibrium Configurations

From the model of the 3 link object, we obtain θ2 and θ3 in terms of θ1, xn and yn.

θ2 = f(θ1, xn, yn) (7.3)

θ3 = f(θ1, xn, yn) (7.4)

This is done using the solve function in matlab. These expressions for θ2 and θ3
are substituted in the potential energy equation to obtain an equation of potential
energy purely in terms of θ1, xn and yn.
So now we have:

P = f(θ1, xn, yn) (7.5)

P =
3∑

k=1

mkgyk =
3∑
i=1

(
3∑

k=1

mklkig

)
cosθi (7.6)

This modeling for the potential of the object has been validated using simulink
and the error plot is as follows:

Figure 7: Error plot for the potential function

The error is of the order of 10−14 hence validating the potential energy function.
Now, to compute the angles at equilibrium we have to use an equilibrium con-

dition which has to be satisfied. At Static Equilibrium, partial differential of the
potential energy with respect to the link angles should be zero.

Eqn1 =
∂P

∂θ1
= 0 (7.7)
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Now we have an equation that is solved for given value of xn and yn to obtain the
angle of the first link, θ1 at equilibrium at this particular position for the end point
of link 3. This is done using vpasolve function of MATLAB which is a numerical
solver and gives out the values of θ1 which satisfies the equation in a particular
interval. In our case this interval is [0 2π].

Using this value of θ1 and substituting in the expressions for θ2 and θ3 we obtain
all the equilibrium angles for this pair of xn and yn.

7.3 Equilibrium of 3-link object using Lagrange Multipliers

Using the Lagrange multipliers explained in Section 6.3, we obtain the equations of
equilibrium for the 3-link object as:

A =

[
∂G

∂θ2,3

]
(7.8)

B =

[
∂G

∂θ1

]
(7.9)

τ + BTλ = τa,where, τa =

(
∂P

∂θ1

)T
(7.10)

ATλ = τd,where, τd =

[ ∂P
∂θ2
∂P
∂θ3

]
(7.11)

During equilibrium conditions, τ will be zero. So from the above equations, λ is
solved by taking inverse of BT τa. Multiplying the whole equation by determinant
of BT will help avoid problems with finding the solution. After finding λ, it is sub-
stituted in 7.11 to get the equations which will be solved for finding the equilibrium
angles. The equations along with 7.2 will be used for finding the solution of the four
equilibrium angles for different values of [xn yn]

8 Study of 4-link object

Contents
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8.3 Equilibrium of 4-link object using Lagrange Multipliers . . . . . . . . 22
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8.1 Geometric Model for 4 link object

Now we take up the study of an object with 3 links. Studying the geometry of the
object, just like the 3-link object, we obtain two equations linking the link angles
θ1, θ2, θ3 and θ4 and the end position of the final link given by xn and yn.

xn− ln · cosθ1 − ln · cosθ2 − ln · cosθ3 − ln · cosθ4 = 0 (8.1)

yn− ln · sinθ1 − ln · sinθ2 − ln · sinθ3 − ln · sinθ4 = 0 (8.2)

This is similar to the Direct Geometric model for a 4R(Revolute) planar robot.

8.2 Equilibrium Configurations

From the model of the 3 link object, we obtain θ3 and θ4 in terms of θ1, θ2, xn and
yn.

θ3 = f(θ1, θ2, xn, yn) (8.3)

θ4 = f(θ1, θ2, xn, yn) (8.4)

This is done using the solve function in matlab. These expressions for θ3 and θ4
are substituted in the potential energy equation to obtain an equation of potential
energy purely in terms of θ1, θ2, xn and yn.
So now we have:

P = f(θ1, θ2, xn, yn) (8.5)

For a four link object the expression for the potential energy is given by Equation
8.6

P =
4∑

k=1

mkgyk =
4∑
i=1

(
4∑

k=1

mklkig

)
cosθi (8.6)

This modeling for the potential of the object has been validated using simulink
and the error plot is as follows:
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Figure 8: Error plot for the potential function for object with 4 links

The error is of the order of 10−17 hence validating the potential energy function.

Now, to compute the angles at equilibrium we have to use an equilibrium con-
dition which has to be satisfied. At Static Equilibrium, partial differential of the
potential energy with respect to the link angles should be zero.

Eqn1 =
∂P

∂θ1
= 0 (8.7)

Eqn2 =
∂P

∂θ2
= 0 (8.8)

Now we have an equation that is solved for given value of xn and yn to obtain
the angle of the first link, θ1 and the second link θ2 at equilibrium at this particular
position for the end point of link 4. This is done using vpasolve function of MATLAB
which is a numerical solver and gives out the values of θ1 and θ2 which satisfies the
equation in a particular interval. In our case this interval is [0 2π].

Using this value of θ1 and θ2 and substituting in the expressions for θ3 and θ4
we obtain all the equilibrium angles for this pair of xn and yn.

8.3 Equilibrium of 4-link object using Lagrange Multipliers

Using the Lagrange multipliers explained in Section 6.3, we obtain the equations of
equilibrium for the 4-link object as:

A =

[
∂G

∂θ3,4

]
(8.9)

B =

[
∂G

∂θ1,2

]
(8.10)
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τ + BTλ = τa,where, τa =

[ ∂P
∂θ1
∂P
∂θ2

]
(8.11)

ATλ = τd,where, τd =

[ ∂P
∂θ3
∂P
∂θ4

]
(8.12)

During equilibrium conditions, τ will be zero. So from the above equations, λ is
solved by taking inverse of BT τa. Multiplying the whole equation by determinant
of BT will help avoid problems with finding the solution. After finding λ, it is sub-
stituted in 8.12 to get the equations which will be solved for finding the equilibrium
angles. The equations along with 8.2 will be used for finding the solution of the four
equilibrium angles for different values of [xn yn]
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9 Obtaining the Configuration Space of the ob-

ject

Now that the modeling of the object is done and a methodology to find equilibrium
configuration has been elaborated, this model is used to generate the link angles at
equilibrium for all achievable positions for the end-point of the object in Cartesian
space. For a link length of l, the reachable points will be inside a circle of radius
3l. So for each point inside this circle, the corresponding equilibrium link angles are
found and are stored in an array.

Now to represent each configuration we use the relative angles between two
successive links so that the configuration space can be depicted in a two-dimensional
image. Hence,

tr1 = θ1 − θ2 (9.1)

tr2 = θ2 − θ3 (9.2)

where tr1 and tr2 are the two relative angles for the 3R object.
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Figure 9: Configuration space of the object

The configuration space for a four-link object will be a 3 dimensional space
as in Fig ?? and 11. And the configuration space of a five-link object will be a
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4-dimensional space and so on. As the degrees of freedom increases, it becomes
difficult to show graphically the configuration space.

Now to represent each configuration we use the relative angles between successive
links so that the configuration space can be depicted in a three-dimensional image.
Hence,

tr1 = θ1 − θ2 (9.3)

tr2 = θ2 − θ3 (9.4)

tr3 = θ3 − θ4 (9.5)

(9.6)

where tr1 , tr2 and tr3 are the three relative angles for the 4R object.
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Figure 10: Configuration space of a 4 link object
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Figure 11: Configuration space of a 4 link object
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Figure 12: Configuration space of a 4 link object
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10 Configuration Space: Represented as a map

To find a trajectory to move from one configurations of the links to another, we
represent the configuration space of the object in the form of a grid map with
squares representing each pair of relative angles. The squares marked black have
values zero and corresponds to the configurations which are attainable by the object
in equilibrium and the squares marked white have a value of 1 and corresponds to
the configurations which are not attainable by the object in equilibrium. A part of
the big grid map is shown below:

324325326327328329330331332333334335336337338339340341342343

415
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428
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431
432
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434
435

Figure 13: Configuration space represented as a grid map

For a four-link object the same will be a 3D space with black and white cubes.
This method is just to help visualize how the algorithm works.
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11 Trajectory Generation

Contents
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11.3 A* (A-Star) Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 29
11.4 A-Star applied to higher dimension . . . . . . . . . . . . . . . . . . . 31
11.5 Probabilistic Road-map Method (PRM) . . . . . . . . . . . . . . . . 34

11.1 Objective

The objective of this section is to define a methodology for finding a trajectory to be
followed to move from one equilibrium configuration of the object to another one,
enabling a dual arm robot to handle the object just like a human could. Now that
we have defined a grid map for the configurations, the same could be treated as a
path finding problem. The goal will be to move from one square to another in the
grid map. Both corresponding to the initial and final configuration. But because all
squares are not connected to each other, a small change in the concept of moving
between squares will be taken up in the following sections.

11.2 Shortest path Algorithms

Shortest path problems are the ones where one finds a path between two nodes or
vertices in a graph which minimizes the sum of the weight of the path followed.
The most important algorithms for solving this problem are:

• Dijkstra’s algorithm → solves the single-source shortest path problem.

• BellmanFord algorithm → solves the single-source problem if edge weights
may be negative.

• A* search algorithm → solves for single pair shortest path using heuristics
to try to speed up the search.

• FloydWarshall algorithm → solves all pairs shortest paths.

• Johnson’s algorithm → solves all pairs shortest paths, and may be faster
than FloydWarshall on sparse graphs.

• Viterbi algorithm → solves the shortest stochastic path problem with an
additional probabilistic weight on each node.
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11.3 A* (A-Star) Algorithm

A-Star algorithm is a shortest path finding algorithm that finds a locally optimal
path when it is possible. Each state is estimated with the following formula that
encourages the algorithm to select the state with the closest distance to the goal:

F = G+H (11.1)

where:

• F is the estimated cost of the state

• G is the exact distance from the starting state to the current node

• H is the estimated cost from a given node to the goal

H is the heuristic function that is used to approximate distance from the current
location to the goal state. This function is distinct because it is a mere estimation
rather than an exact value. The more accurate the heuristic the better the faster
the goal state is reach and with much more accuracy.

Algorithm 1 Pseudocode for A* algorithm

Put the initial state in the open list

Sb ⇐ initial state

repeat

Put the state Sb in the close list (or mark as explored)

for each reachable state Sr from Sb do

if the reachable state is not yet in the list then

Estimate the cost (F=G+H);

Add the reachable state Sr in the open list

Mark Sb as the previous state of Sr

else if the new estimation (F=G+H) is better than the previous then

update data in the list

end if

end for

Find the best state Sb in the open list

until Sb is the final state

From now on, obstacles will be the squares that represent the unattainable con-
figurations of the object. In our case, instead of moving single square by square
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and checking for obstacles, which would lead to no result, as all the squares are not
connected with each other, we do the search by considering motions from a square
region to another in the grid.
So if there are only obstacles in a given region it is a state that we cannot go to.
And if in a region there is atleast one square which is not an obstacle, that region
corresponds to a state that we can move to.

In every iteration, the algorithm checks the four square regions that it can move
to from the current position and checks if the region is an obstacle and if has already
been checked and is in the list. If the region has attainable configurations in it, it
chooses the closest to the goal and adds it to the list and marks the current state
as the previous state of the reachable state. End the end of the iteration, the best
state is found from the list and is chosen as the current state.

The structure of the list is as follows:

X Y G H F Previous Explored(CloseList)

X and Y are the coordinates of the current state, G, H and F are the A* paramenters
as explained before. Previous is the position of the previous state in the list as a
whole. Explored is either 1 or 0 based on if the state has been explored or not.

5960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109

381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430

Figure 14: Increments of square areas

Finally when the current state is equal to the goal, the trajectory is found by
tracking the path back to the start by using the previous states. The trajectory
generated is shown below:
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Figure 15: Representation of the trajectory
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Figure 16: Representation of the trajectory (Zoomed)

11.4 A-Star applied to higher dimension

The List in the case of a four link object will be as follows:
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X Y Z G H F Previous Explored(CloseList)

The search will be done in three dimensions. So analogous to the algorithm for
the three-link object, we will move in regions but this time not a square, it will be
a cube as it is of three dimensions.
To test the algorithm we adopt two points like in Figure 17 as Start and End
configurations.

Start = [−60− 20− 8]

Goal = [9 17 34]

X: -21
Y: -81
Z: -37

Figure 17: Choosing Start and End Configurations from the Configuration Space

The algorithm outputs the trajectory as an array of the configurations through
which it has to pass through to reach from the starting configuration to the end
configuration.
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tr1 tr2 tr3

9 17 34

3 7 19

-6 7 10

-6 -2 10

-15 -2 1

-15 -11 1

-24 -11 1

-24 -20 1

-33 -20 1

-42 -20 1

-51 -20 1

-60 -20 -8

Table 1: Trajectory in terms of relative angles tr1, tr2 and tr3

The trajectory generated in the configuration space is shown in Figure 18 and
19. This configuration space is for a four-link object under zero gravity angle.
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Figure 18: Trajectory generated for 4-link object shown in blue
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Figure 19: Trajectory generated for 4-link object shown in blue

11.5 Probabilistic Road-map Method (PRM)

For configuration spaces of higher degrees of freedom, it is possible to use another
method called as Probabilistic Roadmap Method. Probabilistic Roadmap planners
solve motion planning problems where the robot’s configuration space, C is of high
degrees and the environment is defined by thousands of such configurations, defining
the free space F . PRM planner builds only an extremely simplified representation
of F, called a probabilistic roadmap. A roadmap is a graph whose nodes are con-
figurations sampled from F according to a suitable probability measure and whose
edges are simple collision-free paths, e.g. straight-line segments, between sampled
configurations. [9].

In most cases, PRM is used for motion planning algorithms for finding collision
free trajectory for a robot. The configuration could be the position of various points
on its body and the free space will be the real world with obstacles. In our case, the
configuration space is formed the relative angles of the articulated object. So if an
object has N links, then the configuration space will be of the dimension N−1. And
we have to find straight line connected paths between two configurations without
crossing the obstacles(which in our case are the unreachable configurations) that are
there in the configuration space.

PRM planners use two probes based on such algorithms to access geometric
information on the configuration space C:

• For any q ∈ C, FreeConf(q) is true if and only if qF , where F is the Free
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Space and C is the configuration space.

• For any pair q, q′ ∈ C, FreePath(q, q′) is true if and only if q and q′ can be
connected with a straight-line path lying entirely in F .

The pseudo-code for the algorithm is given below.

Algorithm 2 Pseudocode for a basic PRM algorithm

if Freepath(q1,q2) is true then

Return path between q1 and q2

end if

Initialize the roadmap R with two nodes, q1 and q2.

repeat

Sample a configuration q from C uniformly at random.

if FreeConf(q) is true then

add q as a new node of R.

end if

for every node v of R such that v 6= q do

if FreePath(q, v) is true then

add (q, v) as a new edge of R.

end if

end for

until q1 and q2 are in the same connected component of R or R contains N + 2

nodes.

if q1 and q2 are in the same connected component of R then

return a path between q1 and q2.

else

return NoPath.

end if
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12 Effect of gravity on Object Configuration

To study the effect of gravity on the object configuration, configuration space cor-
responding to different gravity angles Psi are studied. It can be seen that the con-
figuration space is not the same and that particular configurations can be attained
in certain gravity angles while it cannot be attained in certain others.
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(a) Configuration Space for a gravity angle of
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(b) Configuration Space for a gravity angle of

9π/10
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(c) Configuration Space for a gravity angle of
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Figure 20: Configuration Space for different gravity angles Psi

Below is shown the configuration space for two different gravity angles, Psi =
4pi/10 and Psi = 6pi/10.
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Figure 21: Configuration Space for a gravity angle of 4π/10
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Figure 22: Configuration Space for a gravity angle of 6π/10

Now to understand the effect we zoom in to the same part of the configuration
spaces for both gravity angles. It can be seen that, to move from the configuration
[-150,320] to [-40,200] is not possible in the case when the gravity angle Psi = 6pi/10
but the same is possible when the gravity angle is 4pi/10. The configuration is given
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my [tr1,tr2] where tr1 and tr2 are the relative angles between the successive links of
the object.
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Figure 23: Configuration Space for a gravity angle of 4π/10 (Zoomed)
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Figure 24: Configuration Space for a gravity angle of 6π/10 (Zoomed)
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13 Object manipulation using two 2R-planar robots
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13.1 Objective

Now that the modeling, trajectory generation and study of the equilibrium condi-
tions under different gravity angles have been completed, we try to implement this
manipulation task using two 2R-robots. This will be done by manipulating the two
end-points of the object using the two robot end-effectors. This is co-manipulation
and even though there are four-DoFs for the two control points of the object, ulti-
mately because of two robots manipulating the same object, it becomes 2DoF, i.e;
the relative positioning of the two end-effectors.

13.2 Modeling of 2R planar robots

Direct Geometric Model
The direct geometric model for a 2R planar robot is given as follows. L1 and L2

are the length of the proximal and the distal links of the robot. q1 and q2 are the
joint angles and xn and yn are the end-effector coordinates.

xn = L1 · cos(q1) + L2 · cos(q2) (13.1)

yn = L1 · sin(q1) + L2 · sin(q2) (13.2)

(13.3)

Inverse Kinematic Model
The task space is given by the vector:

X = [xn, yn]T (13.4)

(13.5)

The joint space is given by the vector

q = [q1, q2]
T (13.6)

The relationship between the joint velocities and the task space velocities is given
by

Ẋ = J · q̇ (13.7)
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The jacobian matrix links the joint velocities and the task space.

J =

[
−L1 · sin(q1) −L1 · cos(q1)
L1 · cos(q1) L2 · cos(q2)

]
(13.8)

13.3 Redundant Manipulation

We have two 2R-robots manipulating two end-points of the articulated object. So
we are controlling two degrees of freedom. i.e; the relative position between the two
end-points.

We define the manipulation variables as r and t, the horizontal and vertical
distance between the two manipulation points.

r = L1 · cos(q12) + L2 · cos(q22)− L1 · cos(q11)− L2 · cos(q21) (13.9)

t = L1 · sin(q12) + L2 · sin(q22)− L1 · sin(q11)− L2 · sin(q21) (13.10)

Now that we are controlling two degrees of freedom with a four degrees of freedom
of the robots, (two degrees of freedom each) we have two degrees of freedom that
can be used to achieve more tasks.
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14 Task Priority Approach for Redundant Ma-

nipulators
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14.1 Introduction to Task-priority Concept

Robot manipulators are usually designed to have as many number of freedoms as is
required by the desired task. But in lots of cases, extra joints are given to make it
more dexterous and to add more functionality to the manipulator. They are required
to be more flexible and adaptive like a human arm. When the robot end-effector has
to follow a specific trajectory, avoiding obstacles, having more degrees of freedom
lets it achieve this goal. In [18] a task priority based approach was presented to
utilize the extra DoFs of the robot.

This approach deals with the problem of degeneracy, or the situation of not hav-
ing enough degrees of freedom to complete all tasks at the same time, by assigning
priorities to the task. So that the task with higher priority is ensured to be executed
while the lower priority task is executed as well as possible.

14.2 Inverse Kinematic Solutions with Order of Priority

In this section, the task priority approach [18] is elaborated. We consider the case
with two tasks to be executed by the robot. Various papers exists which detail the

Page 41



Vyshakh Palli Thazha
Master Thesis

Report

approach with more than two tasks. In our study, as we work with two tasks, we
limit the explanation to the task-priority approach for the same.

Considering two sub-tasks defined by the corresponding manipulation variables
T1 ∈ Rm1 and T2 ∈ Rm1 the relationships between the manipulation variable and
the joint-variable q ∈ Rn are expressed as follows:

Ti = fi(q) (i = 1, 2) (14.1)

(14.2)

The differential relationships are given by

Ṫi = Ji(q)q̇ (i = 1, 2) (14.3)

(14.4)

where Ji(q) = ∂fi/∂q ∈ Rmi×n is the Jacobian matrix for the ith manipulation
variable.

The Inverse Kinematic modeling for redundant robots with two tasks is given
by:

q̇ = J+
1 Ṫ1 + (In − J+

1 J1)J
+
2 Ṫ2 (14.5)

where Ṫ1 and Ṫ2 are the manipulation variable velocity for the two tasks, In an
identity matrix of size n, in our case n = 4. J+

1 and J+
2 are the pseudo-inverse of

the non-square Jacobian matrices J1 and J2. A pseudo-inverse matrix of a matrix
Am×n is defined as a matrix A+n×m satisfying all of the following four criteria:

• AA+A = A

• A+AA+ = A+

• (AA+)∗ = AA+

• (A+A)∗ = A+A

where A∗ is the Hermitian transpose and AT is the transpose of matrix A.

14.3 Dexterous Manipulation using two 2R planar robots

We have two 2R planar robots with link lengths L1 = 300mm and L2 = 300mm.
And placed 700mm apart along the x-axis as shown in the figure 25.
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L1

X

Y

r

L1

L2

L2

q12

q12 - q22

q11

q11- q21
t

Figure 25: Dexterous manipulation Setup for 3-link object with two 2R planar

robots

The joint variable q is defined as the vector of the proximal and the distal joints
for both the 2R planar robots.

q =


q11
q21
q12
q22

 (14.6)

L1

X

Y

r

L1

L2

L2

q12

q12 - q22

q11

q11- q21
t

Figure 26: Dexterous manipulation Setup for 4-link object with two 2R planar

robots
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14.4 Definition of First Task

As defined in Section 13.3 we define our first task using the two manipulation variable
r and t

r = L1 · cos(q12) + L2 · cos(q22)− L1 · cos(q11)− L2 · cos(q21) (14.7)

t = L1 · sin(q12) + L2 · sin(q22)− L1 · sin(q11)− L2 · sin(q21) (14.8)

This is the relative positioning of the two end-effectors of the 2R planar robots.
r is the horizontal distance and t is the vertical distance between the end-effectors.

T1 =

[
r
t

]
(14.9)

So now we can define the Jacobian of the first task by partial differential of the
function defining the manipulation variables of the first task.

Ṫ1 = J1 · q̇ (14.10)

J1 =

[
L1 · sin(q11) L2 · sin(q12) −L1 · sin(q12) −L2 · sin(q22)
−L1 · cos(q11) −L2 · cos(q12) L1 · cos(q12) L2 · cos(q22)

]
(14.11)

This task ensured the trajectory to be followed for the manipulation of the
articulated object. Now to ensure the dexterity of the robot we define a second
task. As the first task takes up only 2 DoF (r and t), we have another 2 DoFs left
for ensuring the dexterity. This will be defined by the relative angle between the
two joints of each robot.

14.5 Definition of Second Task

The second task will ensure dexterous manipulation of the object using the two
robots. The parameter that defines the dexterity for a 2R planar robot is the angle
between its two links. So we can define the second task in the Task-Priority control
as follows:

T2 = [q11 − q21 , q21 − q22]T (14.12)

So now we can define the Jacobian of the second task by partial differential of
the function defining the manipulation variables of the second task.

Ṫ1 = J1 · q̇ (14.13)
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J2 =

[
1 −1 0 0
0 0 1 −1

]
(14.14)

Velocity control will be adopted to implement the trajectory following by the pla-
nar robots. The velocity command for the manipulation variable will be calculated
as

Ṫi = Ṫi
0
(t) +Gi · (T 0

i (t)− Ti(t)) (14.15)

where Ṫi is the velocity command for the ith manipulation variable, T 0
i (t) is the

desired trajectory, Ṫi
0
(t) is the derivative of the desired trajectory, and Gi is the

scalar feedback coefficient. The values of Gi are determined experimentally.
For task two, the desired trajectory T 0

2 (t) can be taken as a constant angle.

T 0
2 (t) = [pi/2 − pi/2] (14.16)

The joint velocity command is calculated according to the equation 14.17 as
follows:

q̇ = J+
1 Ṫ1 + (In − J+

1 J1)J
+
2 Ṫ2 (14.17)

14.6 Results and simulation

Below are the results for initial tests run with the proposed task-priority based
control law. The plots show the errors for the manipulation variable and the second
task variables. It is seen that the first task is well met for a certain period of time
and then at the end it shows larger errors. This is due to improper gain tuning.
The gains used are G1 = 3 and G2 = 0.3. Later plots will show a comparison of
different gains and its effect on the performance of the control. However, we can see
that the task-priority control law always tries to complete the higher priority task,
i.e; the first task T1 while trying to come closer to the second task as can be seen
from the error plot for the second task.
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Figure 27: Error Propagation for First Task T1 - G1 = 3; G2 = 0.3
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Figure 28: Error Propagation for Second Task T2- G1 = 3; G2 = 0.3

14.7 Gain Tuning for the two Tasks

We take up the study of the effect of changing gains G1 and G2 on the performance
of the system. We will be testing a trajectory that has been generated using the
previously elaborated methods. The goal is to manipulate the object from an initial
configuration of [-150,320] to a final configuration of [-40,200], where the values rep-
resent the relative angles between the links of the object. The trajectory is obtained
first in terms of the x and y coordinates of both the robot end-effectors. Then this
is transformed to the r and t coordinates representing the relative positioning of
the end-effectors. We have a spline array of values for r and t, which we input to
the task-priority control algorithm and also differentiate to find the manipulation
variable velocity.
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14.7.1 Tuning the gain G1

First we keep G2 constant and change G1. We take four values of G1

G1 =


0.5
1
2
5

 (14.18)

G2 = 0.3 (14.19)

The initial configuration of the robot is:

q =


π/2
0
π/2
3π/2


This leads to an initial T1 as

T1stby =

[
100
0

]
(14.20)

The results for the different values of G1 are shown below. In Fig 28 the errors of
the task 1 T1 implementation is shown when G1 is changed while keeping G2 at a
constant value of 0.3. As can be seen the gain in the range of 0.5 - 1 gives good
performance and is stable till the end of the task execution. Higher values of gain
G1 shows unfavorable behavior by the end of the simulation.
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Figure 29: Error Propagation for first task T1 when gain G1 is changed

Fig 34 shows the error plot for the evolution of the first task T1 when G1 is
changed while keeping G2 at a constant value of 0.3. The plots show similar char-
acteristics but slight changes in the value of the error. But it is notable that the
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behavior of the error in the case of task 2 is such that the control law tries to bring
it closer to the reference values as much as possible.
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Figure 30: Error Propagation for Second task T2 when gain G1 is changed

14.7.2 Tuning the gain G2

Fig 35 shows the error for the first task when G2 is changed and G1 is kept at a
constant value.

G2 =


0.0
0.1
0.3
0.5
0.8

 (14.21)

G1 = 1 (14.22)

As can be seen from 35 change in the gain G2 has very little effect on the execution
of task 1. it almost remains the same. But from the plot for the evolution of task 2
from the figure 36 we can see that as G2 is increased there is considerable decrease
in the error of in task 2.
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Figure 31: Error Propagation for first task T1 when gain G2 is changed
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Figure 32: Error Propagation for Second task T2 when gain G2 is changed

14.8 Effect of standby position of robots on the control

We try the same with another stand-by position for the robot and the results are
shown below:

The initial cofiguration of the robot is:

q =


π/2
π/4
π/2
3π/4


This leads to an initial T1 as

T1stby =

[
275.7359

0

]
(14.23)
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Figure 33: Error Propagation for first task T1 when gain G1 is changed
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Figure 34: Error Propagation for Second task T2 when gain G1 is changed
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Figure 35: Error Propagation for first task T1 when gain G2 is changed
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Figure 36: Error Propagation for Second task T2 when gain G2 is changed

14.9 Adaptive Gain Change for obtaining minimum error

As is observed from figures 29, the performance changes with respect to time and
the values in the spline. This can be overcome by an adaptive gain which changes
according to the error evolution. G1 can change values to obtain the minimum error
possible for executing the task T1. The results with adaptive gain is plotted below.
We can clearly see the better error results for task T1 in Fig.37 and the gain changes
has also been shown in 38
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Figure 37: Error Propagation for First task T1 with adaptive gain G1
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Figure 38: Apdaptive gain G1

As can be seen, the task errors are reduced and uniform and the gain plot shows
that different gains have been adopted for different parts

14.10 Results for task-priority applied to trajectory gener-

ated for 4-link objects

In the figures 39 and 40 the plots show the errors for the tasks T1 and T2 execution
using different gains G1. The plots show similar characteristics like that for a 3 link
object. The task one converges near to zero and due to high gains in the end part,
shows some irregular behavior. Task T2 in the meanwhile shows also similar results
with it coming close to the required value but not completely. But simulations show
that the dexterity is maintained and the robot stays away from singularities.
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Figure 39: Error Propagation for First task T1 for trajectory of 4-link object
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Figure 40: Error Propagation for First task T2 for trajectory of 4-link object

14.11 Adaptive Gain for trajectory of Four link object

In this section, the results with changing gain for trajectory generated for four link
object is shown. The errors show much more uniform behavior now that this type
of gain is used and the results can be seen in 41.
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Figure 41: Error Propagation for First task T1 with adaptive gain G1 - four link

object
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Figure 42: Apdaptive gain G1 for four link object

In Figure 42, the values of gain adopted are plotted with respect to time.
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15 Conclusion and Future Works

A study has been conducted on the modeling of articulated objects, model has been
validated using ADAMS and Simulink. The models has been used to generated equi-
librium configurations of the object under different possible manipulation positions.
Study has been conducted on three and four link objects. These equilibrium config-
urations has been used to build a configuration space. These configuration spaces
has been used to determine trajectory for the manipulation points for achieving
different desired configurations without crossing singularity and without losing sta-
bility. Path planning / motion planning algorithms has been extended to generate
trajectory from the configuration space. A-star and Probabilistic Roadmap meth-
ods has been used for this purpose. The generated trajectory has been implemented
using two 2R planar robots to manipulated the proposed articulated object. Simu-
lations has been successfully been performed and results documented. Redundant
co-manipulation using the two 2R planar robots has been studied using a task-
priority approach has been implemented for achieving the same.

15.1 Future Works

As future work, the following steps could be taken:

• Modeling could be extended to cable type objects and other deformable objects

• Study of dynamics of the object during manipulation could be done so that
we can manipulate the object in a dynamic way

• Implementation of deformable object manipulation using real robots

• Implementing Eye-to-hand visual servoing on the robots for accurate manip-
ulation
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Model-free visually servoed deformation control of elastic objects by robot ma-
nipulators. IEEE Transactions on Robotics and Automation, 29(6):1457–1468,
2013.

[20] Georg Nebehay and Roman Pflugfelder. Clustering of static-adaptive correspon-
dences for deformable object tracking. Computer Vision and Pattern Recogni-
tion, 2015.

[21] Chendeb S. Chirurgie virtuelle: modélisation temps réel des tissus mous, in-
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