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Abstract

The intention of this master thesis was to propose several architectures of 2 degree of freedom
(dof ) parallel manipulators. Furthermore, this thesis aimed to discover 2 dof manipulators
which have planar motion but constructed in a spatial form, called as hybrid manipulator.
These manipulators are very effective for simple tasks, for instance pick-and-place operation.

The type synthesis based upon the screw theory was utilised in this study. This method
afterwards was derived to create 2 dof hybrid manipulators. Some criteria were evaluated,
regarding to the complexity and stiffness of the structures. The stiffness analysis was done
through several methods. The first evaluation was based upon A.C.Rao. The second investiga-
tion was done in CATIA. New stiffness index was introduced by considering the reaction forces
and moments. The selection of manipulators was accomplished by applying the pareto optimal
solution, in which the complexity and stiffness are the objective functions.

Various designs of 2 dof parallel manipulators were generated with 2, 3, and 4 legs. By de-
veloping screw theory method, the 2 dof hybrid manipulators were produced with two identical
legs. The manipulators are assembled either with revolute, prismatic, or parallelogram joints.
The 8 manipulators were selected among 27 manipulators as pareto optimal solution which are
recommended for later design process.

Keywords: type synthesis, parallel manipulators, hybrid manipulators, complexity, stiffness
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Introduction

Context

Engineering is a discipline, mixture of skill and art, which intends to provide society with the

requirements of modern civilization. In order to convert this requirement into a meaningful

plan and satisfactorily functioning device, a design process is potentially needed by which

innovation takes place. The understanding of the design process is important both to manage

the design activity and to aid the improvement of products and the overall of engineering based

companies, it is also the foundation on which a lot of design research is based [13].

A successful design is achieved through the four main stages of the design process, which

comprises correspondingly [10] task definition, conceptual design, embodiment of schemes, and

detailed design. The early conceptual design phase is dominated by the generation of ideas,

which are subsequently evaluated against general requirement criteria. This stage is critical

since the majority of the product cost is committed by the end of conceptual design phase.

However, the information in this stage is thoroughly fuzzy and incomplete, which makes the

design process quite difficult and challenging [24]

The significant development in the use of robots in the manufacturing industry, agriculture,

medicine, military, communication technology, entertainment, education, space exploration,

domestic applications, etc. over the last few decades has triggered highly competitive robot

design, particularly at the conceptual design stage. In the absence of mathematical model

at the conceptual design of robot architecture, the idea is delivered to quantify the quality of

design alternatives by synthesizing available information e.g. type and number of joints, relative

orientation of neighbouring joints, number of loops, and type and diversity of actuators.

The resulting robot designs are expected to accomplish the requirements either a high

accuracy or a good acceleration at once, while these properties are antagonist. Consequently,

numerous robotic researches are focused on improving parallel manipulators. Furthermore,

compared with serial manipulators, properly designed parallel manipulators generally have

higher stiffness and higher accuracy, even though their workspace is usually smaller [17].

The paradigm of parallel manipulators is the Hexapod-type robot, which has six dof, but

recently the machine industry has discovered the potential application of lower-mobility PMs

with only 2,3,4, and 5 dof [12]. Indeed, the operation of this lower-mobility PMs is very effective

when the robot tasks need less than six dof only, for instance pick-and-place operation. They

exhibit interesting features if compared to hexpapods, such as simpler architecture, simpler

control system, high-speed performance, light moving part, low manufacturing and operating

costs.
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The number of kinematic configurations to realize a given motion pattern of lower-mobility

parallel manipulators is complex. As a result, a systematic approach is necessary in order

to determine all feasible types of lower-mobility parallel manipulators, named type synthesis.

This type synthesis approach is based upon the Screw theory. Following this approach, the

evaluation of existing indices is needed thereby allowing the selection of the most promising

design.

Accordingly, this master thesis aims to propose several architectures of lower-mobility par-

allel manipulators at the conceptual design stage. The desired motion pattern of these parallel

manipulators is two translational spatial dof. Some existing indices e.g. complexity and intrin-

sic stiffness, have been suggested in the literature to make a fair comparison and evaluation of

a mechanical architecture. This master thesis is a part of the ARROW (Accurate and Rapid

Robots with large Operational Workspace) project funded by the French Research National

Agency. Two laboratories are involved, the IRCCyN of Nantes and the LIRMM of Montpellier,

with one company Tecnalia located in Motpellier.

Organization of the Thesis Report

This thesis report includes mainly seven chapters. Initially, the first chapter provides the the-

oretical background about parallel manipulators, their general characteristics, and various ex-

isting types. Several type synthesis are mentioned, especially a complete description about the

Screw theory which will be used in this research.

The second chapter reviews the type synthesis of 2 dof parallel manipulators by using

virtual chain approach. The parallel manipulators are assembled either by 2,3, or 4 legs.

The third chapter develops the type synthesis method used in second chapter, to find

new 2 dof Hybrid manipulators with identical legs. These manipulators are built in spatial

configuration but have planar motion.

The fourth chapter examines the complexity performance for both parallel and hybrid

manipulators which are already generated in second and third chapter.

The fifth chapter presents the stiffness evaluation for existing manipulators with CATIA

and stiffness index introduced by [2]. This chapter also introduces some new intrinsic stiffness

indices, based upon the reaction force and moment for each dyad. The correlation analysis

between each stiffness index to CATIA result were accomplished in order to compare and

obtain the most significant index.

The sixth chapter describes a systematic method of the Pareto Optimal Solution. This

method allows the optimization two conflicting objectives, namely complexity and stiffness.

Number of manipulators are enumerated as a pareto set which shows non-dominated solutions.

Eventually, the seventh chapter presents the important points about this thesis report and

addresses number of future works that might be continued deeply regarding to this 2 dof

translational parallel manipulators.



I
Theoretical Background

A manipulator, in general is a mechanical system aims at manipulating objects. Manipulating,

in turn, means to move something with one’s hands, as the word derived from the Latin manus,

meaning hand [4]. A manipulator is generated either in the form of parallel or serial manipu-

lator whereas their application is based on the industrial purposes. The parallel manipulators

particularly become very challenging to be constructed since they have various configuration.

The determination of these numerous types of manipulators is realized by a systematic ap-

proach, namely type synthesis. This fundamental issue hence is the centre of this thesis. In this

chapter, the background of parallel manipulators is provided. The procedure of type synthesis

based upon screw theory is also reviewed.

I.1 Parallel Manipulators

The parallel manipulators have increasingly attracted many attentions and apparently they

are the most frequently robots used in industries, since they have simplest form among others.

Parallel manipulators are fascinating since it commonly employs several short chains, simple,

and can thus be intrinsically more rigid against unwanted movement (compared to the serial

arm).

Figure I.1 – Parallel Kinematic Chain [17]

A parallel manipulator (PM) can be defined as a closed-loop mechanism composed of an

end-effectors having n degree of freedom and a fixed base, linked together by at least two

independent kinematic chains [17], [22], [20] as depicted in Fig. I.1. These kinematic chains are
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called legs (or limbs). It is noteworthy that in parallel manipulators, the number of actuated

joints is the same as the number of dof of the end-effectors and located on or close to the base.

Parallel manipulators for which the number of legs is strictly equal to the number of dof of

the end-effectors [20] are called fully parallel manipulator.

The increasing number of dof of the moving platform according to [20], might illustrate

the classification of parallel manipulators whether they can be a 3, 4, 5, or 6 dof parallel

manipulators. On the other hand, these criteria are quite ambiguous and non exhaustive to

define the type of lower-mobility parallel manipulators. Admittedly, the concept of motion

pattern by specifying the desired motion of the moving platform, is addressed by [17] to classify

the parallel manipulators, for example Schönflies moton. Figures I.2a and I.2b respectively

demonstrate the McGill SMG and the ABB Adept Quatro s650 which have Schöflies motion,

moving in 3 translations and 1 rotation around vertical axis.

(a) McGill SMG (b) ABB Adept Quatro s650

Figure I.2 – Examples of Schönflies Motion Generators

I.1.1 Two Degrees of Freedom Parallel Manipulators

Due to their capabilities to move fast, accurate, and possess higher stiffness, parallel manip-

ulators are preferably to be operated in many industries. Nevertheless, not all application of

parallel manipulators in industries needs 6 dof for instance pick-and-place operation. Even

though pick-and-place is usually constructed by 4 dof : 3 translations and 1 rotation, for simple

task such as transferring an object from conveyor to another working place, 2 dof parallel

manipulator is sufficient.

Several 2 dof parallel manipulators have been created with 2 translational motion around

horizontal axis x and vertical axis z. These existing parallel manipulators were expanded either

in planar or spatial mechanism, which will be described briefly below.

2 DOF Planar Parallel Manipulators

The most leading 2 dof planar parallel manipulators [18] are the five-bar mechanism with

prismatic or revolute actuators. In the case of revolute actuators, the mechanism is composed

of five revolute joints (RRRRR) where two joints fixed to the base are actuated as M1 and M2,

as illustrated in Fig. I.3. The output of mechanism is 2 dof planar motion of a point on the

end-effectors.



I.1 Parallel Manipulators 5

Figure I.3 – Five-Bar 2 dof PM [18] Figure I.4 – 2-RΠR 2 dof PM [18]

Unlike five-bar mechanism, Fig. I.4 shows a different architecture of 2 dof planar mechanism

consists of 2-RΠR (Π denotes a parallelogram with four revolute joints). In this design, two

revolute joints are actuated as M1 and M2 which will generate a translation of rigid body

along the x-axis at the same time a rotation about the x-axis, which is actually an associated

movement.

In several applications, an object should be transmitted with fixed orientation of a rigid

body, while the orientation output in the mechanisms above will change instantly. Thereby,

the design based on a parallelogram can overcome the job. Such a parallel mechanism was

developed by Brogårdh [5], where Π situated between one prismatic drive and its end-effectors,

as performed in Fig. I.5.

Instead of prismatic actuators, the identical mechanism was created by [14], using revolute

actuators and 2 parallelogram concatenations. This design was formally commercialized by

Elau (PacDrive D2) as depicted in Fig. I.6, with modified 1-Π chain and actuation is arranged

by planar closed chain. This parallel manipulator can move [9] with max speed 4 m/s and max

acceleration 18 g.

Figure I.5 – Brogårdh Design [5] Figure I.6 – PacDrive D2 by Elau [9]

Over constrained mechanisms using a parallelogram were also proposed by [15], with 2-PΠ

kinematic chains for machine tool, as demonstrated in Fig. I.7. It consists of a gantry frame,

a moving platform linked into the two actuated prismatic joints by two parallelograms. This

manipulator is over constrained because one parallelogram link and another single link are

enough to possess 2 dof translations. Two parallelograms are employed to increase the stiffness

and make structure symmetric.

Those architectures are similar in the sense that they are planar mechanism, i.e. all elements
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move in plane parallel to each other. Consequently, the stiffness in the direction normal to the

plane cannot be guaranteed to curtail the vibration.

Figure I.7 – 2 dof PM for Machine Tool [18]

2 DOF Spatial Parallel Manipulators

In order to surmount the bending and torsion problems in the direction normal to the motion

plane, a new architecture was built in spatial mechanism by [8], named Par2, which is a

modification of Delta-like robots. This mechanism has four legs as shown in Fig. I.8, which are

arranged in perpendicular plane and make it become spatial but they produce 2 dof planar of

its end-effectors. Two of the legs connect the actuators to the moving platform and are placed

in the same plane. Two other legs are passive and are connected to the frame using coupled

revolute joints. This coupling system assures the functioning of the robot as it restrains the

platform to stay in one plane.

Figure I.8 – Par2 [8]

Two coupled passive legs support almost all the moments and forces besides the driving

forces, therefore all elements of the legs are only subject to tension compression effects. It leads

the robot to be particular lightweight and stiff at the same time, thus Par2 is able to move

with velocity 12.5 m/s and acceleration 40 g.

On the other hand, its architecture is very complex since it has four identical legs which

decrease the workspace. Furthermore, it uses metallic belts to link two passive legs in the base

which potentially produce parasitic effect, that is difficult to identify and reduce the accuracy.
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The other 2 dof spatial parallel manipulator was also designed by [11], namely IRSBot-2 as

illustrated in Fig. I.9. It basically comprises two identical legs, connecting the moving platform

to the base. Each leg is composed of one proximal and one distal module. The proximal module

is created by a planar parallelogram which maintains the plane of the moving platform still

parallel to the plane of the base. The distal module is composed of two non parallel bars

connected to universal joints that restricts the bending effects in the direction normal to the

plane (xOz).

Figure I.9 – IRSBot-2 [11]

I.2 Type Synthesis

In constructing lower-mobility parallel manipulator, the type synthesis is a fundamental issue

since parallel manipulator architectures have wide variety of possible closed-loop mechanisms.

The type synthesis [17] consists in discovering all feasible structures of parallel manipulators,

generating a specified motion pattern of the moving platform. The type synthesis approaches

globally comprises three categories: group theory, linear transformation, and screw theory.

• Group Theory

The enumeration of feasible structures of parallel manipulators having a given number of

dof can be performed [22], [20] by determining all possible sets of displacement subgroups

to which the different kinematic chains that will constitute the legs of the robot may

belong. The set of displacement subgroups will intersect and lead to the desired motion

pattern of parallel manipulators. Displacement group approach allowed the discovery of

plenty of possible architectures. Nonetheless, with this approach it is very difficult to

find all kinematic bonds of legs that include the specified motion pattern of the moving

platform as well as the generators of these kinematic bond of the legs.

• Linear Transformation Theory

This approach is principally based on Chebychev-Grübler-Kutzbach (CGK) formula by

considering a mechanism F corresponds to a linear transformation F from joint velocity

vector space U into external velocity vector space W [12]. The various type of legs cre-

ated by this approach can combine simple or complex kinematic chains with prismatic
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or revolute pairs connected to the fixed base, by taking into account their structural pa-

rameters e.g. general mobility of parallel manipulator. Unfortunately, the solutions for

non-orthogonal intersecting axis might be difficult to be synthesized by this formula.

• Screw Theory

The screw theory is able to generate numerous kinematic chain topologies of parallel

manipulators [22], [20] by discovering the wrench system W that is reciprocal to the

desired velocity twist of the moving platform. Subsequently, determining the wrench of

the kinematic chains of the robot whose union spans the system W . This wrench allows

to synthesize all feasible structures of kinematic chains and assembly it to be a parallel

manipulator with desired motion pattern. Finally, actuated joints are selected to ensure

the performance of a valid parallel manipulator.

I.3 Screw Theory

The screw theory is the most appropriate for the type synthesis of parallel manipulators with

prescribed motion pattern [17], such as 3 dof translational motions, spherical motion, Schön-

flies motion and so on. The inspection of kinematic structures with desired motion pattern [23]

is capable to identify the reciprocal screws associated with kinematic chains and characterize

the wrench (constraint and actuation wrench). Consequently, it leads to the composition of

legs into parallel kinematic chains.

I.3.1 Screw

A spatial displacement of a rigid body can be expressed as a combination of a rotation about a

line and a translation along the same line. This combined motion is called screw displacement.

A unit screw $ is defined by [23]

$ =

[

s

s0 × s + λs

]

=

























S1

S2

S3

S4

S5

S6

























=
(

S1 S2 S3 S4 S5 S6

)T
(I.1)

where:

• s is a unit vector along the axis of the screw $.

• s0 is a position vector of any point on the screw axis with respect to the origin of reference

frame O-XYZ.

• λ is called a pitch.

The pitch λ represents the screws as:

• (λ = 0), $0 =

[

s

r × s

]

≡ (s, r × s), corresponds to zero-pitch screw;
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• (λ = ∞), $∞ =

[

03×1

s

]

≡ (03×1, s), corresponds to infinite-pitch screw;

• (λ 6= 0 and λ 6= ∞), it can be regarded as a linear combination of one $0 and $∞,

corresponds to finite-pitch screw.

Twist

Twist represents an instantaneous motion of a rigid body. The first three components of twist

represent the zero-pitch twist (angular velocity), ξ0, and the last three components represent

the infinite-pitch twist (linear velocity), ξ∞.

Wrench

Wrench represents a system of forces and moments acting on a rigid body. The first three

components of wrench represent the zero-pitch wrench (pure force), ζ0, and the last three

components represent the infinite-pitch wrench (pure moment), ζ∞.

I.3.2 Screw System

A screw system [17] of order n(0 6 n 6 6) comprises all the screw that are linearly dependent

on n, given linearly independent screws. A screw system of order n is also called a n-system.

A set of n linearly independent screw forms a basis of n-system. Commonly, a basis of a n-

system can be chosen in different ways. Several examples of screw system with order 2 and 3

are illustrated in Fig. I.10a and I.10b.

(a) 1$∞ − 1$0−system (b) 2$∞ − 1$0−system

Figure I.10 – Screw System [17]

• 2-system: 1$∞ − 1$0−system is composed of $0 whose axes are parallel and coplanar as

well as $∞ direction is perpendicular to all $0 axes, Fig. I.10a.

• 3-system: 2$∞ − 1$0−system (perpendicular case) is composed of all $0 whose axes are

parallel and all $∞ whose directions are perpendicular to the $0 axes, Fig. I.10b.

Two Zero-pitch Screw with Parallel Axis

Two zero-pitch screw with parallel axes, let $01 =

[

s1

r1 × s1

]

and $02 =

[

s2

r2 × s2

]

, r1 and r2

respectively are the position vectors of a point on the axis $01 and $02, and contains all the
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linear combination of those two foregoing screws. If these two screws are subtracted, the result

will be an infinite-pitch screw [3] as:

$∞12 = $02 − $01 =

[

03×1

(r2 − r1) × s1

]

(I.2)

Unit vector (r2-r1) is directed along a finite line crossing the axes of two screws and (r2-r1)×s1

normal to the plane containing the axes of two screws. Therefore, those 2-screw systems can

be interpreted as, span($01, $02) =span($01, $∞12).

I.3.3 Reciprocal Screw

Due to a twist contains angular and linear velocity, likewise a wrench contains force and moment

acting on a rigid body, respectively they can be written as t=[ωT vT ]T and w=[fT mT ]T . The

virtual work done by this wrench on a twist is:

P = f.v + m.ω (I.3)

Alternatively can be written as:

P =
[

v ω
]

[

f

m

]

=
[

Πt
]T

w (I.4)

where

Π =

[

03×3 I3×3

I3×3 03×3

]

(I.5)

Hence, two screws $=(S1, S2, S3, S4, S5, S6)T is a twist and $r=(Sr1, Sr2, Sr3, Sr4, Sr5, Sr6)T

is a wrench, are said to be reciprocal [23] if the virtual work between a twist and a wrench is

zero, which should satisfy the following condition:

$r ◦ $ = Sr4S1 + Sr5S2 + Sr6S3 + Sr1S4 + Sr2S5 + Sr3S6 = 0 (I.6)

where "◦" denotes the reciprocal product of the two screws.

The reciprocity condition between two screws [17] can be summarized as:

• Two $∞ are always reciprocal to each other.

• Two $0 are reciprocal to each other if and only if their axes are coplanar.

• A $∞ and $0 are reciprocal if and only if their axes are perpendicular to each other.

Screw $ having n-system, thus a unique reciprocal screw system $r of order (6-n) which all

comprises all the screws reciprocal to the original screw system. It can be expressed as $=($r)⊥.

Where ()⊥ defines the reciprocal screw system.
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I.3.4 Twist and Wrench System of Kinematic Chains

The instantaneous relative motion between two links is represented by a screw system, named

twist system T of the kinematic chain. The constraint on one link by another link through the

kinematic chain is represented by reciprocal screw system [17], [3], called wrench system W .

The order of T is t, so that the order of W is w=6-t. The twist system T and wrench system

W are reciprocal to each other: W = T ⊥ and T = W⊥.

The twist system T and wrench system W are respectively composed of zero-pitch twist ξ0

and infinite-pitch twist ξ∞, pure force ζ0 and pure moment ζ∞. A pure force ζ0 constrains the

translation dof of the rigid body along f, while pure moment ζ∞ constrains the rotation dof

about an axis parallel to m, as shown in Eq. I.7 and I.8.

Pure Rotation : ξ0 =

[

s

r × s

]

≡ (s, r×s) Pure Translation : ξ∞ =

[

03×1

s

]

≡ (03×1, s) (I.7)

Cons. Translation : ζ0 =

[

f

r × f

]

≡ (f, r×f) Cons. Rotation : ζ∞ =

[

03×1

m

]

≡ (03×1, m)

(I.8)

Based on the reciprocity condition of screws, relation between twist and wrench can be

demonstrated as follows:

• The axis of a ξ0 is coplanar with the axis of any ζ0.

• The direction of a ξ∞ is perpendicular to the axis of any ζ0.

• The axis of a ξ0 is perpendicular to the direction of any ζ∞.

Serial Kinematic Chains

A serial kinematic chain is composed of f 1 dof joints, whose each joint has a twist and a wrench

system. Admittedly, the twist system T of one serial kinematic chain is the linear combination

of the twist system Tj of all the joints in the serial kinematic chain. While the wrench system

W is the intersection of the wrench system Wj of all the joints, as follows:

T =
f

∑

j=1

Tj , W =
f

⋂

j=1

Wj (I.9)

Consider the PP planar serial kinematic chain as performed in Fig. I.11. The twist system

of this kinematic chain is the linear combination of the twist system both of PP joints, which

forms 2-systems. One basis for this system is composed of a ξ∞1 along the direction of first P

joint and a ξ∞2 along the direction of second P joint. The wrench is the intersection between

the wrench systems of both PP joints. This includes all ζ∞ in any direction, and all ζ0 whoze

axes are perpendicular to the plane containing the direction of PP joints.
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Figure I.11 – Twist and Wrench System of PP Serial Kinematic Chain [17]

Parallel Kinematic Chains

A parallel kinematic chain consists of a set of m serial kinematic chains mounted on a common

base and attached to a common moving platform. Eventually, the twist system of the parallel

kinematic chain is the intersection of the twist system from each serial kinematic chain T i.

Whereas the wrench system for a parallel kinematic chain is the linear combination of the

wrench system from each serial kinematic chain W i, as illustrated below:

T =
m
⋂

i=1

T i , W =
m

∑

i=1

W i (I.10)

Wrench System of Parallel Manipulators

A parallel manipulator possesses a total wrench system Wj of order 6, is the linear combination

of the actuation wrench system Wa and constraint wrench system Wc of a lower-mobility [3],

as follows:

Wj = Wa + Wc (I.11)

Such parallel manipulator is composed of n legs li (i=1,...,n). Each leg li has the twist system

Ti with order t, then its constraint wrench system is the order c=6-t, Wc
i = T ⊥

i . Hence, the

constraint wrench system of parallel manipulator is the linear combination of Wc
i , i=1,...,n.

Wc = Wc
1 + Wc

2 + ... + Wc
n (I.12)

Now consider leg li has (m<t) unactuated joints. As a result, the wrenches which are

reciprocal to all unactuated joint twists of li has order (6-m) of Ui, which necessarily comprises

the (6-t)-system Wc
i . The actuation wrenches of li form (t-m)-system Wa

i including wrenches

that belong to Ui but do not belong to Wc
i . Thus, the order of Wa

i is a=6-c. The actuated

wrench system of parallel manipulator is the linear combination of Wa
i , i=1,...,n.

Wa = Wa
1 + Wa

2 + ... + Wa
n (I.13)

In general configuration, the constraint and actuation wrench systems of a parallel manip-

ulator form a 6-system. It means that by locking the actuators, the moving platform must be

fully constrained, otherwise the parallel manipulator reaches parallel singularity [3].
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I.4 Virtual Chain Approach for Type Synthesis

Type synthesis of parallel manipulators with specified motion pattern can be performed by a

serial virtual chain attached from the base to the moving platform, which is developed from

screw theory above. The concept of virtual chain in type synthesis approach will be presented

in the following.

I.4.1 The Concept of Virtual Chain

A virtual chain [17] associated with the motion pattern is a serial or parallel kinematic chain

whose moving platform has a given prescribed motion pattern. Commonly, a virtual chain is

proposed by a comprehensive wrench system analysis and the simplest possible virtual chain

will be selected.

Let consider a 3 dof translation parallel manipulator with 3ζ∞−system, thus the simplest

virtual chain to realize this motion pattern is composed of three P joints connected serially,

called PPP virtual chain, as demonstrated in Fig I.12.

Figure I.12 – PPP Virtual Chain [17]

Figure I.13 – 3 dof PM with Virtual Chain [17]

When the base and moving platform are connected by three legs arranged in parallel

(Fig. I.13) named parallel kinematic chain, its function should not be affected by the exist-

ing virtual chain. Any of its leg and virtual chain thereby should constitute 3 dof translations.

Likewise, the wrench system of the original parallel kinematic chain must be similar with the

PPP virtual chain in any general configuration.
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Another significant point before executing type synthesis process is to define the type and

number of joints in a leg for desired dof of the moving platform. The mobility of a serial

kinematic chain is equal to the sum of dof of all joints. However, when two end-links are closed

to make a single-loop kinematic chain, number of independent elements is not equal to the

mobility associated with the moving platform. Therefore, the mobility criterion of single-loop

kinematic chain can be formulated as:

f = F + (6 − c) (I.14)

where f is the total number of 1 dof joint, F is the mobility of a single-loop kinematic chain,

and c is the order of wrench system.

I.4.2 Procedure for Type Synthesis

Based upon the described virtual chain above, the systematic procedure now can be pro-

posed for the type synthesis of parallel manipulator, denoted V=PKC (V=virtual chain and

PKC=Parallel Kinematic Chain). The procedure is highlighted as follows:

Step 1: Decomposition of the wrench system of a V=PKC.

Step 2: Type synthesis of legs for PKC

a. Type synthesis of F dof single-loop kinematic chains that involve a virtual chain and

have specified leg-wrench system.

b. Generation type of legs for V=PKC by removing the existing virtual chain from the

F dof single-loop kinematic chain obtained from Step 2a.

Step 3: Assembly of legs for V=PKC

Step 4: Selection of the actuated joints.



II
Type Synthesis of 2 DOF Parallel

Manipulators

There are plenty of motion patterns for which parallel manipulators are able to be synthesized.

The simplest motion pattern of parallel manipulators is 2 dof translations in axes x and z. They

are very valuable in many applications including pick-and-place operation, manufacturing and

others.

In this chapter, the generation of various 2 dof parallel manipulators is presented by using

general approach described in Chapter.I. The procedures of type synthesis of 2 dof parallel

manipulators are performed in four steps in detail. Section II.1 initially performs a virtual chain

model for 2 dof parallel manipulators. Section II.2 commences the type synthesis process by

decomposing the wrench of manipulators. Section II.3 then studies the type synthesis of legs.

Section II.4 presents the assembly process of legs. Section II.5 eventually reviews the selection

of actuated joints for 2dof parallel manipulators.

II.1 Virtual Chain of 2 DOF Parallel Manipulators

The moving platform of a parallel manipulator performing 2 dof is able to provide 2T mo-

tions, with two independent translations in vertical plane (xOz). Such motion pattern can be

described by a simplest virtual chain, namely PP-virtual chain as illustrated in Fig. II.1 and

called as PP=PKC.

In any general configuration, the twist system of 2 dof PP=PKC is 2ξ∞−system, as follows:

T = span(ξ∞1, ξ∞2) (II.1)

When the moving platform and the base are connected by a PP-virtual chain, the function

of PKC is not affected. Both PP-virtual chain and PKC should fulfil the following conditions:

1. Each leg of the PKC and a PP-virtual chain constitute a 2 dof translational single-loop

kinematic chain.

2. The wrench system of the PKC is identical to the wrench system of a PP-virtual chain

in any general configuration.

Admittedly, by satisfying the above conditions, the type synthesis of 2 dof parallel manip-

ulators will be reviewed in detail in the following.
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Figure II.1 – PP-Virtual Chain

II.2 Step 1: Decomposition of the Wrench of PP=PKC

The wrench system of parallel manipulators with 2T motions is also constraint wrench system

Wc. It must be reciprocal to the twist system defined in Eq. II.1, which is 1ζ0 − 3ζ∞−system

containing one zero-pitch wrench (pure force) along y-axis and three infinite-pitch wrenches

(pure moment), illustrated in Fig. II.1. Therefore, Wc can be written as:

Wc = span(ζ0, ζ∞1, ζ∞2, ζ∞3) (II.2)

where ζ0 = (y, r × y) is a translational constraint along y-axis. Such parallel manipulator can

be created by a combination of any leg-wrench system with order ci(0 6 ci 6 4), decomposed

as follows:

• ci = 4 → 1ζ0 − 3ζ∞−system

• ci = 3 → 1ζ0 − 2ζ∞−system, 3ζ∞−system

• ci = 2 → 1ζ0 − 1ζ∞−system, 2ζ∞−system

• ci = 1 → 1ζ0−system, 1ζ∞−system

• ci = 0 → eliminated

Here, ci denotes the order of leg-wrench system of leg i. A leg with wrench order 0 is eliminated

since each leg which will construct a parallel manipulator is intended to apply at least 1-system

wrench. All potential m leg combinations (m=2,3,4) to build 2 dof parallel manipulator are

shown in Table. II.1, II.2, and II.3, equipped with the number of over constraints, △.

Certain combination of leg-wrench system for m=2,3, and 4 in Table. II.1, II.2, and II.3,

cannot produce zero-pitch wrench ζ0 along axis-y in any configuration and highlighted in pink

color. While the blue colors perform the combinations of leg-wrench system which are not able

to generate three independent infinite-pitch wrenches system (3ζ∞−system). Thus, they are

not necessarily to be used in the next process.
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Table II.1 – Combination of Leg-wrench System m=2

m c △
1ζ0 − 3ζ∞ 1ζ0 − 2ζ∞ 3ζ∞ 1ζ0 − 1ζ∞ 2ζ∞ 1ζ0 1ζ∞

c=4 c=3 c=3 c=2 c=2 c=1 c=1

2 4

4 2

3
1 1
1 1

2

1 1
1 1

2
1 1

2

1

1 1
1 1

1 1
1 1

1 1
1 1

0

2
1 1

2
1 1
1 1

1 1
1 1

II.3 Step 2: Type Synthesis of Leg for PP=PKC

In this section, the type synthesis of leg for PP=PKC will be shown in two steps as follows.

II.3.1 Step 2a: Type Synthesis of 2 DOF Single-loop Kinematic Chains

The leg of PP=PKC is considered as a single-loop kinematic chain. The type synthesis of this

leg can be performed initially by generating number of joint in a single-loop kinematic chain

by using mobility equation that involves a PP-virtual chain and having specified leg-wrench

system. Certain notations are introduced to represent the axis of R-joints:

• R denotes a revolute joint with axis parallel z.

• Ŕ and Ř denote a revolute joint whose axis are parallel to other than z.

Therefore, the type synthesis of each single-loop kinematic chain can be demonstrated below.

Cases with a 1ζ0 − 3ζ∞−system

The number of joints that involves a PP-virtual chain and has a 1ζ0 − 3ζ∞−system is:

ci = 4 , f = F + (6 − c) = 2 + (6 − 4) = 4 joints (II.3)

Such a single-loop kinematic chain is composed of one planar translational compositional

unit as depicted in Fig. II.2. The number of R joints is zero since there exist no R joint whose
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Table II.2 – Combination of Leg-wrench System m=3

m c △
1ζ0 − 3ζ∞ 1ζ0 − 2ζ∞ 3ζ∞ 1ζ0 − 1ζ∞ 2ζ∞ 1ζ0 1ζ∞

c=4 c=3 c=3 c=2 c=2 c=1 c=1

3 4

8 3

7
2 1
2 1

6

2 1
2 1
1 2
1 1 1
1 2

5

2 1
2 1
1 1 1
1 1 1
1 1 1
1 1 1

3
2 1
1 2

3

4

1 2
1 1 1
1 2
1 1 1
1 1 1
1 1 1
1 1 1

2 1
2 1

2 1
2 1

1 1 1
1 1 1

3

1 1 1
1 1 1
1 1 1
1 1 1

2 1
2 1

2 1
2 1
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Table II.2 – Continued

m c △
1ζ0 − 3ζ∞ 1ζ0 − 2ζ∞ 3ζ∞ 1ζ0 − 1ζ∞ 2ζ∞ 1ζ0 1ζ∞

c=4 c=3 c=3 c=2 c=2 c=1 c=1

3 4

3

1 1 1
1 1 1
1 2
1 1 1
1 2

1 2
1 1 1
1 2

2

1 2
1 1 1
1 2

1 1 1
1 1 1
1 1 1
1 1 1

1 1 1
1 1 1
1 1 1
1 1 1

3
2 1
1 2

3

1

1 2
1 1 1
1 2

1 2
1 1 1
1 2

2 1
2 1

2 1
2 1

1 1 1
1 1 1

0

1 2
1 1 1
1 2

1 2
1 1 1
1 2
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Table II.3 – Combination of Leg-wrench System m=4

m c △
1ζ0 − 3ζ∞ 1ζ0 − 2ζ∞ 3ζ∞ 1ζ0 − 1ζ∞ 2ζ∞ 1ζ0 1ζ∞

c=4 c=3 c=3 c=2 c=2 c=1 c=1

4 4

12 4

11
3 1
3 1

10

3 1
3 1
2 2
2 1 1
2 2

9

3 1
3 1
2 1 1
2 1 1
2 1 1
2 1 1
1 3
1 2 1
1 1 2
1 3

8

2 1 1
2 1 1
2 1 1
2 1 1
2 2
2 1 1
2 2
1 2 1
1 1 1 1
1 2 1
1 2 1
1 1 1 1
1 2 1

4
3 1
1 3

4

7

2 1 1
2 1 1
2 1 1
2 1 1
1 2 1
1 1 1 1
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Table II.3 – Continued

m c △
1ζ0 − 3ζ∞ 1ζ0 − 2ζ∞ 3ζ∞ 1ζ0 − 1ζ∞ 2ζ∞ 1ζ0 1ζ∞

c=4 c=3 c=3 c=2 c=2 c=1 c=1

4 4

7

1 2 1
1 2 1
1 1 1 1
1 2 1
1 1 2
1 1 1 1
1 1 2
1 1 2
1 1 1 1
1 1 2

3 1
3 1
2 1 1
2 1 1
1 2 1
1 2 1

3 1
3 1

6

2 2
2 1 1
2 2
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 3
1 2 1
1 1 2
1 3

3 1
3 1

3 1
3 1

2 1 1
2 1 1
1 2 1
1 2 1
2 2



22 Type Synthesis of 2 DOF Parallel Manipulators

Table II.3 – Continued

m c △
1ζ0 − 3ζ∞ 1ζ0 − 2ζ∞ 3ζ∞ 1ζ0 − 1ζ∞ 2ζ∞ 1ζ0 1ζ∞

c=4 c=3 c=3 c=2 c=2 c=1 c=1

4 4

6

2 1 1
2 2

2 2
2 1 1
2 2

1 1 2
1 1 1 1
1 1 2

5

1 1 2
1 1 1 1
1 1 2
1 1 2
1 1 1 1
1 1 2
1 2 1
1 2 1
1 1 1 1
1 1 1 1
1 2 1
1 2 1

2 1 1
2 1 1
2 1 1
2 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

2 1 1
2 1 1
2 1 1
2 1 1

1 3
1 2 1
1 1 2
1 3

1 3
1 2 1
1 1 2
1 3

4
1 1 2
1 1 1 1
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Table II.3 – Continued

m c △
1ζ0 − 3ζ∞ 1ζ0 − 2ζ∞ 3ζ∞ 1ζ0 − 1ζ∞ 2ζ∞ 1ζ0 1ζ∞

c=4 c=3 c=3 c=2 c=2 c=1 c=1

4 4

4

1 1 2
1 1 2
1 1 1 1
1 1 2

2 2
2 1 1
2 2
1 1 2
1 1 1 1
1 1 2

2 2
2 1 1
2 2

1 2 1
1 2 1
1 1 1 1
1 1 1 1
1 2 1
1 2 1

1 2 1
1 2 1
1 1 1 1
1 1 1 1
1 2 1
1 2 1

4
3 1
2 2
1 3

4

3

1 3
1 2 1
1 1 2
1 3

1 1 2
1 1 1 1
1 1 2
1 1 2
1 1 1 1
1 1 2

1 1 2
1 1 1 1
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Table II.3 – Continued

m c △
1ζ0 − 3ζ∞ 1ζ0 − 2ζ∞ 3ζ∞ 1ζ0 − 1ζ∞ 2ζ∞ 1ζ0 1ζ∞

c=4 c=3 c=3 c=2 c=2 c=1 c=1

4 4

3

1 1 2
1 1 2
1 1 1 1
1 1 2

3 1
3 1
2 1 1
2 1 1
1 2 1
1 2 1

3 1
3 1

2

1 3
1 2 1
1 1 2
1 3

1 3
1 2 1
1 1 2
1 3

2 2
2 1 1
2 2

2 2
2 1 1
2 2

1 1 2
1 1 1 1
1 1 2

1

1 3
1 2 1
1 1 2
1 3

1 3
1 2 1
1 1 2
1 3

0

4
3 1
2 2
1 3

4
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axis is perpendicular to the three ζ∞ directions. All the directions of P joints are parallel to a

plane which is perpendicular to the axis of ζ0.

The single-loop kinematic chains in which the twist of all joints but the virtual chain are

linearly dependent must then be discarded. However, the twist of a single-loop kinematic chain

from Fig. II.2 is not dependent and will not be discarded.

Figure II.2 – Single-loop Kinematic Chain 2 dof, ci = 4: PPV KC

Cases with a 1ζ0 − 2ζ∞−system

The number of joints that involves a PP-virtual chain and has a 1ζ0 − 2ζ∞−system is:

ci = 3 , f = F + (6 − c) = 2 + (6 − 3) = 5 joints (II.4)

Such a single-loop kinematic chain with 1ζ0 − 2ζ∞−system consists of two cases: perpen-

dicular case and general case. In perpendicular case, all the axes of R joints are parallel to the

axis of ζ0 and all the directions of P joint are perpendicular to the axis of ζ0, as performed in

Fig. II.3. The single-loop kinematic chains in which the twists of all joints but the virtual chain

are linearly dependent must then be discarded. However, the twists of single-loop kinematic

chains from Fig. II.3 are not dependent.

PPRV KC performed in Fig. II.3c, has an inactive joint which cannot be moved due to the

constraint induced by other joints in the chain. The order of the wrench system of this chain

is c = 3, therefore the mobility is:

c = 3 , f = 5 joints , F = f − (6 − c) = 5 − (6 − 3) = 2 dof (II.5)

When R joint is blocked, we obtain PPV KC and the order of the wrench system becomes

c′ = 4. It occurs due to the infinite-pitch wrench emerges directed along z-axis and increases

the order of the wrench system becomes 1ζ0 − 3ζ∞−system. The mobility of this chain when

R joint is removed remains unchanged as follows:

c = 4 , f = 4 joints , F = f − (6 − c) = 4 − (6 − 4) = 2 dof (II.6)

It shows that R joint is an inactive joint in the PPRV KC. Admittedly, this chain is not

important to be used since R joint cannot be moved when assembled in the manipulators.
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(a) RRRV KC (b) PRRV KC

(c) PPRV KC

Figure II.3 – Single-loop Kinematic Chain 2 dof, ci = 3 (Perpendicular Case)

The second case is a general case, where all the axes of R joints are perpendicular to the

directions of ζ∞ and coplanar with the axis of ζ0. All the directions of P joints are parallel to

a plane which is perpendicular to the axis ζ0, shown in Fig. II.4. The single-loop kinematic

chains in which the twists of all joints but the virtual chain are linearly dependent must the be

discarded. However, the twists of single-loop kinematic chains from Fig. II.4 are not dependent.

PRRV KC illustrated in Fig. II.4a is non-invariant leg-wrench system since zero-pitch

wrench ζ0 always change with the change of manipulator configuration. In other words, ζ0

is not always along z-axis when the chain moves. Hence, this chain is not necessarily to be used

in assembly process.

(a) PRRV KC (b) PPRV KC

Figure II.4 – Single-loop Kinematic Chain 2 dof, ci = 3 (General Case)

Similar case with PPRV KC in Fig. II.3c, R joint in PPRV KC shown in Fig. II.4b is an
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inactive joint. As described in Eq. II.5 and II.6, the mobility of the chain when R joint is

blocked, remains the same. Therefore, this chain is insufficient enough to be employed in the

manipulators.

Cases with a 3ζ∞−system

The number of joints that involves a PP-virtual chain and has a 3ζ∞−system is:

ci = 3 , f = F + (6 − c) = 2 + (6 − 3) = 5 joints (II.7)

This single-loop kinematic chain is formed by one spatial translational compositional unit.

The number of R joint in the chain is zero since there exist no R joint whose axis is perpendicular

to the three ζ∞ directions which are not parallel to one plane, Fig. II.5.

The single-loop kinematic chains in which the twists of all joints but the virtual chain are

linearly dependent must then be discarded. However, the twist of a single-loop kinematic chain

from Fig. II.5 is not dependent.

P joint in PPPV KC as depicted in Fig. II.5 is an inactive joint, which cannot be moved due

to the constraint induced by other joints. When this P joint is removed, the mobility remains

unchanged, 2 dof. Thus, this chain is considered as unimportant chain to be employed to build

a manipulator.

Figure II.5 – Single-loop Kinematic Chain 2 dof, ci = 3: PPPV KC

Cases with a 1ζ0 − 1ζ∞−system

The number of joints that involves a PP-virtual chain and has a 1ζ0 − 1ζ∞−system is:

ci = 2 , f = F + (6 − c) = 2 + (6 − 2) = 6 joints (II.8)

Such a single-loop kinematic chain can be composed of R joints whose all axes are coplanar

with the axis of ζ0 and parallel to a plane which is perpendicular to the direction of ζ∞.

The directions of P joint are parallel to a plane which is perpendicular to the axis of ζ0 as

demonstrated in Fig. II.6.

The single-loop kinematic chains in which the twists of all joints but the virtual chain are

linearly dependent must then be discarded. However, the twist of all single-loop kinematic

chains in Fig. II.6 are not dependent.
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The RRRŔV KC (Fig. II.6a), PRRŔV KC (Fig. II.6c), PRŔŔV KC (Fig. II.6d), and PPRŔV

KC (Fig. II.6e) have an inactive joint. While RRŔŔV KC (Fig. II.6b) is non-invariant leg-

wrench system because zero-pitch wrench ζ0 is not always directed along z-axis when the chain

moves. Therefore, those chains are inadequate to assembly a manipulator.

(a) RRRŔV KC (b) RRŔŔV KC

(c) PRRŔV KC (d) PRŔŔV KC

(e) PPRŔV KC

Figure II.6 – Single-loop Kinematic Chain 2 dof, ci = 2

Cases with a 2ζ∞−system

The number of joints that involves a PP-virtual chain and has a 2ζ∞−system is:

ci = 2 , f = F + (6 − c) = 2 + (6 − 2) = 6 joints (II.9)

This single-loop kinematic chain is formed by one parallelaxis compositional unit where all

the axes of R joints are parallel to a line which is perpendicular to the direction of ζ∞. There

exist P joint whose directions are not perpendicular to the axis of R joint, Fig. II.7.
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The single-loop kinematic chains in which the twists of all joints but the virtual chain are

linearly dependent must then be discarded. The RRRRV KC in Fig. II.7a should be discarded

since the twist of all four R joints are linearly dependent.

Both PPRRV KC and PPPRV KC (respectively shown in Fig. II.7c and II.7d) have an

inactive joint which cannot be moved due to the constraints induced by other joints.

(a) RRRRV KC (b) PRRRV KC

(c) PPRRV KC (d) PPPRV KC

Figure II.7 – Single-loop Kinematic Chain 2 dof, ci = 2

Cases with a 1ζ∞−system

The number of joints that involves a PP-virtual chain and has a 1ζ∞−system is:

ci = 1 , f = F + (6 − c) = 2 + (6 − 1) = 7 joints (II.10)

Such a single-loop kinematic chain can be composed of R joints whose all axes are parallel

to a plane which is perpendicular to the direction of ζ∞. There exist P joints whose directions

are not perpendicular to the axis of R joint as illustrated in Fig. II.8.

The single-loop kinematic chains in which the twists of all joints but the virtual chain are

linearly dependent must then be discarded. The RRRRŔV KC (Fig. II.8a) and RŔŔŔŔV KC

(Fig. II.8d) should be discarded since the twist of all four R joints are linearly dependent.

The single-loop kinematic chains that have inactive joints are PRRRŔV KC (Fig. II.8e),

PRŔŔŔV KC (Fig. II.8f), PPRRŔV KC (Fig. II.8h), PPRŔŔV KC (Fig. II.8i), and PPPRŔV

KC (Fig. II.8j).
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(a) RRRRŔV KC (b) RRRŔŔV KC

(c) RRŔŔŔV KC (d) RRRRŔV KC

(e) PRRRŔV KC (f) PRŔŔŔV KC

(g) PRRŔŔV KC (h) PPRRŔV KC

Figure II.8 – Single-loop Kinematic Chain 2 dof, ci = 1
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(i) PPRŔŔV KC (j) PPPRŔV KC

Figure II.8 – (Continued) Single-loop Kinematic Chain 2 dof, ci = 1

Cases with a 1ζ0−system

The number of joints that involves a PP-virtual chain and has a 1ζ0−system is:

ci = 1 , f = F + (6 − c) = 2 + (6 − 1) = 7 joints (II.11)

Such single-loop kinematic chain can be composed of R joints whose axes are coplanar with

the axis of ζ0. All P joints are parallel to a plane which is perpendicular to the axis of ζ0,

Fig. II.9.

(a) RRRŔŘV KC (b) RRŔŔŘV KC

(c) RRŔŘŘV KC (d) RŔŔŘŘV KC

Figure II.9 – Single-loop Kinematic Chain 2 dof, ci = 1
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(e) PRRŔŘV KC (f) PRŔŔŘV KC

(g) PRŔŘŘV KC (h) PPRŔŘV KC

Figure II.9 – (Continued) Single-loop Kinematic Chain 2 dof, ci = 1

The single-loop kinematic chains in which the twist of all joints but the virtual chain are

linearly dependent must then be discarded. However, the twists of all single-loop kinematic

chains in Fig. II.9 are not dependent.

All the single-loop kinematic chains with 1ζ0−system as performed in Fig. II.9, have an

inactive joint. Consequently, all these type of chains are not satisfactorily to be installed as a

parallel manipulator.

II.3.2 Step 2b: Generation of Type of Legs

All the type of legs can be obtained from single-loop kinematic chains developed in Section

II.3.1, by removing the PP-virtual chain. For instance, by removing the virtual chain in RRRV

KC (Fig. II.3a), a RRR leg can be obtained in Fig. II.10. RRR leg shows the axes of all three

R joints are parallel and directed along y-axis in order to produce ζ0 which is also along z-axis.

The directions of two ζ∞ are perpendicular to all R joints. This leg has 1ζ0 − 2ζ∞−system.

All the type of legs for PP=PKC are listed in Table. II.4, provided with the information

of inactive joint and non-invariant leg wrench system. The leg with inactive joint should not

be used since the inactive joint cannot be moved in a kinematic chain when assembled to be a

parallel manipulator. Consequently, this joint is useless and moreover it increases the product

cost.

In the same manner, the leg which is a non-invariant leg wrench system must be avoided

due to the wrench system always varies with the change of configuration. The degeneracy of

the wrench system in a parallel manipulator is referred as a constraint singularity.
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Figure II.10 – RRR leg

Table II.4 – Type of Legs for 2 dof PM

c dof Wrench type
Motion
Pattern

Class Type Note

4 2 1ζ0 − 3ζ∞ 2T 2P Permutation PP

3 3

1ζ0 − 2ζ∞

(Perpendicular
Case)

2T-1R
3R Permutation RRR

2R-1P Permutation PRR
1R-2P Permutation PPR R inactive joint

1ζ0 − 2ζ∞

(General Case)
2T-1R

2R-1P Permutation PRR Non-invariant
1R-2P Permutation PPR R inactive joint

3ζ∞ 3T 3P Permutation PPP P inactive joint

2 4

1ζ0 − 1ζ∞ 2T-2R

4R
Permutation RRRŔ Ŕ inactive joint
Permutation RRŔŔ Non-invariant

3R-1P
Permutation PRRŔ Ŕ inactive joint
Permutation PRŔŔ R inactive joint

2R-2P Permutation PPRŔ R,Ŕ inactive joints

2ζ∞ 3T-1R
3R-1P Permutation PRRR
2R-2P Permutation PPRR R inactive joint
1R-3P Permutation PPPR P,R inactive joints

1 5

1ζ∞ 3T-2R

5R
Permutation RRRŔŔ
Permutation RRŔŔŔ

4R-1P
Permutation PRRRŔ Ŕ inactive joint
Permutation PRRŔŔ
Permutation PRŔŔŔ R inactive joint

3R-2P
Permutation PPRRŔ Ŕ inactive joint
Permutation PPRŔŔ R inactive joint

2R-3P Permutation PPPRŔ R,Ŕ inactive joints

1ζ∞ 2T-3R

5R

Permutation RRRŔŘ Ŕ,Ř inactive joints
Permutation RRŔŔŘ Ř inactive joint
Permutation RŔŔŘŘ R inactive joint
Permutation RRŔŘŘ Ŕ inactive joint

4R-1P
Permutation PRRŔŘ Ŕ,Ř inactive joints
Permutation PRŔŔŘ R,Ř inactive joints
Permutation PRŔŘŘ R,Ŕ inactive joints

3R-2P Permutation PPRŔŘ R,Ŕ,Ř inactive joints
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Undoubtedly, there are limited type of legs, which are adequate (free of inactive joint and

free of invariant leg-wrench system) to build a parallel manipulator with 2 dof translational

motions, as mentioned in Table. II.5. Only these type of legs which will be employed in the

next assembly process.

Table II.5 – Invariant Type of Legs and Free of Inactive Joint for 2 dof PM

c dof Wrench type Motion Pattern Class Type
4 2 1ζ0 − 3ζ∞ 2T 2P Permutation PP

3 3 1ζ0 − 2ζ∞ (Perpendicular Case) 2T-1R
3R Permutation RRR

2R-1P Permutation PRR
2 4 2ζ∞ 3T-1R 3R-1P Permutation PRRR

1 5 1ζ∞ 3T-2R
5R

Permutation RRRŔŔ
Permutation RRŔŔŔ

4R-1P Permutation PRRŔŔ

II.4 Step 3: Assembly of Legs

The assembly process of 2 dof parallel manipulators is presented in this section, based upon the

generation type of leg obtained from previous section. The assembly of legs will be performed

in two steps, namely, assembly of legs by R and P joints only and assembly of legs by including

parallelogram joints.

II.4.1 Step 3a: Assembly of Legs with R and P Joints

PP=PKC can be produced by assembling a set of legs form Table. II.5 according to the combi-

nations of the leg-wrench system obtained in Table. II.1, II.2, II.3. In assembling PP=PKC,

the following conditions should be satisfied: the linear combination of the leg-wrench system

constitutes 1ζ0 − 3ζ∞−system.

The 2 dof parallel kinematic chains will be generated from 2, 3, and 4 legs which produce

respectively 15 manipulators with 2 legs, 60 manipulators with 3 legs, and 167 manipulators

with 4 legs. Several manipulators are created and shown as follows:

Cases 2 Legs

The first design of parallel manipulators are assembled by two leg, in which the type of legs

are taken from Table. II.5 according to the combinations of leg-wrench system in Table. II.1,

as follows:

1. 2-PP

Such parallel kinematic chain is composed of two identical PP legs as depicted in Fig. II.11.

2. PP-RRR

This parallel kinematic chain is assembled by two different legs consists of PP leg and

RRR leg, Fig. II.12.



II.4 Step 3: Assembly of Legs 35

3. RPR-PRRR

The 2 dof parallel kinematic chain can be composed of two different legs, RPR leg and

PRRR leg as performed in Fig. II.13.

4. RRR-URU

Such 2 dof parallel kinematic chain is composed of two different legs, RRR leg and URU

leg as illustrated in Fig. II.14.

Figure II.11 – 2-PP Figure II.12 – PP-RRR

Figure II.13 – RPR-PRRR Figure II.14 – RRR-URU

Cases 3 Legs

The 2 dof parallel manipulators can also be arranged by 3 different legs. Based upon the

combinations of leg-wrench system in Table. II.2, a set of leg in Table. II.5 can be assembled

as follows:

1. 2-RPR-URU

Parallel kinematic chain having 2 dof can be constructed by three legs, two identical RPR

legs and one another URU leg, as performed in Fig. II.15.
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2. 2-UPU-RRR

Two dof parallel kinematic chain having three legs is assembled by two identical UPU

legs and one RRR leg, as depicted in Fig. II.16.

3. 2-PRRR-RRR

This parallel kinematic chain is arranged by three legs, consists of two PRRR legs and

one RRR leg as demonstrated in Fig II.17.

Figure II.15 – 2-RPR-URU Figure II.16 – 2-UPU-RRR

Figure II.17 – 2-PRRR-RRR

Cases 4 Legs

The parallel manipulators that have 2 dof translational motions can be constructed by fours

legs. By following the combination of leg-wrench system in Table. II.3, such manipulators can

be built from a set of leg in Table. II.5, as follows:

1. 2-PRRR-2-RRR

This parallel kinematic chain can be built of four legs, two identical PRRR legs and

another two identical RRR legs, as performed in Fig. II.18.
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2. 2-UPU-2-RPR

Such 2 dof parallel kinematic chain is assembled by four legs, consists of two identical

UPU legs and another two identical RPR legs, as illustrated in Fig. II.19.

Figure II.18 – 2-PRRR-2-RRR

Figure II.19 – 2-UPU-2-RPR

II.4.2 Step 3b: Assembly of Legs with Parallelogram

A planar four-bar parallelogram which is connected by revolute joints used to replace a pris-

matic joint in a kinematic chain. Such a parallelogram is able to produce one translation in

planar, higher stiffness, and moreover a parallelogram allows the moving platform to remain

at a fixed orientation with respect to the base. Based upon this idea, the type of legs from

Table. II.5 now being modified with parallelogram (denoted by Π) and performed in Table. II.6.

Therefore, the 2 dof parallel mechanisms designed previously will be elaborated deeply by

employing a planar four-bar parallelogram in each leg. It is generated from 2, 3, and 4 legs

which eventually creates 24 manipulators with 2 legs, 160 manipulators with 3 legs, and 624

manipulators with 4 legs, as follows:
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Table II.6 – Type of Legs with Parallelogram

c dof Wrench type Type Type with Π
4 2 1ζ0 − 3ζ∞ Permutation PP Permutation ΠΠ

3 3 1ζ0 − 2ζ∞(Perpendicular Case)
Permutation RRR

Permutation ΠRR
Permutation PRR

2 4 2ζ∞ Permutation PRRR Permutation ΠRRR

1 5 1ζ∞

Permutation RRRŔŔ
Permutation ΠRRŔŔPermutation RRŔŔŔ

Permutation PRRŔŔ

Cases 2 Legs

The simplest design of parallel manipulators with Π joint is constructed by two legs. According

to the combinations of leg-wrench system in Table. II.1, the type of legs obtained in Table. II.6

can be assembled as follows:

1. 2-ΠΠ

Such 2 dof parallel kinematic chain is developed from 2-PP mechanism. The P joint

is replaced by parallelogram, Π. This parallel mechanism has two identical ΠΠ legs, as

illustrated in Fig. II.20.

2. ΠΠ-RRR

This parallel kinematic chain is assembled by two different legs consists of ΠΠ leg and

RRR leg, as shown in Fig. II.21.

3. ΠRR-RΠRR

The 2 dof parallel kinematic chain can be composed of two different legs, ΠRR leg and

RΠRR leg as performed in Fig. II.22.

Figure II.20 – 2-ΠΠ Figure II.21 – ΠΠ-RRR
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Figure II.22 – ΠRR-RΠRR

Cases 3 Legs

The other forms of parallel manipulators are created by three legs with parallelogram. By

following the combination of leg-wrench system defined in Table. II.1, various type of legs in

Table. II.6 can be constructed as follows:

1. 2-ΠUU-ΠRR

This parallel kinematic chain is generated by three legs, consists of two symmetrical ΠUU

legs and one ΠRR leg as demonstrated in Fig. II.23.

2. 2-ΠRR-RΠRR

Parallel kinematic chain having 2 dof can be realized by three legs, two identical ΠRR

legs and one another RΠRR leg, as performed in Fig. II.24.

Figure II.23 – 2-ΠUU-ΠRR Figure II.24 – 2-ΠRR-RΠRR
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Cases 4 Legs

The 2 dof parallel manipulators can be constructed by four legs with parallelogram joint. By

following the combination of leg-wrench system described in Table. II.3, such manipulators can

be formed from several type of legs in Table. II.6, as follows:

1. 2-RRR-2-RΠRR

Such 2 dof parallel kinematic chain is assembled by four legs, consists of two identical

RRR legs and another two identical RΠRR legs, as shown in Fig. II.25.

2. 2-ΠRR-2-ΠUU

This parallel kinematic chain can be built of four legs, two identical ΠRR legs and another

two identical ΠUU legs, as performed in Fig. II.26.

Figure II.25 – 2-RRR-2-RΠRR Figure II.26 – 2-ΠRR-2-ΠUU

II.5 Step 4: Selection of the Actuated Joint

In the selection of an actuated joint, some criteria are suggested in order to optimize the

performance of a parallel manipulator, such as:

• The actuated joint should be distributed among all the legs as evenly as possible.

• The actuated joint should preferably be on the base or close to the base.

• No unactuated P joint should exist.

The selection of actuated joint should satisfy the validity condition for actuated joint of

a parallel manipulator. The validity condition is created initially by defining the actuation

wrench system acting on the kinematic chain in this manner.
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II.5.1 Actuation Wrench System

The actuation wrench does not depend upon the arrangement of all joints but upon the actu-

ated joints. If the actuated joint is locked, the leg will be fully-constrained. Then the wrench

system reciprocal to other joints will contain Wc plus a set of some additional wrenches. The

corresponding actuation wrench can be selected as one of these additional wrenches.

Table. II.7 characterizes the type of an actuated joint and the actuation wrench acting on

each leg obtained from Table. II.5 and II.6.

II.5.2 Validity Condition of the Actuation Wrench System

Let assume that the condition of constraint wrench system is satisfied, namely, the assembly of

legs apply 1ζ0 − 3ζ∞−system. In general configuration, a set of constraint wrench system Wc

together with actuation wrench system Wa constitutes a 6-system. Admittedly, the validity

condition of the actuation wrench system for 2 dof translational parallel manipulators can be

stated in the following:

1. A basis of the actuation wrench system Wa should contain at leas two actuation forces.

Proof: Let consider a basis of a Wa contains one actuation force and one actuation

moment. Thus, the linear combination of Wc + Wa = span(ζ0a, ζ0c, ζ∞a, ζ∞c1, ζ∞c2, ζ∞c3).

Because dim(span(ζ∞a, ζ∞c1, ζ∞c2, ζ∞c3)) 6 3, the dimension of Wc + Wa will be lower

than or equal to 5 in any robot configuration.

2. If a basis of actuation wrench system Wa contains two actuation forces, none of them

can be parallel to each other.

Proof: If ζ0a1 and ζ0a2 are parallel, then span(ζ0a1, ζ0a2) is equivalent to span(ζ0a1, ζ∞a12).

Accordingly, a basis of Wa only contains one actuation force and hence, condition 1 is

not fulfilled.

3. If a basis of actuation wrench system Wa contains two actuation forces, only one of them

can be coplanar to the constraint forces.

Proof: Let assume both ζ0a1 and ζ0a2 are coplanar to ζ0c, then dim(span(ζ0a1, ζ0a2, ζ0c))

6 2. Eventually, the dimension of Wc + Wa will be lower than or equal to 5 in any robot

configuration.

4. If a basis of actuation wrench system Wa contains two actuations forces, none of them

can be parallel to the constraint force.

Proof: Let assume both ζ0a1 and ζ0a2 are parallel to ζ0c, then dim(span(ζ0a1, ζ0a2, ζ0c))

6 1. Therefore, the dimension of Wc + Wa will be lower than or equal to 4 in any robot

configuration.
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Table II.7 – Actuation Wrench of Leg for 2 dof PM

c dof Type
Actuated

Joint
Actuation wrench

4 2
Permutation PP P A force orthogonal to the direction of an unactuated

P joint and lies on a plane (xOz).
Permutation ΠΠ Π A force orthogonal to the twist of an unactuated Π

joint and lies on a plane (xOz).

3 3

Permutation RRR R A force orthogonal to y and lies on a plane
containing the axes of the two unactuated R joints.

Permutation PRR
P A force orthogonal to y and lies on a plane

containing the axes of the two R joints.
R A force orthogonal to the direction of P joint and

intersects the axis of an unactuated R joint.

Permutation ΠRR
Π A force orthogonal to y and lies on a plane

containing the axes of the two unactuated R joints.
R A force orthogonal to the twist of Π joint and

intersects the axis of an unactuated R joint.

2 4
Permutation PRRR

P A force parallel to the axes of the three unactuated
R joints.

R A force orthogonal to the direction of P joint and
lies on a plane containing the axes of the two
unactuated R joints.

Permutation ΠRRR
Π A force parallel to the axes of the three unactuated

R joints.
R A force orthogonal to the twist of Π joint and lies on

a plane containing the axes of the two unactuated R
joints.

1 5

Permutation RRRŔŔ
R A force collinear with the intersection line of the two

planes; the first one containing the axes of the two R
joints and the second one containing the axes of the
two other Ŕ joints.

Ŕ A force parallel to the axes of the three R joints and
intersects the axis of Ŕ joint.

Permutation RRŔŔŔ
R A force parallel to the axes of the three R joints and

intersects the axis of Ŕ joint.
Ŕ A force collinear with the intersection line of the two

planes; the first one containing the axes of the two R
joints and the second one containing the axes of the
two other Ŕ joints.

Permutation PRRŔŔ
P A force collinear with the intersection line of the two

planes; the first one containing the axes of the two R
joints and the second one containing the axes of the
two other Ŕ joints.

R The determination of the actuation wrench requires
Ŕ further details on the geometry of the leg.

Permutation ΠRRŔŔ
Π A force collinear with the intersection line of the two

planes; the first one containing the axes of the two R
joints and the second one containing the axes of the
two other Ŕ joints.

R The determination of the actuation wrench requires
Ŕ further details on the geometry of the leg.



III
Type Synthesis of 2 DOF Hybrid

Manipulators with Two Identical

Legs

The 2 dof mechanisms can be generated either in planar architecture defined in previous chapter

or in spatial architecture. Designing a manipulators in spatial architectures can be realized by

various types of identical legs. Each leg will be composed of a proximal module and a distal

module, connected in series. Both proximal and distal modules contain one or two kinematic

chains. Consequently, the proximal and distal modules are a parallel kinematic chain, which

forms spatial configuration. The mechanism produced by this particular configuration is called

Hybrid Manipulator.

In this chapter, the existing type synthesis method based upon general approach, is de-

veloped to search for new 2 dof hybrid manipulators with two identical legs. The procedure

of type synthesis for hybrid manipulators are reviewed also in four steps. Section III.1 firstly

categorizes type of hybrid manipulators. Following this, Section III.2 examines the decomposi-

tion of the wrench for each proximal and distal modules. Section III.3 afterwards presents the

type synthesis of legs. Section III.4 subsequently studies the assembly process of legs. Finally,

Section III.5 performs the selection of actuated joints for hybrid manipulators.

III.1 Classification of 2 DOF Hybrid Manipulators with Two Identical

Legs

The moving platform of 2 dof hybrid manipulators is intended to have two translational motions

in a plane (xOz). Therefore, the twist system is equivalent with the twist system of 2 dof

parallel manipulators, namely, 2ξ∞−system. Likewise, the overall wrench system for hybrid

manipulators is also 1ζ0 − 3ζ∞−system containing one zero-pitch wrench (pure force) along

y-axis and three infinite-pitch wrenches (pure moment).

Accordingly, the type synthesis process of this special mechanism can be expanded from the

previous method, namely the Screw Theory by using similar definition for twist and wrench

system.

Table.II.1 now is recalled below as Table. III.1, to perform several 2 dof translational

mechanisms which have two identical leg-wrench systems, highlighted in pink colors.
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Table III.1 – Combination of Leg-wrench System with Two Identical Legs

m c △
1ζ0 − 3ζ∞ 1ζ0 − 2ζ∞ 3ζ∞ 1ζ0 − 1ζ∞ 2ζ∞ 1ζ0 1ζ∞

c=4 c=3 c=3 c=2 c=2 c=1 c=1

2 4

4 2

3
1 1
1 1

2

1 1
1 1

2
1 1

2

1

1 1
1 1

1 1
1 1

1 1
1 1

0

2
1 1

2
1 1
1 1

1 1
1 1

It can bee seen from Table. III.1 that there are five types of mechanism with two identical

leg-wrench systems. However, only two types of 2 dof mechanisms which can be properly

assembled by two similar legs, consists of:

• Type 1: ci = 4 → 1ζ0 − 3ζ∞−system

• Type 2: ci = 3 → 1ζ0 − 2ζ∞−system

Certain combinations of 3ζ∞−system and 2ζ∞−system are not able to produce ζ0 along

y-axis in any configuration. Furthermore, the combination of 1ζ0 − 1ζ∞−system cannot create

three independent infinite-pitch wrenches (3ζ∞−system). Hence, they are necessarily to be

eliminated.

The overall wrench system for one leg is achieved by the intersection of the wrenches between

proximal and distal modules, because they are linked in series. Thereby, the wrench system for

each proximal and distal modules are essentially decomposed as follows:

III.1.1 Type 1: ci = 4 → 1ζ0 − 3ζ∞−system

The overall wrench system of one leg for Type 1, is ci = 4, 1ζ0 − 3ζ∞−system. This wrench

system is obtained by the intersection of the wrenches between proximal and distal modules,

since they are in a serial configuration. Thus, the feasible wrenches are:

Proximal module:
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1. 2ζ0 − 3ζ∞−system, W = span(ζ01, ζ02, ζ∞1, ζ∞2, ζ∞3)

2. 1ζ0 − 3ζ∞−system, W = span(ζ0, ζ∞1, ζ∞2, ζ∞3)

Distal module:

1. 2ζ0 − 3ζ∞−system, W = span(ζ01, ζ02, ζ∞1, ζ∞2, ζ∞3)

2. 1ζ0 − 3ζ∞−system, W = span(ζ0, ζ∞1, ζ∞2, ζ∞3)

III.1.2 Type 2: ci = 3 → 1ζ0 − 2ζ∞−system

The overall wrench system of one leg for Type 2, is ci = 3, 1ζ0 − 2ζ∞−system. This wrench

system is obtained by the intersection of the wrenches between proximal and distal modules,

since they are in a serial configuration. Hence, the possible wrenches are:

Proximal module:

1. 2ζ0 − 3ζ∞−system, W = span(ζ01, ζ02, ζ∞1, ζ∞2, ζ∞3)

2. 1ζ0 − 3ζ∞−system, W = span(ζ0, ζ∞1, ζ∞2, ζ∞3)

3. 2ζ0 − 2ζ∞−system, W = span(ζ01, ζ02, ζ∞1, ζ∞2)

4. 1ζ0 − 2ζ∞−system, W = span(ζ0, ζ∞1, ζ∞2)

Distal module:

1. 2ζ0 − 2ζ∞−system, W = span(ζ01, ζ02, ζ∞1, ζ∞2)

2. 1ζ0 − 2ζ∞−system, W = span(ζ0, ζ∞1, ζ∞2)

Noticeably, Type 1 and Type 2 have almost equivalent wrench system for each proximal

and distal modules, consists of:

1. 2ζ0 − 3ζ∞−system, W = span(ζ01, ζ02, ζ∞1, ζ∞2, ζ∞3)

2. 1ζ0 − 3ζ∞−system, W = span(ζ0, ζ∞1, ζ∞2, ζ∞3)

3. 2ζ0 − 2ζ∞−system, W = span(ζ01, ζ02, ζ∞1, ζ∞2)

4. 1ζ0 − 2ζ∞−system, W = span(ζ0, ζ∞1, ζ∞2)

Consequently, the type synthesis for proximal and distal modules can be approached upon

the wrench system explained above by initially decomposing the identical sub leg-wrenches.

Afterwards, the next process is the generation type of sub legs which are followed by the

assembly of sub legs, and eventually the selection of actuated joint. The procedure will be

presented in detail in the following.

III.2 Step 1: Decomposition of the Wrench for Proximal and Distal

Modules

The first step of type synthesis for 2 dof hybrid manipulators either Type 1 or Type 2, is the

decomposition of the wrench. Four types of wrench system listed in previous section are the

wrench system of proximal and distal modules, decomposed as follows.
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1. 2ζ0 − 3ζ∞−system

The proximal or distal modules which have this wrench system can represented by a P-virtual

chain. Consequently, the wrench system contains 2ζ0 − 3ζ∞−system is:

W = span(ζ01, ζ02, ζ∞1, ζ∞2, ζ∞3) (III.1)

Such module can be created by a combination of any sub leg-wrench system with order ci(0

6 ci 6 5), decomposed as follows:

• ci = 5 → 2ζ0 − 3ζ∞−system

• ci = 4 → 1ζ0 − 3ζ∞−system, 2ζ0 − 2ζ∞−system

• ci = 3 → 1ζ0 − 2ζ∞−system, 2ζ0 − 1ζ∞−system, 3ζ∞−system

• ci = 2 → 1ζ0 − 1ζ∞−system, 2ζ∞−system, 2ζ0−system

• ci = 1 → 1ζ0−system, 1ζ∞−system

Hence, all potential sub leg combinations are shown in Table. III.2 below. Pink colors

in Table. III.2 perform the identical sub leg-wrenches which may build proximal and distal

modules.

2. 1ζ0 − 3ζ∞−system

The proximal or distal modules which have this wrench system can be described by a PP-virtual

chain. Thereby, the wrench system contains 1ζ0 − 3ζ∞−system is:

W = span(ζ0, ζ∞1, ζ∞2, ζ∞3) (III.2)

Such proximal and distal modules can be built of a combination of any sub leg-wrench system

with order ci(0 6 ci 6 4), decomposed as follows:

• ci = 4 → 1ζ0 − 3ζ∞−system

• ci = 3 → 1ζ0 − 2ζ∞−system, 3ζ∞−system

• ci = 2 → 1ζ0 − 1ζ∞−system, 2ζ∞−system

• ci = 1 → 1ζ0−system, 1ζ∞−system

This wrench system is similar to the previous chapter and also the main focus of this

research. Nonetheless, to clarify the combination of sub legs, Table. III.1 is recalled here. Pink

colors show the combination of identical sub legs which may build such proximal and distal

modules, in Table. III.3.

3. 2ζ0 − 2ζ∞−system

The proximal or distal modules which have this wrench system can be illustrated by a PR-

virtual chain. Therefore, the wrench system contains 2ζ0 − 2ζ∞−system is:

W = span(ζ01, ζ02, ζ∞1, ζ∞2) (III.3)

Such proximal and distal modules can be constructed by a combination of any sub leg-wrench

system with order ci(0 6 ci 6 4), decomposed as follows:
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• ci = 4 → 2ζ0 − 2ζ∞−system

• ci = 3 → 1ζ0 − 2ζ∞−system, 2ζ0 − 1ζ∞−system

• ci = 2 → 1ζ0 − 1ζ∞−system, 2ζ∞−system, 2ζ0−system

• ci = 1 → 1ζ0−system, 1ζ∞−system

Thus, all potential sub leg combinations are shown in Table. III.4. The identical sub legs

which may build such proximal and distal modules are performed in pink colors.

4. 1ζ0 − 2ζ∞−system

The proximal or distal modules which have this wrench system can be depicted by a PPR-

virtual chain. Hence, the wrench system contains 1ζ0 − 2ζ∞−system is:

W = span(ζ0, ζ∞1, ζ∞2) (III.4)

Such proximal and distal modules can be generated by a combination of any sub leg-wrench

system with order ci(0 6 ci 6 3), decomposed as follows:

• ci = 3 → 1ζ0 − 2ζ∞−system

• ci = 2 → 1ζ0 − 1ζ∞−system, 2ζ∞−system

• ci = 1 → 1ζ0−system, 1ζ∞−system

Accordingly, all potential sub leg combinations are presented in Table. III.5. The identical

sub legs which are able to construct such proximal and distal modules are highlighted in pink

colors.

On the other hand, the mechanisms which are composed of 2 sub leg-wrench systems, each

of them are 3ζ∞−system and 2ζ∞−system are neglected, since they cannot produce ζ0 along

y-axis in any robot configuration. All feasible identical sub leg-wrench system from Table. III.2-

III.5 which can build proximal and distal modules are summarized in Table. III.6.

III.3 Step 2: Type Synthesis of Sub Legs

Type synthesis of sub leg will be done only to the first wrench system (2ζ0 − 3ζ∞system)

described by a P-virtual chain, since the other wrench systems will produce similar type of sub

legs. Furthermore, the type synthesis of sub legs as a single-loop kinematic chain, have been

performed in previous chapter. Thereby, the type synthesis in which the wrench systems are

similar to the previous chapter will not be discussed here. The type synthesis will only be done

to certain sub leg-wrench systems. In the following, the type synthesis of sub legs are described

in two sub steps.

III.3.1 Step 2a: Type Synthesis of Single-loop Kinematic Chains

Cases with a 2ζ0 − 3ζ∞−system

The number of joints that involves a P-virtual chain and has a 2ζ0 − 3ζ∞−system is:

ci = 5 , f = F + (6 − c) = 1 + (6 − 5) = 2 joints (III.5)
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Table III.2 – Combination of Sub Leg-wrench System for ci = 5, 2ζ0 − 3ζ∞−system

m c △
2ζ0 − 3ζ∞ 1ζ0 − 3ζ∞ 2ζ0 − 2ζ∞ 1ζ0 − 2ζ∞ 2ζ0 − 1ζ∞ 3ζ∞ 1ζ0 − 1ζ∞ 2ζ∞ 2ζ0 1ζ0 1ζ∞

c=5 c=4 c=4 c=3 c=3 c=3 c=2 c=2 c=2 c=1 c=1

2 5

5 2

4
1 1
1 1

3

1 1
1 1
1 1

2
1 1

2

2

1 1
1 1
1 1

1 1
1 1
1 1

1 1
1 1
1 1

1

1 1
1 1

1 1
1 1
1 1

1 1
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Table III.2 – Continued

m c △
2ζ0 − 3ζ∞ 1ζ0 − 3ζ∞ 2ζ0 − 2ζ∞ 1ζ0 − 2ζ∞ 2ζ0 − 1ζ∞ 3ζ∞ 1ζ0 − 1ζ∞ 2ζ∞ 2ζ0 1ζ0 1ζ∞

c=5 c=4 c=4 c=3 c=3 c=3 c=2 c=2 c=2 c=1 c=1

2 5

1

1 1
1 1

2
2

2
1 1
1 1

1 1

0

1 1
1 1

1 1
1 1

1 1
1 1
1 1

1 1
1 1
1 1

1 1
1 1
1 1
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Table III.3 – Combination of Sub Leg-wrench System for ci = 4, 1ζ0 − 3ζ∞−system

m c △
1ζ0 − 3ζ∞ 1ζ0 − 2ζ∞ 3ζ∞ 1ζ0 − 1ζ∞ 2ζ∞ 1ζ0 1ζ∞

c=4 c=3 c=3 c=2 c=2 c=1 c=1

2 4

4 2

3
1 1
1 1

2

1 1
1 1

2
1 1

2

1

1 1
1 1

1 1
1 1

1 1
1 1

0

2
1 1

2
1 1
1 1

1 1
1 1

This single-loop kinematic chain can only be formed by one P joint, which is perpendicular

to the axes of 2ζ0, as depicted in Fig. III.1.

Figure III.1 – Single-loop Kinematic Chain ci = 5: PV KC

Cases with a 2ζ0 − 2ζ∞−system

The number of joints that involves a P-virtual chain and has a 2ζ0 − 2ζ∞−system is:

ci = 4 , f = F + (6 − c) = 1 + (6 − 4) = 3 joints (III.6)

Such single-loop kinematic chain can be composed of R joints whose all axes are coplanar

with the axes of 2ζ0 and perpendicular to the directions of 2ζ∞. The directions of P joint are

perpendicular to a plane of 2ζ0, as performed in Fig. III.2.
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Table III.4 – Combination of Sub Leg-wrench System for ci = 4, 2ζ0 − 2ζ∞−system

m c △
2ζ0 − 2ζ∞ 2ζ0 − 1ζ∞ 1ζ0 − 2ζ∞ 1ζ0 − 1ζ∞ 2ζ∞ 2ζ0 1ζ∞ 1ζ0

c=4 c=3 c=3 c=2 c=2 c=2 c=1 c=1

2 4

4 2

3
1 1
1 1

2

1 1
1 1
1 1

2
2

1 1

1

1 1
1 1

1 1
1 1
1 1

1 1
1 1
1 1

0

1 1
1 1

1 1
1 1

2
2

2
1 1
1 1

1 1

Table III.5 – Combination of Sub Leg-wrench System for ci = 3, 1ζ0 − 2ζ∞−system

m c △
1ζ0 − 2ζ∞ 1ζ0 − 1ζ∞ 2ζ∞ 1ζ∞ 1ζ0

c=3 c=2 c=2 c=1 c=1

2 3

3 2

2
1 1
1 1

1

1 1
1 1

2
2

1 1

0

1 1
1 1

1 1
1 1
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Table III.6 – Combination of 2 Identical Sub Leg-wrench System for Proximal and Distal Module

c Wrench System for Proximal and Distal Modules Sub Leg-wrench System

5 2ζ0 − 3ζ∞

2ζ0 − 3ζ∞

1ζ0 − 3ζ∞

2ζ0 − 2ζ∞

1ζ0 − 2ζ∞

2ζ0 − 1ζ∞

4

1ζ0 − 3ζ∞

1ζ0 − 3ζ∞

1ζ0 − 3ζ∞

1ζ0 − 3ζ∞

2ζ0 − 2ζ∞

2ζ0 − 2ζ∞

1ζ0 − 2ζ∞

2ζ0 − 1ζ∞

1ζ0 − 1ζ∞

2ζ0

3 1ζ0 − 2ζ∞

1ζ0 − 2ζ∞

1ζ0 − 1ζ∞

(a) RRV KC (b) PRV KC

Figure III.2 – Single-loop Kinematic Chain ci = 4

Cases with a 2ζ0 − 1ζ∞−system

The number of joints that involves a P-virtual chain and has a 2ζ0 − 1ζ∞−system is:

ci = 3 , f = F + (6 − c) = 1 + (6 − 3) = 4 joints (III.7)

This single-loop kinematic chain can be formed by R joints whose all axes are coplanar with

the axes of 2ζ0 and parallel to a plane which is perpendicular to the direction of ζ∞. There

exist P joints which are perpendicular to a plane of 2ζ0, as demonstrated in Fig. III.3.

Cases with a 2ζ0−system

The number of joints that involves a P-virtual chain and has a 2ζ0−system is:

ci = 2 , f = F + (6 − c) = 1 + (6 − 2) = 5 joints (III.8)

Such single-loop kinematic chain can be built of R joints whose all axes pass through the

centre of 2ζ0−system. All the directions of P joints are perpendicular to a plane of 2ζ0−system,

as shown in Fig. III.4.
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(a) RRŔV KC (b) PRŔV KC

Figure III.3 – Single-loop Kinematic Chain ci = 3

(a) RRŔŘV KC (b) PRŔŘV KC

Figure III.4 – Single-loop Kinematic Chain ci = 2

III.3.2 Step 2b: Generation of Type of Sub Legs

Generation of type of sub legs immediately can be achieved by removing the P-virtual chain

and listed in Table. III.7, according to the combinations of identical sub leg-wrench systems

obtained in Table. III.6.

Obviously, there are limited types of sub legs which are free of inactive joint and summarized

in Table. III.8. Nonetheless, several types of sub legs which contain non-invariant sub leg-wrench

system are still kept, because it can produce 2 dof translational motions. All these type of sub

legs are exhaustive and can be assembled to generate either proximal or distal modules. These

proximal and distal modules finally will construct a hybrid manipulator, performing 2 dof

translational motions.

III.4 Step 3: Assembly of Sub Legs and Legs

The assembly process of 2 dof hybrid manipulators is performed in this section, both for Type

1 and Type 2. These hybrid manipulators can be realized by connecting a proximal and a distal

module together in series becomes a leg. This leg afterwards will be linked from the base to

the moving platform becomes a hybrid manipulator. Therefore, the assembly process consists

of two sub steps as explained in the following.
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Table III.7 – Type of Sub Legs for Proximal and Distal Module

c
Wrench System for Proximal and

Distal Module
Sub Leg-wrench System Type Note

5 2ζ0 − 3ζ∞

2ζ0 − 3ζ∞ P
1ζ0 − 3ζ∞ PP P inactive joint

2ζ0 − 2ζ∞

RR Non-invariant
PR R inactive joint

1ζ0 − 2ζ∞

RRR
PRR
PPR R inactive joint

2ζ0 − 1ζ∞

RRŔ Ŕ inactive joint
RŔŔ R inactive joint
PRŔ R inactive joint

4

1ζ0 − 3ζ∞

1ζ0 − 3ζ∞ PP

1ζ0 − 2ζ∞

RRR
PRR
PPR R inactive joint

1ζ0 − 1ζ∞

RRRŔ Ŕ inactive joint
RRŔŔ Non-invariant
PRRŔ Ŕ inactive joint
PRŔŔ R inactive joint
PPRŔ R inactive joint

2ζ0 − 2ζ∞

2ζ0 − 2ζ∞

RR Non-invariant
PR

1ζ0 − 2ζ∞

RRR
PRR
PPR P inactive joint

2ζ0 − 1ζ∞

RRŔ Non-invariant
RŔŔ Non-invariant
PRŔ Ŕ inactive joint

1ζ0 − 1ζ∞

RRRŔ Ŕ inactive joint
RRŔŔ Non-invariant
PRRŔ Ŕ inactive joint
PRŔŔ R inactive joint
PPRŔ R inactive joint

2ζ0

RRŔŘ Non-invariant
PRŔŘ

3 1ζ0 − 2ζ∞

1ζ0 − 2ζ∞

RRR
PRR
PPR

1ζ0 − 1ζ∞

RRRŔ Ŕ inactive joint
RRŔŔ Non-invariant
PRRŔ Ŕ inactive joint
PRŔŔ Ŕ inactive joint
PPRŔ Ŕ inactive joint
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Table III.8 – Type of Sub Legs for Proximal and Distal Module, Free of Inactive Joint

c
Wrench System for Proximal and

Distal Module
Sub Leg-wrench System Type Note

5 2ζ0 − 3ζ∞

2ζ0 − 3ζ∞ P
2ζ0 − 2ζ∞ RR Non-invariant

1ζ0 − 2ζ∞

RRR
PRR

4

1ζ0 − 3ζ∞

1ζ0 − 3ζ∞ PP

1ζ0 − 2ζ∞

RRR
PRR

1ζ0 − 1ζ∞ RRŔŔ Non-invariant

2ζ0 − 2ζ∞

2ζ0 − 2ζ∞

PR
RR Non-invariant

1ζ0 − 2ζ∞

RRR
PRR

2ζ0 − 1ζ∞

RRŔ Non-invariant
RŔŔ Non-invariant

1ζ0 − 1ζ∞ RRŔŔ Non-invariant

2ζ0

RRŔŘ Non-invariant
PRŔŘ

3 1ζ0 − 2ζ∞

1ζ0 − 2ζ∞

RRR
PRR
PPR

1ζ0 − 1ζ∞ RRŔŔ Non-invariant

III.4.1 Step 3a: Assembly of Sub Legs Becomes a Proximal and a Distal Module

The proximal and distal modules can constructed by assembling set of sub legs from Table. III.8.

In assembling sub legs becomes proximal and distal modules, following conditions should be

satisfied:

1. The overall wrench system of a proximal and a distal module should constitute desired

wrench system, as explained in Section. III.1.1 and III.1.2.

2. At least one translational twist generated by proximal and distal modules, should lie on

a plane (xOz).

III.4.2 Step 3b: Assembly of Legs Becomes a 2 DOF Hybrid Manipulator

The proximal and distal modules obtained from Step.3a, now can be assembled. In assembling

both proximal and distal modules becomes a 2 dof hybrid manipulator, following conditions

should be fulfilled:

1. One leg which is composed of proximal and distal modules should constitute the wrench

system of Type 1 and Type 2 (respectively 1ζ0 − 3ζ∞−system and 1ζ0 − 2ζ∞−system).

2. The linear combination of the wrench system between the legs in a hybrid manipulator

eventually should constitute 1ζ0 − 3ζ∞.
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Thereby, the 2 dof hybrid manipulators with two identical legs now can be constructed in the

following.

Case Type 1

1. 2-(2-RRR)-(2-RRR)

Such kinematic chain is assembled by two identical legs. The overall wrench system for

each identical leg is 1ζ0 − 3ζ∞−system. This leg consists of proximal and distal modules.

Both proximal and distal modules have 2ζ0 − 3ζ∞−system, which are generated by two

RRR legs, known as Sarrus linkage (Fig. III.5). Due to one leg uses two Sarrus linkage

for each proximal and distal modeule, thus this mechanism is named D-SarruS, in which

D stands for Double.

Figure III.5 – 2-(2-RRR)-(2-RRR)

2. 2-(2-RRR)-(2-RPR)

This hybrid mechanism is constructed by two identical legs. The overall wrench system

for each identical legs is 1ζ0 − 3ζ∞−system. This leg consists of proximal and distal

modules. Both proximal and distal modules have 2ζ0 −3ζ∞−system, which are composed

of respectively 2-RRR and 2-RPR, as shown in Fig. III.6.

Figure III.6 – 2-(2-RRR)-(2-RPR)
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3. 2-P(2-RRR) and 2-Π(2-RRR)

Such kinematic chains are assembled by two identical legs. The overall wrench system for

each identical leg is 1ζ0 − 3ζ∞−system. This leg consists of proximal and distal modules.

The proximal module has 2ζ0−3ζ∞−system and can be simply constructed by one P joint.

The distal module also has 2ζ0 − 3ζ∞−system which consists of 2-RRR legs, Fig. III.7. P

joint in the proximal module can be replaced by a Π joint, as performed in Fig. III.8.

Figure III.7 – 2-P(2-RRR) Figure III.8 – 2-Π(2-RRR)

4. 2-P(2-RPR) and 2-Π(2-RPR)

This kinematic chains are arranged by two identical legs. The overall wrench system for

each identical leg is 1ζ0 − 3ζ∞−system. This leg is constructed by proximal and distal

modules. The proximal module in the leg has 2ζ0 − 3ζ∞−system and simply created by

one P joint. While the distal module is composed of 2-RPR chains. The axes of R joint

is necessarily perpendicular to the directions of two P joints in the sub leg, Fig. III.9. P

joint in proximal module can be replaced by a Π joint, as illustrated in Fig. III.10.

Figure III.9 – 2-P(2-RPR) Figure III.10 – 2-Π(2-RPR)
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5. 2-P(2-RRP) and 2-Π(2-RRP)

The 2 dof mechanism can be assembled by two identical legs, in which each leg contains

1ζ0 − 3ζ∞−system. This leg is arranged by proximal and distal modules. The proximal

module in the leg has 2ζ0 − 3ζ∞−system and simply created by one P joint. While the

distal module is composed of 2-RRP chains. The axes of two R joints are not necessarily

perpendicular to the direction of P joint in the sub leg, Fig. III.11. P joint in the proximal

module can replaced by a Π joint, as depicted in Fig. III.12.

Figure III.11 – 2-P(2-RRP) Figure III.12 – 2-Π(2-RPR)

Case Type 2

1. 2-P(2-UU) and 2-Π(2-UU)

Another type of 2 dof hybrid mechanisms can also be built of two identical legs. Each leg

is formed by proximal and distal modules. The proximal module has 2ζ0 − 3ζ∞−system

and simply constructed by one P joint. The distal module has 2ζ0 − 2ζ∞−system which

is composed of 2-UU chains, as shown in Fig. III.13. P joint in proximal module can

be replaced by a Π joint, as depicted in Fig. III.14. This mechanism is similar to the

IRSBot-2, invented by IRCCyN, France.

Figure III.13 – 2-P(2-UU) Figure III.14 – 2-Π(2-UU)



III.5 Step 4: Selection of the Actuated Joint 59

III.5 Step 4: Selection of the Actuated Joint

Let assume that the condition of constraint wrench system is satisfied, namely, the assembly of

legs apply 1ζ0 − 3ζ∞−system. In general configuration, a set of constraint wrench system, Wc,

together with actuation wrench system, Wa, constitute a 6-system. Ultimately, the selection

of an actuated joint for hybrid manipulators 2 dof translational motions produced above can

be executed by following the validity condition stated from Section.II.5.2.





IV
Complexity Analysis

In the absence of mathematical model at the conceptual design of manipulators e.g. link length,

material properties, link and joint mass; several design criteria are needed in order to evalu-

ate the quality of robot architectures. It accordingly leads to the analysis of existing index,

specifically, complexity index. The complexity analysis can be accomplished by examining the

available information e.g. type and number of joints, relative orientation of neighbouring joint,

and the number of loop.

In this chapter, the complexity analysis of robot architectures is applied to 26 manipulators

designed in Chapter II and III. Section IV.1 initially studies the theoretical background of

complexity index. Following that, Section IV.2 examines the complexity performance to the 2

dof manipulators, either parallel manipulators or hybrid manipulators.

IV.1 Complexity Index

In designing a manipulator, the designer would like to keep three performance criteria such

as [16]; kinetostatic, elastostatic, and elastodynamic, that are expected to perform well in their

robots. The kinetostatic performance depends upon the robot jacobian J, which in turn depends

upon link dimension and robot posture. On the other hand, elastostatic performance might be

enhanced by increasing the stiffness of robot structure. While the elastodynamic performance

may be elevated by increasing stiffness and by decreasing the mass of robots. Eventually, it

requires the information of dimension and material properties, which are not available at the

conceptual design stage.

However, all those criteria still can be predicted by calculating the complexity of robots.

It evaluates only the information about the type, number, and relative arrangement of joint,

along with the number of loop in the robots, which in turn may refer to stiffness and weight of

robots. Furthermore, the complexity of robots is able to indicate manufacturing, running, and

maintenance cost [16].

Minimum value of complexity is desirable, with range K ∈ [0, 1]. Robot complexity evaluates

four indices based upon [7], namely:

K = wN KN + wLKL + wJKJ + wBKB (IV.1)

where:

• wN + wL + wJ + wB = 1, are corresponding weights.
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• KN ∈ [0, 1], is the joint number complexity.

• KL ∈ [0, 1], is the loop complexity.

• KJ ∈ [0, 1], is the joint type complexity.

• KB ∈ [0, 1], is the link diversity.

IV.1.1 Joint Number Complexity (KN)

The joint number complexity KN is defined as:

KN = 1 − exp(−qNN) (IV.2)

where:

• N , is the number of joints used in the chain.

• qN , is the resolution parameter.

IV.1.2 Loop Complexity (KL)

The loop complexity KL is described as:

KL = 1 − exp(−qLL) , L = l − lm (IV.3)

where:

• l, is the number of kinematic loops in the robot.

• lm, is the minimum number of loops required to produce a special displacement group or

subgroup.

• qL, is the resolution parameter.

IV.1.3 Joint Type Complexity (KJ)

The joint type complexity corresponds to the joint type used in a chain. Hence, it is depicted

as:

KJ =
1
n

(nRKG|R + nP KG|P + nCKG|C + nSKG|S + nHKG|H + nF KG|F ) (IV.4)

where:

• nR, nP , nC , nS , nH , nF , are the number of revolute, prismatic, cylindrical, spherical, heli-

cal, and planar joints.

• n, is the total joints used.

The geometric complexity for each joint KG|X is defined in Table. IV.1.
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Table IV.1 – Geometric Complexity of Joints [16]

Joint KG

R 0.5234
P 1
C 0
S 0
H 0.8064
F 0.6954

IV.1.4 Link Diversity (KB)

Link diversity examines the geometric relations between neighbouring joints within the leg. It

is described as:

KB =
B

Bmax

, B = −
c

∑

i=1

bilog2(bi) , bi =
Mi

c
∑

i=1
Mi

(IV.5)

where:

• Mi, is the number of instance for each type of joint-constraint.

• c, is the number of distinct joint-constraint type used.

The topology of neighbouring R joint is presented in Fig. IV.1 below. When all five constrain

types below used with equal frequency, Bmax = log2(5) = 2.32bits.

Figure IV.1 – Link Diversity Diagram [7]

IV.1.5 Definition of the Resolution Parameter

Two resolution parameters qN and qL respectively are introduced in Eq. IV.2 and IV.3, which

provide an appropriate resolution for the complexity at hand. Due to the formulation is intended

to compare the complexity of two or more kinematic chains, thus the complexity is as 0.9 to

the chain with maximum complexity. For J = N, L, hence:

qJ =







− ln(0.1)
Jmax

for Jmax > 0

0 for Jmax = 0
(IV.6)
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IV.2 Complexity Analysis of 2 DOF Manipulators

The various designs of manipulator with 2 dof translational motions have been created accord-

ing to the screw theory, in Chapter II and III. The quality of manipulator architectures now

will be evaluated by analysing the complexity of manipulator configuration. These manipula-

tors are assembled not only in the form of parallel manipulators with 2, 3, and 4 legs but also

proposed in the hybrid configuration, total there are 26 manipulators.

The complex design of a manipulator is evaluated based upon the joint configurations, joint

type used, number of joints, etc. A Π joint in the parallel manipulators, uses four revolute

joints and contains one loop.

On the other hand, the hybrid manipulators are assembled by two identical legs. Each leg is

constructed by a proximal and a distal module, connected in series. Both proximal and distal

modules are created by one or two kinematic chains, linked in parallel. Therefore, a parallel

kinematic chain which forms a proximal and a distal module will be considered as a joint. It

contains one loop, as stated in Table. IV.2.

Table IV.2 – Joint Definition for Hybrid Manipulators

Joint Loops
A 2-RRR
B 2-RPR
C 2-RRP
D 2-UU

In order to indicate the complexity value both for parallel manipulators and hybrid manip-

ulators, several assumptions are defined as:

• P joints are assembled in perpendicular in PP leg.

• The twist of Π joint is considered as an axis.

• Each sub leg in A, B, C, and D joints is assembled in perpendicular.

• The twist of A, B, C, and D joints is considered as an axis.

• Link diversity analysis will be applied to each type of legs and sub legs.

The information from 2 dof manipulators concerning link diversity, number of joints, type of

joints, etc. now can be defined in Table. IV.3. These information afterwards can be calculated

to achieve complexity indices as stated in Table. IV.4. Each manipulator is attributed by a

number, from 1 to 26. Suppose an equal weight of wN = wL = wJ = wB = 0.25. KN and KL

are computed based upon respectively the maximum number of joints used in manipulators

Nmax = 24 joints and the maximum number of loops Lmax = 8 loops.

IV.3 Comparison of Complexity Analysis

Complexity of a manipulator might vary, depends upon the number of joints used, type of

joints, number of loops and link diversity in its configuration. In this section accordingly, the
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Table IV.3 – Available Information from 2 dof Parallel Manipulators

No Manipulator l lm N nR nP c B1 B2 B3 B4 B5 B L
1 2-PP 1 0 4 0 4 1 0 0 0 2 0 0 1
2 PP-RRR 1 0 5 3 2 2 0 0 3 1 0 0.811 1
3 RPR-PRRR 1 0 7 5 2 3 0 0 4 2 2 1.500 1
4 RRR-URU 1 0 8 8 0 3 2 0 7 4 0 1.420 1
5 2-RPR-URU 3 0 11 9 2 3 2 0 6 8 0 1.411 3
6 2-UPU-RRR 3 0 13 11 2 4 4 0 7 4 8 1.930 3
7 2-PRRR-RRR 3 0 11 9 2 2 0 0 9 0 4 0.891 3
8 2-UPU-2-RPR 4 0 16 12 4 4 4 0 6 8 8 1.950 4
9 2-PRRR-2-RRR 4 0 14 12 2 2 0 0 12 0 4 0.811 4
10 2-ΠΠ 5 0 16 16 0 2 0 0 24 0 2 0.391 5
11 ΠΠ-RRR 3 0 11 11 0 2 0 0 15 0 1 0.337 3
12 ΠRR-RΠRR 3 0 13 13 0 3 0 0 16 2 3 1.023 3
13 2-ΠUU-ΠRR 6 0 22 22 0 5 4 4 23 2 8 1.796 6
14 2-ΠRR-RΠRR 6 0 19 19 0 3 0 0 23 4 3 1.014 6
15 2-RRR-2-RΠRR 6 0 20 20 0 2 0 0 24 0 6 0.722 6
16 2-ΠRR-2-ΠUU 8 0 28 28 0 5 4 4 30 4 8 1.740 8
17 2-AA: D-SarruS 5 0 24 24 0 3 12 0 24 26 0 1.514 5
18 2-AB: 2-(2-RRR)-

(2-RPR)
5 0 24 20 4 4 10 0 16 28 8 1.828 5

19 2-PA: 2-P(2-RRR) 3 0 14 12 2 4 12 0 24 24 2 1.678 3
20 2-ΠA: 2-Π(2-RRR) 5 0 20 20 0 4 12 0 36 24 2 1.599 5
21 2-PB: 2-P(2-RPR) 3 0 14 8 6 4 4 0 4 14 10 1.796 3
22 2-ΠB: 2-Π(2-RPR) 5 0 20 16 4 4 4 0 16 14 10 1.857 5
23 2-PC: 2-P(2-RRP) 3 0 14 8 6 4 4 0 4 14 10 1.796 3
24 2-ΠC: 2-Π(2-RRP) 5 0 20 16 4 4 4 0 16 14 10 1.858 5
25 2-PD: 2-P(2-UU) 3 0 18 16 2 4 16 0 8 16 18 1.9432 3
26 2-ΠD: IRSBot-2 5 0 24 24 0 4 16 0 20 16 18 1.9936 5

complexity for 2 dof parallel manipulators and 2 dof hybrid manipulators are compared, in

order to emphasize the complexity differences. The overall complexity values enumerated in

previous section are plotted in a graph (Fig. IV.2), from 1st to 26th.

The simplest design of manipulator is shown by 2-PP parallel manipulator, with index

value 0.392. This parallel manipulator has lowest value since it has only one loop and uses

least number of joints among others, namely four P joints. Furthermore, with only composed

of two legs, the link diversity is null because P joints within the leg can be simply constructed

in perpendicular. Although 2-PP parallel manipulator consists of P joint, in which P joint has

highest value of geometric complexity, the overall complexity performance is still the least.

Figure IV.2 also reveals the complexity value of D-SarruS is lower than IRSBot-2, which

are respectively 0.710 and 0.761. Both hybrid manipulators employ 24 revolute joints. Each

proximal and distal module is built of two kinematic chains, thus they have five loops. The

main point which makes significant difference is the link diversity in their joint configurations.

D-Sarrus has three kinds of link diversity in which each kinematic chains are assembled in

perpendicular, while IRSBot-2 has 4 types of link diversity. Moreover, the complexity of IRSBot-

2 is almost twofold higher than 2-PP parallel manipulator.
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Table IV.4 – Complexity of 2 dof Manipulators

No Manipulator KN KL KJ KB K

1 2-PP 0.319 0.250 1 0 0.392
2 PP-RRR 0.381 0.250 0.714 0.350 0.424
3 RPR-PRRR 0.489 0.250 0.660 0.647 0.511
4 RRR-URU 0.536 0.250 0.523 0.612 0.480
5 2-RPR-URU 0.652 0.578 0.610 0.606 0.612
6 2-UPU-RRR 0.713 0.578 0.597 0.832 0.680
7 2-PRRR-RRR 0.652 0.578 0.610 0.384 0.556
8 2-UPU-2-RPR 0.785 0.684 0.643 0.841 0.738
9 2-PRRR-2-RRR 0.739 0.684 0.592 0.350 0.591
10 2-ΠΠ 0.785 0.763 0.523 0.169 0.560
11 ΠΠ-RRR 0.652 0.578 0.523 0.145 0.475
12 ΠRR-RΠRR 0.713 0.578 0.523 0.441 0.564
13 2-ΠUU-ΠRR 0.879 0.822 0.523 0.774 0.750
14 2-ΠRR-RΠRR 0.838 0.822 0.523 0.437 0.655
15 2-RRR-2-RΠRR 0.853 0.822 0.523 0.311 0.628
16 2-ΠRR-2-ΠUU 0.932 0.900 0.523 0.750 0.776
17 2-AA: D-SarruS 0.900 0.763 0.5234 0.653 0.710
18 2-AB: 2-(2-RRR)-(2-RPR) 0.900 0.763 0.603 0.788 0.763
19 2-PA: 2-P(2-RRR) 0.739 0.578 0.592 0.724 0.658
20 2-ΠA: 2-Π(2-RRR) 0.853 0.763 0.523 0.689 0.707
21 2-PB: 2-P(2-RPR) 0.739 0.578 0.728 0.774 0.705
22 2-ΠB: 2-Π(2-RPR) 0.853 0.763 0.619 0.800 0.759
23 2-PC: 2-P(2-RRP) 0.739 0.578 0.728 0.774 0.705
24 2-ΠC: 2-Π(2-RRP) 0.853 0.763 0.619 0.800 0.759
25 2-PD: 2-P(2-UU) 0.822 0.578 0.576 0.838 0.704
26 2-ΠD: IRSBot-2 0.900 0.763 0.523 0.859 0.761
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Figure IV.2 – Complexity Graph of 2 dof Manipulators
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The change in geometry of a body generated by an external load applied on it, recognized

as a deformation or a compliant displacement. Stiffness can be described as the capacity of a

mechanical system to sustain loads without excessive changes of its geometry [6]. The stiffness

analysis of parallel manipulators [21] thereby aims to evaluate the effect of applied external

forces and torques on the compliant displacements of the end-effectors. Compliant displace-

ments in robotic systems tolerate some mechanical float of the end-effectors relative to the

fixed-base, which produce negative effects in accuracy and dynamic stability (vibrations).

A stiffness analysis [21] not only allows to quantify the valuable design criteria, but also very

useful for estimating the expected performances of a system in terms of payload, accuracy, and

stability. Correspondingly, in pick-and-place operation that are designed for simple and fast

manipulating task, the stiffness defines [21] acceptable velocity/acceleration while approaching

the target point, in order to avoid undesirable displacement due to the inertia forces.

However, the knowledge of manipulators geometry and their material properties at concep-

tual design stage are not available yet. Therefore, this chapter will address the problem of

determining the stiffness from 26 manipulators designed previously, through several methods.

Section V.1 firstly investigates the stiffness performance according to A.C.Rao [2]. Section V.2

provides the stiffness analysis in CATIA. Section V.3 and V.4 perform new stiffness index based

upon the reaction forces and moments. Section V.5 finally compares all stiffness indices and

analyses their relationship.

V.1 Stiffness Analysis Based Upon A.C.Rao

The stiffness index developed by A.C.Rao [2], [1] evaluates the stiffness performance of manip-

ulators based upon the connectivity informations within the legs. A link connectivity C [2] can

be defined as the number of joints which are connected to this link and becomes an element

of stiffness matrix S. Stiffness matrix indicates the stiffness of the link j respect to the link i,

formulated as follows:

Sij











Cj if i = j

1
1

Ck
+...+ 1

Cj

if i 6= j
(V.1)

where:

• Cj is the connectivity of the j-th link.
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• Ck is the subsequent connectivity k-th link from link i.

• Sij is element of stiffness matrix.

Denominator in this case includes connectivity of every intermediate links except link i,

that is on the shortest path between link i and j. Eventually, the value of total stiffness is the

sum of matrix element Sij .

Revolute and prismatic joints have 1 dof, while universal joint has 2 dof and hence consid-

ered less stiff. Connectivity attributed to each joint is equal to the inverse of its dof. Therefore,

the connectivity of revolute, prismatic, and universal joint are respectively CR = 1, CP = 1,

and CU = 1
2 . The connectivity of a link with a revolute joint at one end and a universal joint

at the other end, is equal to 1
1 + 1

2 = 3
2 . Derived from these connectivity informations, the

stiffness analysis for all 26 manipulators are presented below.

Based upon the Set of Design Rule in [16], the number of joints should be minimized in

order to improve the stiffness of robot. However, this index leads to the contrast condition

where the increasing number of joint will make the stiffness matrix bigger, then ultimately

improves the stiffness performance.

On the other hand, a link subject to bending will be easily deformed than a link subject to

tension-compression effect. Nevertheless, this index does not consider the tension-compression

solicitations of a link. Consequently, this stiffness calculation is not well adapted.

V.1.1 Application to 2 DOF Manipulators

Given the simplest 2 dof parallel manipulator, 2-PP, arranged by 4 prismatic joints as depicted

in Fig. V.1. The connectivity of link 1, 2, 3, and 4 is:

C1 = C2 = C3 = C4 =
1
1

+
1
1

= 2 (V.2)

Figure V.1 – Connectivity of 2-PP Parallel Manipulator
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For instance S13 = 1
1

C2
+ 1

C3

= 1
1

2
+ 1

2

= 1. Thus, the stiffness matrix of 2-PP is:

S2−PP















2.000 2.000 1.000 0.667

1.000 2.000 0.500 0.400

0.500 0.333 2.000 0.333

0.250 0.200 0.167 2.000















= 15.350 (V.3)

Eventually, the stiffness value S for all 2 dof manipulators are obtained and summarized

in Table. V.1. The higher value of stiffness is desirable, which shows the better stiffness perfor-

mance of a manipulator.

Table V.1 – Stiffness of 2 dof Parallel Manipulators (A.C.Rao)

No Manipulator S

1 2-PP 15.350
2 PP-RRR 15.350
3 RPR-PRRR 24.936
4 RRR-URU 18.532
5 2-RPR-URU 41.642
6 2-UPU-RRR 36.073
7 2-PRRR-RRR 56.793
8 2-UPU-2-RPR 56.454
9 2-PRRR-2-RRR 77.450
10 2-ΠΠ 42.630
11 ΠΠ-RRR 31.217
12 ΠRR-RΠRR 45.562
13 2-ΠUU-ΠRR 105.576
14 2-ΠRR-RΠRR 73.524
15 2-RRR-2-RΠRR 103.760
16 2-ΠRR-2-ΠUU 133.234
17 D-SarruS 130.359
18 2-(2-RRR)-(2-RPR) 130.359
19 2-P(2-RRR) 79.495
20 2-Π(2-RRR) 110.212
21 2-P(2-RPR) 79.495
22 2-Π(2-RPR) 110.212
23 2-P(2-RRP) 79.495
24 2-Π(2-RRP) 110.212
25 2-P(2-UU) 97.932
26 IRSBot-2 135.821

V.2 Stiffness Analysis in CATIA

Since the analysis proposed by A.C.Rao [2], [1] is not adequate to predict stiffness performance

by considering tension-compression effects, hence the evaluation in CATIA is necessary. In

CATIA, the stiffness investigation is accomplished by inputting several parameters for instance;

payload, material properties, and dimension of manipulators. Payload which is used for stiffness
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analysis in CATIA is 10 N. Material for every manipulator is steel. Length and area of each

links and joints are almost identical. Likewise the posture for every manipulator is normalized,

namely, the base and the moving platform must be aligned. The distance from the moving

platform to the base is similar for every manipulators. Beside that, the information of actuated

joints should be provided in order to execute the analysis.

The evaluation will be performed separately in x-axis, y-axis, and z-axis in order to observe

their behaviour. The result obtained from CATIA is a displacement δ(mm) due to the applied

force F(N). Thus, the stiffness is computed as follows:

S =
F

δ
N/mm (V.4)

V.2.1 Application to 2 DOF Manipulators

Given 2 dof parallel manipulator with 4 legs, namely 2-RRR-2-PRRR (Fig. V.2). Two revolute

joints in RRR legs are actuated. The base are fixed and the force 10 N is applied on the moving

platform.

The displacement is measured at the moving platform along x-axis, y-axis, and z-axis. Along

x-axis, the displacement is shown by green colors at the moving platform (Fig. V.3a), as

δx = 0.0149mm. Likewise, the displacement along y-axis and z-axis are depicted by red colors

at the moving platform (Fig. V.3b and Fig. V.3c) which are respectively δy = 0.0710 and

δz = 0.0144mm. Therefore, the stiffness value for this manipulator are Sx = 671.14N/mm,

Sy = 140.85N/mm, and Sz = 694.44N/mm. The global stiffness value accordingly can be

computed as Sglobal = 975.97N/mm.

In the same manner, all manipulators are evaluated in CATIA to obtain the displacement

duo to the external forces. The stiffness performances ultimately can be enumerated based

on their displacements and summarized in Table. V.2. The revolute joints on the base for D-

SarruS robot are actuated with two options; no.17 is D-Sarrus with 4 revolute actuated joints

and no.18 is D-SarruS with 2 revolute actuated joints only (Table. V.2).

Figure V.2 – 2-RRR-2-PRRR Parallel Manipulator
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(a) Displacement along X-axis

(b) Displacement along Y-axis

(c) Displacement along Z-axis

Figure V.3 – Stiffness Analysis in CATIA
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Table V.2 – Stiffness of 2 dof Parallel Manipulators (CATIA)

No Manipulator
δx δy δz Sx Sy Sz Sglobal

(mm) (mm) (mm) (N/mm) (N/mm) (N/mm) (N/mm)

1 2-PP 0.0098 0.0051 0.0110 1016.26 1953.13 909.09 2382.00
2 PP-RRR 0.0144 0.0115 0.0187 694.44 869.57 534.76 1234.65
3 RPR-PRRR 0.4830 0.0375 0.2670 20.70 266.67 37.45 270.08
4 RRR-URU 0.1640 0.1800 0.0125 60.98 55.56 800.00 804.24
5 2-RPR-URU 0.0362 0.0255 0.0008 276.24 392.16 12987.01 12995.87
6 2-UPU-RRR 0.2560 0.0786 0.0140 39.06 127.23 714.29 726.58
7 2-PRRR-RRR 1.5200 0.1170 0.6950 6.58 85.47 14.39 86.92
8 2-UPU-2-RPR 0.0265 0.0170 0.0008 377.36 588.24 12422.36 12442.00
9 2-PRRR-2-RRR 0.0149 0.0710 0.0144 671.14 140.85 694.44 975.97
10 2-ΠΠ 0.0088 0.0800 0.0058 1133.79 125.00 1724.14 2067.30
11 ΠΠ-RRR 0.0065 0.0587 0.0040 1540.83 170.36 2506.27 2946.96
12 ΠRR-RΠRR 0.2800 0.1910 0.1740 35.71 52.36 57.47 85.55
13 2-ΠUU-ΠRR 0.0267 0.1100 0.0144 374.53 90.91 694.44 794.22
14 2-ΠRR-RΠRR 0.3580 0.6750 0.0670 27.93 14.81 149.25 152.57
15 2-RRR-2-RΠRR 0.0083 0.0480 0.0018 1212.12 208.33 5434.78 5572.21
16 2-ΠRR-2-ΠUU 0.0315 0.0772 0.0099 317.46 129.53 1014.20 1070.59

17
D-SarruS

1.2700 0.0014 0.2750 7.87 7352.94 36.36 7353.04
(4-actuators)

18
D-SarruS

1.3800 0.2840 0.2920 7.25 35.21 34.25 49.65
(2-actuators)

19 2-(2-RRR)-(2-RPR) 1.4000 0.1140 0.2810 7.14 87.72 35.59 94.93
20 2-P(2-RRR) 0.0454 0.0301 0.3870 220.26 332.23 25.84 399.45
21 2-Π(2-RRR) 0.0650 0.0516 0.5270 153.85 193.80 18.98 248.17
22 2-P(2-RPR) 0.0359 0.0247 0.2990 278.55 404.86 33.44 492.56
23 2-Π(2-RPR) 0.0538 0.0459 0.4590 185.87 217.86 21.79 287.21
24 2-P(2-RRP) 0.2420 0.2890 0.0013 41.32 34.60 7936.51 7936.69
25 2-Π(2-RRP) 1.8200 1.8700 0.0021 5.49 5.35 4716.98 4716.99
26 2-P(2-UU) 0.0023 0.0168 0.0028 4424.78 595.24 3558.72 5709.42
27 IRSBot-2 0.0151 0.0381 0.0067 662.25 262.47 1485.88 1647.82

V.3 Stiffness Analysis by Considering All Forces and Moments

The stiffness analysis in CATIA is not entirely reliable, since at the conceptual design stage of a

manipulator, the information about material properties and dimensions are not available. How-

ever, by considering the material properties of all kinematic chains and dimensions are similar,

the stiffness behaviour can be computed based on their structure at least in the comparative

sense.

The stiffness is basically a capacity to resist the deformation in response to an applied force.

Hence, a new formulation is proposed by considering the reaction forces and moments acting

on a kinematic chain in order to perceive their influences at the conceptual design stage. The

structure of a kinematic chain comprises several links, in which stiffness measures the number

of links subject to certain amount of reaction forces and moments. The link becomes stiffer as

it is subject to the least number of reaction forces and moments.

A link as a rigid body is undergoing the reaction forces and moment at the static equilibrium.
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The number of forces and moments induced by one link to another are different based upon the

joint configurations to which it is connected. Link UU having two reaction forces and moments

is stiffer than link RR.

The number of reaction forces F and moments M emerged from various links are sum-

marized in Table. V.3. FB and MB shown in Table. V.3 are respectively bending forces and

bending moments. Accordingly, the stiffness for one link is given by:

Slegi =
n.link

n(F + M ) + 1
(V.5)

where:

• Slegi is stiffness of a leg i.

• n.link is number of links which build a leg.

• n(F + M ) is number of reaction forces and moments from Table. V.3.

The addition with 1 in denominator is intended to avoid infinite stiffness due to the division

with zero value. The stiffness of a parallel manipulator then can be stated as the sum of all k

leg stiffness:

S=

k
∑

i=1

Slegi (V.6)

Since the hybrid manipulator(HM) has particular architecture, in which each leg is constructed

by two Parallel Kinematic Chains(PKC) connected in series, thus stiffness for one leg is:

SlegHM =
1

∑2
j=1

1
SP KCj

(V.7)

Table V.3 – Reaction Forces and Moments Acting on the Link

Link n(F + M) n(FB + MB)
P 5 4
RR 4 2
PP 3 2
RP(parallel) 2 0
RP(collinear) 4 4
RP(perpendicular) 3 2
UU 2 0
UR 2 0
UP 1 0

V.3.1 Application to 2 DOF Manipulators

The RRR-URU parallel manipulator, shown in Fig. V.4 is composed of two legs. Revolute

joints in RRR and URU leg are actuated, hence link for 1st leg is RR and UU for 2nd leg. The

total stiffness for this parallel manipulator is:

Sleg1 =
1
5

, Sleg2 =
1
3

(V.8)
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S = Sleg1 + Sleg2 = 0.533 (V.9)

Overall stiffness value for 2 dof manipulators finally are computed and listed in Table. V.4.

The revolute joints on the base for D-SarruS are actuated in two ways; no.17 in Table. V.4

shows D-SarruS with 4 actuators, while no.18 is D-SarruS with only 2 actuators (Table. V.4).

Figure V.4 – RRR-URU Parallel Manipulator

V.4 Stiffness Analysis by Considering Bending Forces and Moments

It is desirable to have some ideas regarding the bending effects to the stiffness of manipulators,

since the manipulators are less rigid if subject to bending than subject to tension-compression

effects. By considering this reason, a stiffness analysis is suggested in order to quantify the

number of links affected by the bending forces and moments.

All manipulators are recalled and evaluated concerning to their stiffness due to the bending

forces and moments. The calculation is based upon the formulas introduced in Eq. V.5, V.6,

and V.7. The number of bending forces and moments (FB and MB) can be selected from

Table. V.3.

V.4.1 Application to 2 DOF Manipulators

The similar 2 dof parallel manipulator is recalled here, namely RRR-URU, as depicted in

Fig. V.4. Revolute joint in 1st RRR leg is actuated. Likewise, revolute joint in second leg,

URU, is actuated. Thus, the stiffness value is stated as:

Sleg1 =
1
3

, Sleg2 =
1
1

(V.10)

S = Sleg1 + Sleg2 = 1.333 (V.11)

Accordingly, the stiffness value based upon the bending forces and moment are obtained in

Table. V.5.
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Table V.4 – Stiffness of 2 dof Parallel Manipulators (All Forces and Moments)

No Manipulator S
1 2-PP 0.333
2 PP-RRR 0.367
3 RPR-PRRR 0.422
4 RRR-URU 0.533
5 2-RPR-URU 0.800
6 2-UPU-RRR 0.889
7 2-PRRR-RRR 0.695
8 2-UPU-2-RPR 1.733
9 2-PRRR-2-RRR 0.946
10 2-ΠΠ 0.462
11 ΠΠ-RRR 0.431
12 ΠRR-RΠRR 0.453
13 2-ΠUU-ΠRR 0.897
14 2-ΠRR-RΠRR 0.680
15 2-RRR-2-RΠRR 0.871
16 2-ΠRR-2-ΠUU 0.990
17 D-SarruS (4-actuators) 0.421
18 D-SarruS (2-actuators) 0.433
19 2-(2-RRR)-(2-RPR) 0.471
20 2-P(2-RRR) 0.889
21 2-Π(2-RRR) 0.276
22 2-P(2-RPR) 1.143
23 2-Π(2-RPR) 0.296
24 2-P(2-RRP) 0.889
25 2-Π(2-RRP) 0.276
26 2-P(2-UU) 1.333
27 IRSBot-2 0.308

V.5 Comparison of Stiffness Analysis

The stiffness values from all 2 dof manipulators will be examined to distinguish their stiffness

behaviour and stiffness differences according to; A.C.Rao, CATIA, reaction forces and moments,

bending forces and moments.

V.5.1 Comparison of Stiffness Indices

In order to make a fair comparison among 4 stiffness analysis, all stiffness values enumerated

previously for 2 dof parallel manipulators and 2 dof hybrid manipulators S are transformed

into relative stiffness index SI ∈ [0, 1], formulated as follows:

SI = 1 − exp(−qSS) (V.12)

where:

• SI is the relative stiffness index.

• S is the stiffness values computed from Section.V.1-V.4.
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Table V.5 – Stiffness of 2 dof Parallel Manipulators (Bending Forces and Moments)

No Manipulator S
1 2-PP 0.400
2 PP-RRR 0.533
3 RPR-PRRR 0.733
4 RRR-URU 1.333
5 2-RPR-URU 2.667
6 2-UPU-RRR 2.400
7 2-PRRR-RRR 1.333
8 2-UPU-2-RPR 4.667
9 2-PRRR-2-RRR 1.867
10 2-ΠΠ 0.857
11 ΠΠ-RRR 0.762
12 ΠRR-RΠRR 0.829
13 2-ΠUU-ΠRR 2.429
14 2-ΠRR-RΠRR 1.244
15 2-RRR-2-RΠRR 1.556
16 2-ΠRR-2-ΠUU 2.000
17 D-SarruS (4-actuators) 0.727
18 D-SarruS (2-actuators) 0.765
19 2-(2-RRR)-(2-RPR) 0.727
20 2-P(2-RRR) 1.600
21 2-Π(2-RRR) 0.471
22 2-P(2-RPR) 1.600
23 2-Π(2-RPR) 0.471
24 2-P(2-RRP) 1.143
25 2-Π(2-RRP) 0.421
26 2-P(2-UU) 4.000
27 IRSBot-2 0.571

• qS the resolution parameter.

The resolution parameter qS provides an appropriate resolution for the stiffness at hand.

Since the foregoing formulation is intended to compare the stiffness within 27 kinematic chains,

the kinematic chain with maximum stiffness index will possess 0.9.

qS =







− ln(0.1)
Smax

for Smax > 0

0 for Smax = 0
(V.13)

The overall stiffness indices SI for 27 manipulators is presented in Table. V.6. The analysis

based upon A.C.Rao does not consider the actuated joint, therefore it has only 26 manipulators

in Table. V.6 (D-SarruS is attributed as no.17 and no.18 at the same time). These indices

afterwards are plotted into graphs in order to emphasize the stiffness differences between the

manipulators.

Figure V.5 reveals that the increasing number of joints, number of legs, and number of loops,

the A.C.Rao Index will augment since the stiffness matrix becomes bigger. The stiffness index
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Table V.6 – Stiffness Indices of 2 dof Parallel Manipulators

No Manipulator SRao
CATIA

SAll SBend
SIx SIy SIz SCatia

1 2-PP 0.229 0.418 0.469 0.154 0.356 0.358 0.179
2 PP-RRR 0.229 0.308 0.245 0.094 0.203 0.386 0.231
3 RPR-PRRR 0.345 0.011 0.082 0.007 0.049 0.429 0.304
4 RRR-URU 0.270 0.032 0.018 0.137 0.1375 0.508 0.482
5 2-RPR-URU 0.506 0.136 0.119 0.900 0.899 0.655 0.732
6 2-UPU-RRR 0.458 0.021 0.040 0.123 0.125 0.693 0.694
7 2-PRRR-RRR 0.618 0.004 0.027 0.003 0.016 0.603 0.482
8 2-UPU-2-RPR 0.616 0.181 0.173 0.900 0.900 0.900 0.900
9 2-PRRR-2-RRR 0.731 0.299 0.044 0.120 0.164 0.715 0.602
10 2-ΠΠ 0.515 0.452 0.040 0.272 0.317 0.458 0.345
11 ΠΠ-RRR 0.411 0.557 0.053 0.369 0.418 0.436 0.313
12 ΠRR-RΠRR 0.538 0.019 0.017 0.011 0.016 0.452 0.336
13 2-ΠUU-ΠRR 0.833 0.015 0.005 0.027 0.028 0.696 0.698
14 2-ΠRR-RΠRR 0.713 0.180 0.029 0.120 0.136 0.595 0.459
15 2-RRR-2-RΠRR 0.828 0.476 0.065 0.641 0.649 0.685 0.536
16 2-ΠRR-2-ΠUU 0.896 0.155 0.041 0.170 0.178 0.732 0.627
17 D-SarruS (4 actuators)

0.890
0.004 0.900 0.007 0.731 0.428 0.302

18 D-SarruS (2 actuators) 0.004 0.011 0.006 0.009 0.437 0.315
19 2-(2-RRR)-(2-RPR) 0.890 0.004 0.028 0.007 0.017 0.465 0.302
20 2-P(2-RRR) 0.740 0.110 0.102 0.005 0.071 0.693 0.546
21 2-Π(2-RRR) 0.846 0.078 0.061 0.004 0.045 0.307 0.207
22 2-P(2-RPR) 0.740 0.137 0.122 0.006 0.087 0.781 0.546
23 2-Π(2-RPR) 0.846 0.094 0.068 0.004 0.052 0.325 0.207
24 2-P(2-RRP) 0.740 0.022 0.011 0.758 0.757 0.693 0.431
25 2-Π(2-RRP) 0.846 0.003 0.002 0.584 0.584 0.307 0.188
26 2-P(2-UU) 0.810 0.900 0.175 0.482 0.647 0.830 0.861
27 IRSBot-2 0.900 0.296 0.081 0.240 0.262 0.336 0.246

will increase gradually and reach the maximum value 0.9 for the 27th manipulator, namely

IRSBot-2. The IRSBot-2 is the stiffest among all manipulators.
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Figure V.5 – Stiffness Index by A.C.Rao



78 Stiffness Analysis

On the contrary, the kinematic chain which is least stiff is the 2-PP parallel manipulator with

index 0.229, defined as the 1st manipulator. It happens because the 2-PP parallel manipulator

has minimum number of joints and minimum number of legs. In turns, the connectivity will

decrease and ultimately makes the stiffness matrix smaller.

The stiffness evaluation in CATIA is accomplished in three different axes respectively x-axis,

y-axis, and z-axis. Figure. V.6a, V.6b, and V.6c show this stiffness distribution value within

27 manipulators. The maximum value of stiffness along x-axis and y-axis are correspondingly

obtained by 2-P(2-UU) and D-SarruS with 4 actuated joints. While along z-axis is achieved by

two parallel manipulators, namely 2-RPR-URU and 2-UPU-2RPR.

It can be seen from Fig. V.6d that the stiffest manipulator is 2-UPU-2-RPR since it has a

great stiffness performance along z-axis, although the other values are modest. The stiffness of

IRSBot-2 is considerably low about 0.262.

Due to 4 actuated joints in D-SarruS, its stiffness is nearly three fold greater than IRSBot-

2, about 0.731. It is caused by a very small displacement along y-axis. Oppositely, when only

2 joints in D-SarruS are actuated, the displacements are quite large. Hence, it reduces the

stiffness value.
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(a) Stiffness along X-axis
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(b) Stiffness along Y-axis
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(c) Stiffness along Z-axis
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(d) Global Stiffness Index

Figure V.6 – Stiffness Index by CATIA

The stiffness performance within 27 manipulators due to the reaction forces and moments

acting on a rigid boy, are demonstrated in Fig. V.7. While Fig. V.8 presents the stiffness of
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manipulators due to the bending forces and moment. These two graphs possess almost identical

slope. The maximum stiffness value either from Fig. V.7 or Fig. V.8 is obtained by 2-UPU-2-

RPR parallel manipulator because link UP has the fewest reaction forces and moments.

The D-SarruS has greater stiffness value than IRSBot-2, either with 2 or 4 actuated joints.

However, the stiffness value for D-SarruS with 2 actuated joints is slightly higher than with 4

actuated joints. It happens due to the different number of reaction forces and moments acting

in the proximal module. When four revolute joints are actuated, the number of link for each

sub leg in the proximal module is equal to one. Thus, the stiffness of proximal module will

decrease.
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Figure V.7 – Stiffness Index with All Re-
action Forces and Moments
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Figure V.8 – Stiffness Index with Bending
Forces and Moments

V.5.2 Relationships between Stiffness Indices

The stiffness indices generated in Table V.6 are categorized from 1st to 27th ranking. The

manipulator in the 1st ranking shows the greatest stiffness performance, with index 0.9. Whilst

the lowest stiffness value is presented by the 27th ranking.
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Figure V.9 – Stiffness Ranking Comparison
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Suppose stiffness index in CATIA (SCatia) is a reference index among others, since the

analysis is quite comprehensive. SCatia then is sorted in ascending order, as depicted in Fig. V.9.

The other indices follow this order and they are plotted in the similar graph. In order to perceive

the impact of the number of loop in the manipulator towards the increase of stiffness, the loop

complexity KL is also sketched in Fig. V.9.

Both stiffness indices SBend and SAll (shown by light blue and green) possess similar slope

since SBend is computed as part of the reaction forces and moment acting on a link. Likewise, the

similarity of stiffness distribution is exhibited between stiffness index SRao and loop complexity

KL. On the other hand, those stiffness indices do not have identical order as CATIA index.

However, the relationship between four other stiffness indices with the CATIA index, as a

reference, must be further investigated. This phenomena is enumerated based upon the stiffness

ranking differences △. The smallest value of △ implies a good relationship with reference index,

namely CATIA index.

△ =

∑n
j=1 |Srank.ij − Srank.ref.j|

n
(V.14)

where:

• △ is stiffness ranking difference.

• Srank.ij is stiffness ranking from index i, assigned to manipulator j.

• Srank.ref.j is stiffness ranking from reference index, namely CATIA index, assigned to

manipulator j.

• n is the number of manipulators, which is 27 manipulators.

According to the description above, the stiffness ranking differences between each index to

the CATIA index can be calculated as follows:

• △All = 8.741

• △Bend = 8.963

• △Rao = 9.778

Obviously, the results reveals that the fewest value of stiffness ranking difference △ is

obtained by stiffness index with all reaction forces and moments, about 8.741. Accordingly,

this index has a good relationship with CATIA index, which can be useful to compute pareto

optimal solution in the next chapter.



VI
Pareto Optimal Solution

The actual design problems are commonly characterized by the presence of several conflicting

objectives. For instance, maximize the stiffness while trying to minimize the complexity perfor-

mance of manipulators. Thereby, the engineering design problems naturally appear as pareto

optimal solution where the designer requires considering some design criteria simultaneously.

In general case, trade-off exists among the objectives, where improvement in one objective

cannot be reached without deteriorating another. A pareto optimal solution rarely produces

a single optimal solution, alternatively, produces a set of equally valid solutions. Admittedly,

this chapter will determine and propose a set of manipulators which minimize the complexity

and at the same time maximize the stiffness by using pareto optimal solution.

Typically, there is no single global solution [19], and it is often essential to determine a set

of points that comprises non-dominated pareto optimal set. Non-dominated set is defined as a

set of all solutions that are not dominated by any other solution in the design space. It yields

to:

1. For any two solutions, x1 and x2, x1 is said to dominate x2 if these conditions hold:

– x1 is not worse than x2 in all objectives.

– x1 is strictly better than x2 in at least one objective.

2. If one of the above conditions does not hold, x1 does not dominate x2.

All pareto optimal points lie on the boundary of the feasible criterion space [19] and create

the Pareto Frontier, as performed in Fig VI.1

Figure VI.1 – Pareto Frontier
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VI.1 Pareto Set of 2 DOF Manipulators

The goal of the pareto optimal solution in the type synthesis of 2 dof manipulators is to

minimize the complexity and at the same time to maximize the stiffness performance. The

stiffness index which is used in this optimization process, is the stiffness index with reaction

forces and moments. In order to ease the computation process, the stiffness is converted into

compliance, given by:

C = 1 − S (VI.1)

where:

• C is the compliance.

• S is the stiffness index.

Therefore, the pareto optimal solution will minimize either the complexity or the compliance

at once, as depicted in Figure VI.2.
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Figure VI.2 – Pareto Optimal Solution of 2 dof Manipulators

Figure VI.2 demonstrates 8 points which lie on the pareto frontier. These 8 points correspond

to the optimal 2 dof manipulators which are recommended for the later design process, they

are manipulator 1st, 2nd, 4th, 7th, 8th, 9th, 22nd, and 26th.
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The 1st and 2nd manipulator are 2-PP and PP-RRR. They have simplest design among

others yet the stiffness is considerably low. On the contrary, the 8th, 22nd, and 26th manipu-

lators (respectively are 2-UPU-2-RPR, 2-P(2-RPR), and 2-P(2-UU)) possess significantly high

value of complexity but they exhibit great stiffness performances. The 2-P(2-UU) is an vari-

ant of IRSBot-2, where P joint is modified by Π in IRSBot-2. The preferable values either

for complexity or stiffness, are obtained by the manipulator 4th, 7th, and 9th (RRR-URU,

2-PRRR-RRR, and 2-PRRR-2-RRR).

Either D-SarruS with 2 or 4 actuators and IRSBot-2 are not included in the pareto set.

However from Fig. VI.2, D-SarruS (with 2 and 4 actuators) is preferable than IRSBot-2 because

D-SarruS is not dominated by IRSBot-2, namely D-SarruS higher stiffness and less complex.

All 27 manipulators are summarized in Table. VI.1, attributed with their complexity value

and stiffness index.

Table VI.1 – 2 dof Manipulators with Complexity and Stiffness Values

No Manipulator K S
2-PP

1 0.392 0.358

PP-RRR

2 0.424 0.386

RPR-PRRR

3 0.511 0.429

RRR-URU

4 0.480 0.508
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Table VI.1 – Continued

No Manipulator K S
2-RPR-URU

5 0.612 0.655

2-UPU-RRR

6 0.680 0.693

2-PRRR-RRR

7 0.556 0.603

2-UPU-2-RPR

8 0.738 0.900

2-PRRR-2-RRR

9 0.591 0.715

2-ΠΠ

10 0.560 0.458
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Table VI.1 – Continued

No Manipulator K S
ΠΠ-RRR

11 0.475 0.436

ΠRR-RΠRR

12 0.564 0.452

2-ΠUU-ΠRR

13 0.750 0.696

2-ΠRR-RΠRR

14 0.655 0.595

2-RRR-2-RΠRR

15 0.628 0.685

2-ΠRR-2-ΠUU

16 0.776 0.732
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Table VI.1 – Continued

No Manipulator K S
D-SarruS (4-actuators)

17 0.710 0.428

D-SarruS (2-actuators)

18 0.710 0.437

2-(2-RRR)-(2-RPR)

19 0.763 0.465

2-P(2-RRR)

20 0.658 0.693

2-Π(2-RRR)

21 0.707 0.307

2-P(2-RPR)

22 0.705 0.781
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Table VI.1 – Continued

No Manipulator K S
2-Π(2-RPR)

23 0.759 0.325

2-P(2-RRP)

24 0.705 0.693

2-Π(2-RRP)

25 0.759 0.307

2-P(2-UU)

26 0.704 0.830

IRSBot-2

27 0.761 0.336





VII
Conclusions and Future Works

VII.1 Summary

In this thesis report, 2 dof translational parallel manipulators were designed according to the

screw theory in [17]. Various type of legs which have specified leg-wrench system were produced.

These type of legs were assembled to be parallel manipulators, either with 2, 3, or 4 legs.

The existing type synthesis method based upon screw theory afterwards were developed in

order to discover novel 2 dof hybrid manipulators with two identical legs. Each leg is composed

of proximal and distal modules. While for each proximal and distal module consist of two

sub legs. By following the type synthesis process, numerous type of sub legs were created.

The hybrid manipulators were generated in spatial architecture but have translational planar

motions.

Once the type synthesis process was accomplished, the complexity of manipulator config-

urations were studied according to [7]. The evaluation involved available information at the

conceptual design stage, for instance type and number of joints, number of loops, and link

diversity.

Subsequently, the stiffness performances were examined through several methods. The first

stiffness analysis was done by using a method proposed by A.C.Rao [1]. All manipulators then

were investigated in CATIA regarding to their stiffness behaviour. New stiffness index was

introduced based upon the reaction forces and moments acting on a link, in order to approach

the stiffness performance at the conceptual design stage.

Ultimately, several manipulators have been selected among 27 manipulators by employ-

ing pareto optimal solution. The pareto optimal solution aims to minimize the complexity of

manipulator and meanwhile to maximize the stiffness performances.

VII.2 Major Contributions of the Thesis

The major contributions of this master thesis report are stated as follows:

1. Type of Legs for 2 dof Parallel Manipulators

According to the virtual chain approach proposed by [17], the exhaustive list of type of

legs for 2 dof parallel manipulators were provided in Chapter II. Furthermore, these type

of legs were synthesized intensely to produce 7 type of legs which are invariant leg-wrench

and free of inactive joint. These 7 type of legs eventually are very valuable for designers

who intend to build another new 2 dof parallel manipulator.
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2. New 2 dof Parallel Manipulators Based Upon Screw Theory

In Chapter II, several new architectures of 2 dof parallel manipulators were proposed with

2, 3, and 4 legs. The type synthesis process is based upon screw theory which has not

been reviewed yet by Xianwen Kong and Clément Gosselin in [17]. Finally, this chapter

gives contributions and completes the type synthesis process in [17].

3. The Screw Theory Method for Designing 2 dof Hybrid Manipulators with

Two Identical Legs

In Chapter III, the screw theory for type synthesis of hybrid manipulators was developed.

This method was derived from Chapter II which allows to:

– Classify two types of 2 dof hybrid manipulators with two identical legs.

– Define the wrench system for legs and sub legs.

– Synthesize type of sub legs which are free of inactive joint.

– Define new conditions for the assembly process of 2 dof hybrid manipulators with

two identical legs.

– Design IRSBot-2, which was invented by IRCCyN, Nantes.

4. Stiffness Analysis Based Upon the Reaction Forces and Moments

Chapter V develops new procedure to compute the stiffness performance of a manipulator

by considering the number of reaction forces and moments acting on a link. This method

allows to include the tension-compression effects and predict the stiffness at the conceptual

design stage. This idea could be a foundation for future researches.

VII.3 Future Works

Following the type synthesis of 2 dof translational manipulators described in this master thesis

report, a number of open problems could be taken up in the future as follows:

1. Implement the type synthesis method (based upon screw theory) defined in Chapter III

to create other lower-mobility hybrid manipulators with various motion patterns.

2. Further refinement of type synthesis method proposed in Chapter III.

3. Deeper analysis of type of sub legs which are non-invariant leg wrench system defined

in Chapter III. An attempt should be made to synthesize, whether they will be kept or

neglected.

4. Extending study of D-SarruS robot, since it is quite interesting. D-SarruS is assembled

only by revolute joints, in which each sub leg is invariant leg wrench system. Moreover,

it does not contain redundant twists and its complexity is lower than IRSBot-2.

5. Further improvement of stiffness index based upon the reaction forces and moments pro-

posed in Chapter V. Measurement and experiment are required to confirm the results.

Hence, the results could represent the stiffness performance of manipulators at the con-

ceptual design state.
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