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Chapter 1

Introduction

The quest to build better robots capable of completing more tasks is an important one,
that could lead to humanity as a whole having a much easier time of it. Recently, the use
of parallel robots in various fields has become apparent especially in precise manufactur-
ing, medical sciences and space exploration equipments [14, 15]. They are intrinsically
stiffer and faster than serial robots. An important merit of parallel robots is that there
are hundreds of possible architectures, each with very specific advantages and disadvan-
tages. Some parallel robots are perfect for machining (they are called Parallel Kinematic
Machines or PKMs) or for motion simulation, because they are rigid. Others are great for
pick-and-place operations, because their mobile part is light. Cable robots, for example,
are ideal for covering a very large work area, such as a stadium.

However, one aspect that few people seem to be considering as we approach a time
when robots are a mainstream part of our lives is the environmental impact such a sce-
nario may have. At the moment, robots are primarily made from metals and plastics,
both of which offer rigidity and a long life. In fact, these materials are generally toxic and
non-biodegradable. Furthermore, any robot must be tracked, and once it reaches the end
of its usable life, it should be dismantled, recovered and made safe. This adds complexity
to the robotic projects and there is an ever present risk that the robot is irrecoverable
with consequent damage to the environment. Additionally, these characteristics limit
the number of robots that can be employed since each must be tracked and recovered.
Hence, the overall impact on the environment of an army of robots doing our menial tasks
could be massively harmful – unless an alternative is sought. Constructing robots from
materials with low environmental impact, however, would mean they eventually cease to
be, merely decomposing into the earth. Wood, with environment-friendly properties like
low embodied energy, low carbon impact and sustainability could be used to design the
robots. The replacement of a carbon link with a wooden link in the design of a robot
arm presented by Laurent et al [2] proves that it is possible to reconcile the parallel robot
architecture and the wood elements to reduce the environmental impact of these machines.

In the design of parallel robots, it is important to have the links with the least moment
of inertia about the joints which helps reduce the power required by a motor attached at
those joints to run these robots. Also, it is necessary to keep a check on the deformation
of the links due to the loads applied on it.
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1.1 Objective

IRSBot-2 [1] developed in IRCCyN is a two degree-of-freedom translational parallel ma-
nipulator dedicated to fast and accurate pick-and-place operations. The objective of this
thesis is to replace the IRSBot-2 links by wood.

Figure 1.1: CAD modeling of the IRSBot2 with a wooden link [1].

The design of a wooden IRSBot robot can be classified into two main possible research
areas that can be conducted sequentially :

1. To perform the optimal and a robust design of a wooden link of the industrial robot
shown in Figure 1.1. Structural topology optimization can be adopted in this case.

2. Optimal design of the whole manipulator in regard to its kinematics, dynamics,
kinetostatics and elastodynamics.

Since the topic is very wide, only the first part is considered as the goal to be reached.
Hence the objective is to come up with a topology for the wooden link of IRSBot-2 having
least moment of inertia about the actuated joint with a constraint on deformation. This
design should also be robust (least sensitive to the change of properties of the wood
considered).

1.2 Dissertation plan

Introduction being the first chapter, the second chapter is the literature review on the
properties of wood, optimal and robust design in general, techniques for topology opti-
mization and the optimization methodologies that could be used to solve the problem at
hand. The third chapter sheds light into the method of Finite Element Analysis which is
a major part of the topology optimization. The fourth chapter explains the theory behind
the shape optimization of a wooden robot link, how it is implemented in MATLAB and
the validation of results in ANSYS. The MATLAB code written to optimize the moment
of inertia with constraints on displacement is given in Appendix A.



Chapter 2

Literature review

2.1 Wood properties

2.1.1 Advantages

Wood is experiencing a resurgence of interest due to its environmental qualities and
improving knowledge on its scientific properties by scientific research. One of the greatest
attributes of wood is that it is a renewable resource. If sustainable forest management
and harvesting practices are followed, our wood resource will be available indefinitely.
Wood has many positive characteristics [12]:

• Low embodied energy : The quantity of energy required to harvest, mine, man-
ufacture, and transport to the point of use a material or product. Wood, a material
that requires a minimal amount of energy-based processing, has a low level of em-
bodied energy relative to many other materials such as steel, concrete, aluminum,
or plastic.

• Low carbon impact : The carbon emitted while producing other materials is way
more than that of wood.

As indicated in Table 2.1 [12], carbon emitted to produce a tonne of concrete is
about eight times that emitted to produce a tonne of framing lumber. A similar
comparison for steel indicates that its production emits about 21 times as much
carbon as an equal weight of framing lumber. Wood products also mitigate carbon
emissions to the degree that they substitute for steel or concrete, which emit more
greenhouse gases in their production.

• Sustainability : Unlike metals and fossil-fuel-based products (such as plastics),
our forest resource is renewable and with proper management a flow of wood prod-
ucts can be maintained indefinitely. The forest certification programs not only
ensure that the forest resource is harvested in a sustainable fashion but also that is-
sues of biodiversity, habitat protection, and indigenous peoples’ rights are included
in land management plans.

Thierry et al. [2] highlight the environmental benefits of wood with statistics. Compared
to different kind of materials including metals, alloys, polymers, concrete, glass, glulam,
carbon footprint of the wood is almost neutral. In their study, it is evident that wood
stands out in properties like energy required for production, CO2 emission and the frac-
tion recyclable. To make a good comparison, the energy consumtion and CO2 emission

7
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Material Net carbon emission
in kg C/t

Framing lumber 33
Medium-density fiberboard
(virgin fiber)

60

Brick 88
Glass 154
Recycled steel (100% from
scrap)

220

Concrete 265
Recycled aluminum (100%
recycled content)

309

Steel 694
Plastic 2,502
Aluminum 4,532

Table 2.1: Net carbon emissions in producing a tonne of various materials [12].

are compared for the same application. Table 2.2 [2] shows the properties of different
materials for construction of a beam of 2m considered to endure a load of 10 tonnes per
meter.

Material Mass
volume
(kg/m3)

Elastic
limit
(MPa)

Height
(cm)

Mass
(kg)

Energy
consumed
(MJ)

Emission
CO2 (kg)

Composite Car-
bon

1500 200 11 36 9900 730

Alloy aluminium 2700 150 13 85 13900 890
Steel 7800 300 10 154 6500 300
Synthetic Poly-
mer

950 25 23 98 6600 140

Glass 2200 25 23 228 4600 230
Concrete 2500 10 31 476 950 80
Glulam against
plywood

750 35 20 62 560 -20

Hardwood
(spruce)

500 45 19 35 90 -70

Table 2.2: Comparison between different materials for the construction of a square section
beam of 2m supporting a load of 10 t/m [2].

Also, the characteristics of some important materials for a given treatment are plotted
as shown in Figure 2.1 [2]:
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Figure 2.1: Comparison of mechanical properties of several materials [2].

Some conclusions that could be drawn from the picture are [2]: The specific stiffness
of the poplar wood in the longitudinal direction is quite comparable to that of steel
whereas in the transverse direction, it is 10 times lower than that of steel. Compared to
other biological materials, wood has comparable hardness to that of bone. Compared to
composite materials, the specific properties of wood are generally lower.

2.1.2 Drawbacks of wood

Wood is an organic product—a structure of infinite variation of detail and design. It is
on this account that no two woods are alike: in reality no two specimens from the same
log are identical. The important factors that affect the properties are listed below: [12]

• Rate of growth.

• Specific gravity.

• Common defects like cross grains, knots, frost splits, shakes, galls and pitch pockets.

• Season of cutting.

• Water content.

• Temperature.

2.1.3 Choice of wood

There are umpteen varieties of wood in nature. The search for a wood that could satisfy
the needs of this project was based on the geographical location (trees in and around
France), their applications and material properties.
Raw wood materials like Poplar (peuplier), Oak (Chêne), Beech (Hêtre), Pine (Pin)
are the first choice since they are easily available and cost less.
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Accoya [16], the acetylated wood has many advantages over raw wood species in terms
of durability, strength to weight ratio, machinability, dimensional stability and other
properties.
Also, composite wood materials [12] created as a mixture of wood, thermoplastics
and a bonding material have some advantages over raw wood materials. Panel products,
structural timber products or wood-nonwood composites can be some of them.

Thierry et al [3] compare the mechanical properties of different varities of wood with
other composites and alloys in their project aimed at the eco-design of a high speed robot
arm made of wood. They choose the material from the selection map shown in figure 2.2
in which three equi-performance lines are shown. These lines correspond to a performance
index of the material M which is proportional to the shear strain per unit volume of the
material. Higher the M, higher is the stiffness and hence better performance. It is found
that the wood used in the L (longitudinal) direction (parallel to the fibers) are more
efficient than steels and equivalent to the best alloys of aluminum and titanium. The
behaviour of wood is also close to the behaviour of carbon composites in certain fiber
directions of the latter.

Figure 2.2: Material Selection Map [3].

In this thesis, the type of wood is not chosen in the beginning since the focus was
more on the design of the link. Nonetheless, the properties of the wood are the inputs to
the design which could be changed according to the type of wood chosen at the end.

2.1.4 Conclusion

Wood is a renewable source of energy with low embodied energy, low carbon impact
and sustainability. But it also has some drawbacks like change of properties with time
due to the environmental changes in temperature and humidity. Also, the properties of
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wood differ from one species to another. Wood can be modelled as an orthotropic material
since it has three axes of symmetry-longitudinal, radial and axial. Use of raw wood in the
design is easier and costs the least. But it has many disadvantages. The choice of wood
with better properties would be to use composite wood materials or accoya. Nonetheless,
the problems in variation of properties is inevitable. Therefore, two approaches can be
applied to tackle this problem:

• Optimal robust design : The objective of optimal robust design is to find the
optimal design parameters based on the defined constraints and minimize the vari-
ability that results from uncertainty due to variation in the parameters measured.
The approaches of optimal robust design are described in the subsequent chapters.

• Sensor based control : Exteroceptive sensors measure the current position of the
end-effector of the robot and keep updating the error between the current position
and the desired one [4]. In figure 2.3, s represents the current measure, s∗, the
desired measure and e, the error:

Figure 2.3: Sensor based control [4].

For example if s is the cartesian position of the end effector, the error in the cartesian
space, δx can be translated to the error in the joint space δq using the Jacobian, J of
the robot (δx = Jδq) and hence the control can be performed. Simialrly, kinematic
control involves velocities and dynamic control involves torques.

2.2 Optimal Design

2.2.1 Optimal design of a link

The optimal design of a link can be considered as a shape optimization problem since we
are looking for the best shape of the link satisfying the required properties. One of the
options is to come up with some designs by trial and error and to choose one of them
that behaves the closest to the metal link that is to be replaced [2, 3].
However, it will not cover the whole range of designs. Hence, the smart approach would
be to choose a design through optimization. A problem of shape optimization can be
defined by three ingredients : [17, 18]

• A model (typically a partial differential equation) to evaluate (or analyse) the
mechanical behavior of a structure.

• An objective function which has to be minimized or sometimes several objectives
(also called cost functions or criteria).
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• A set of admissible designs which precisely defines the optimization variables,
including possible constraints.

Optimal design problems can roughly be classified in three categories from the “eas-
iest” ones to the “most difficult” ones: They are described briefly in the subsequent
sections [18].

• Parametric or sizing optimization for which designs are parametrized by a
few variables (for example, thickness or member sizes), implying that the set of
admissible designs is considerably simplified.

• Geometric or shape optimization for which all designs are obtained from an
initial guess by moving its boundary (without changing its topology, i.e., its number
of holes in 2-d).

• Topology optimization where both the shape and the topology of the admissible
designs can vary without any explicit or implicit restrictions. The following section
gives a detailed literature review on the existing topology optimization problems
and the algorithms to solve them.

2.2.2 Topology optimization

Structural topology optimization is a mathematical process of finding the optimal layout
of prescribed amount of material within a given domain, with the aim of optimizing
desired performance objectives.

Most of these methods are based on finite element analysis (FEA) where the design
domain is discretized into a fine mesh of elements. In such a setting, the optimization
procedure is to find the topology of a structure by determining for every point in the
design domain if there should be material (solid element) or not (void element) [11].

Material interpolation used in topology optimization mainly includes the following
two types of methods: the homogenization method [19, 5], primarily used in the-
ory derivations, such as the existence of solutions, investigating numerical instabilities,
etc.; and the material density method, sometimes named the solid isotropic material
with penalization model (SIMP) method, proposed by Mlejnek and Schirrmacher
[20], Sigmund [21], and Bendsoe and Sigmund [22]. Then there is Bidirectional Evo-
lutionary Structural Optimization (BESO) [11] which takes advantage of powerful
computing technology and intuitive concepts of evolution processes in nature. Advantages
and disadvantages of each method are given below.

Homogenization approach

In the original paper by Bendsoe and Kikuchi(1988) [5], the topology optimization prob-
lem is tackled by considering two material constituents: substance and void. In that
context, the general problem formulation was given as follows [5]:

Consider a mechanical element as a body occupying a domain Ω in R3 and suppose
that the body is subject to body forces f and boundary tractions t on the boundary ΓT .
The fixed or constrained boundaries are denoted as ΓD (Refer Figure 2.4). In optimal
design for minimum compliance we seek the optimal choice of elasticity tensor Eijkl in
some given set of admissible elasticity tensors, Uad.
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Figure 2.4: Homogenization approach to topology optimization [5].

This method can also be applied for composite materials. It mainly consists of the
following steps:

1. Choose a suitable reference domain that allows you to define surface tractions, fixed
boundaries, etc.

2. Choose a composite, constructed by period repetition of a unit cell consisting of
the given material with one or more holes.

3. Compute the effective material properties of the composite, using homogenization
theory. This gives a functional relationship between the density of material in the
composite (i.e. sizes of holes) and the effective material properties.

4. Compute the optimal distribution of this composite material in the reference do-
main, treating the problem as a sizing problem with the density as the sizing vari-
able.

5. Interpret the optimal distribution of material as defining a shape, in the sense of
the general shape design formulation given above.

Advantages :
It can be used for any types of materials be it isotropic, anisotropic or even some porous
materials.

Disadvantages :
1. Quite complex to understand and apply.
2. Possibilities of checkerboard patterns and mesh-dependencies [23].

SIMP

The presently most popular numerical FE-based topology optimization method for isotr-
pic mterials is the SIMP method, which was developed in the late eighties. It is sometimes
called “material interpolation”, “artificial material”, “power law”, or “density” method,
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but “SIMP” is now used fairly universally [24]. The term “SIMP” stands for Solid
Isotropic Microstructure (or Material) with Penalization for intermediate den-
sities. The basic idea of this approach was proposed by Bendsoe [25], while the term
“SIMP” was coined later by the author and first introduced in a paper by Rozvany et al.
[26].

As already explained, topology optimization involves rendering a final design like a
black and white image with values 0-1.
Because of the size of this discrete value (0–1) problem, SIMP uses a continuous variable
formulation since direct search methods would be prohibitively expensive. Here, material
properties are assumed constant within each element used to discretize the design domain
and the variables are the element relative densities. The material properties are modelled
as the relative material density raised to some power times the material properties of solid
material. The penalization power assists the optimization to attain a 0-1 topology.

A topology optimization problem based on the power law approach (SIMP), where
the objective is to minimize compliance can be written as [27] :

minimize
x

c(x) = UTKU =
N∑
e=1

(xe)
pue

Tk0ue

subject to
V (x)

V0
= f

KU = F

0 ≤ xmin ≤ x ≤ 1

(2.1)

where U and F are the global displacement and force vectors, respectively, K is
the global stiffness matrix, ue and ke are the element displacement vector and stiffness
matrix, respectively, x is the vector of design variables, xmin is a vector of minimum
relative densities (non-zero to avoid singularity), N is the number of elements used to
discretize the design domain, p is the penalization power, V (x) and V 0 is the material
volume and design domain volume, respectively and f is the prescribed volume fraction.
More details on these parameters can be found in [27].

Solution algorithms

The optimization problem (2.1) could be solved using several different approaches such as
Optimality Criteria (OC) methods [27], Sequential Linear Programming (SLP) methods
or the Method of Moving Asymptotes [28] and others. These methods are briefly outlined
as follows :

Optimality criteria (OC) method
Following Bendsoe [29], in OC, a heuristic update scheme for the design variables is

formulated as given in [27]. Also a filtering scheme is used and sensitivity analysis is the
method used to obtain an optimum topology [27].

MMA (Method of Moving Asymptotes)
As Svanberg [28] argues, the ideal method for structural optimization should be flex-

ible, general, and able to handle not only element size as design variables, but also other
variables such as shape and material orientation angles. It should be able to handle
all kinds of constraints. MMA method can handle all of these problems in addition to
general non-linear programming problems. Also, it is easy to implement and use. The
method of moving asymptotes is based on a special type of convex approximation.
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Though MMA is quite a popular method for topology optimization, recent inves-
tigations have shown poor performance of the MMA algorithm as compared to other
approximations. Hence a two-point gradient based MMA approximation, termed as TG-
MMA, by Li and Kapil [30] can be adopted to improve the performance of the MMA
algorithm.

Advantages of SIMP :
1. SIMP solves for a continuous minimiser which has low compliance for a specified vol-
ume and produces a smooth solution.
2. SIMP is suitable for a combination of a wide range of design constraints, multiple load
conditions, multi-physics problems, and extremely large (often 3D) systems [24].

Disadvantages of SIMP :
1. Since the solution algorithms involve mathematical programming techniques, the
search region is wide and computational time is quite high.
2. Grey areas appear in the final decision and a post-optimalilty decision is to be made
to keep or remove these grey regions.
3. Has many continuation paths leading to different local solutions [24].

BESO

Bidirectional Evolutionary Structural Optimization (BESO) is an intuitive mehtod in-
spired by nature. By observing the evolution of naturally occurring structures such as
shells, bones and trees it becomes obvious that the topology and shape of such structures
achieve their optimum over a long evolutionary period and adapt to whatever environment
they find themselves in. It demonstrates the possibilities of achieving similar structural
shape and layout optimization by using the finite element analysis and training the soft-
ware to follow a particular evolutionary path [31, 32, 33]. It is a easy-to understand
method and works quite well in comparison with the standard SIMP technique.

Advantages of BESO :
1. Since the problem is binary, the search area is reduced considerably and hence an
optimum can be found easily.
2. Easy to understand and implement.
3. Gives just black and white regions.
4. It usually reaches a global optimum compared to homogenization method or SIMP [24].

Disadvantages of BESO :
1. Sometimes it is non-convergent and hence a stabilization method is to be used.
2. ESO breaks down if the sensitivity with respect to element density changes rapidly
over finite density variations.

Other algorithms

The topology optimization methods can be divided into two methods :

Node-based methods

These methods fill the design space with solid elements and derive bulk topologies.
Other than the most used algorithms OC and MMA, there are some standard mathe-
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matical programming methods such as the Sequential Linear Programming (SLP)
algorithm (Gomes and Senne [34], Sigmund [35], Kikuchi et al. [36]) and the Sequen-
tial Quadratic Programming (SQP) algorithm (Etman et al. [37]). Even a hybrid
scheme that uses quadratic approximations of some separable convex approximation func-
tions (Groenwold and Etman [38]) has been successfully employed to solve such problems.
Hybrid Cellular Automata (HCA) has been adopted for synthesis of topologies by
Patel and Mozumder [39]. It uses a regular grid of cells to cover the design space and
update rules to modify the density of these cells depending on their internal energy den-
sity (elastic and plastic deformation) and therefore derive a topology.

Graph-based methods

These methods derive thin-walled structures exploring only a subset of possible topolo-
gies: Ground Structure Approach (GSA) [40] consists in filling the space with ele-
mentary macro-elements with simplified crash behaviour and using different methods to
remove and/or modify these macro elements to reach an optimum design. Graph based
method [41] is based on an abstract graph representation of the structure, usually for
2D design spaces.

There are many methods in the literature to solve topology optimization problem.
Analysis of these methods makes it clear that BESO has many advantages and some
disadvantages that can be overcome by slight modifications in the code. For topology
optimization of the robotic link, BESO is considered and more details are given in chapter
4 about how thee method is derived, adopted and programmed.

2.3 Sensitivity analysis and Robust design

Robust product design is a concept from the teachings of Dr. Genichi Taguchi, a Japanese
quality guru [42]. It is defined as reducing variation in a product without eliminating
the causes of the variation. In other words, making the product or process insensitive to
variation. This variation (sometimes called noise) can come from a variety of factors and
can be classified into three main types: internal variation, external variation, and unit
to unit variation. Internal variation is due to deterioration such as the wear of a ma-
chine, and aging of materials. External variation is from factor relating to environmental
conditions such as temperature, humidity and dust. Unit to Unit variation is variations
between parts due to variations in material, processes and equipment.

In the case of optimal design of a wooden robot, the properties of wood suffer from
external variations due to the change of properties with respect to time, temperature
and humidity. Hence, robust design is a must. Nonetheless, there are chances of internal
and unit to unit variations due to dimensional variations, joint clearances, misalignment
of actuators, link flexibility, joint elasticity, [43] etc. Hence, robust design approach
is adopted to obtain an effective design which is the least tolerant to variations in its
parameters.
In the subsequent sections, optimal and robust design are compared and one of the
approaches to solve a multi-objective robust optimization problem is explained. But
first, it is important to see how robust design differs from optimal design.
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Optimal design vs. robust design

Optimal design behaves well for design parameters with minute or no variations. However,
multi-objective engineering design problems often have design parameters with uncon-
trollable variations due to noise or uncertainties [6]. Such variations can affect outcomes
significantly, such as the performances of objective functions and/or the feasibility of the
Pareto optimal solutions. A robust optimal solution is as good as possible with regard
to the objective functions, and it offers the lowest possible sensitivity to variations in
design variables and design parameters. In practice, all engineering designs are sensi-
tive to uncertainties that can arise from manufacturing operations, variations in material
properties, the operating environment and other reasons. Moreover, non-robust designs
can be expensive to produce or to operate and can fail frequently in service.

Figure 2.5 depicts that the optimal solution need not always be robust [6]. The per-
formance function f(x) is minimum when the design variable x is equal to xopt . However,
the sensitivity of f(x) to variations in xopt is significant. Indeed, ∆fopt , which depicts
the range of variations in f(x) for a given range of variations in x around xopt , is large.
On the contrary, xrob is a local minimum of function f(x), and the sensitivity of f(x) to
variations in xrob is very small. Indeed, ∆frob, which depicts the range of variations in
f(x) for a given range of variations in x around xrob, is small. In fact, ∆frob < ∆fopt.
Accordingly, xrob is a good solution to the single-objective robust optimization problem.

Figure 2.5: Robust vs optimal design [6]

In the case of a multi-objective optimization problem, a robust optimum solution
may be located in the neighborhood of the Pareto front. Such a solution should have
as little sensitivity as possible to uncertainties, because it cannot violate any constraint
and/or acceptable known variations in design objectives in the presence of uncertainties.
An effective way to approach to solve a multi-objective robust optimization problem is
detailed in the following section before which the advantages and disadvantages of robust
design are mentioned.

Advantages of robust design [42] :
1. The effect of robustness on quality is great. Robustness reduces variation in parame-
ters by reducing the effects of uncontrollable variation.
2. There is no need to fix the variation of parameters since it is accounted for in the
robust design.
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Disadvantages of robust design [42] :
1. To effectively deal with the noise, the designer must be aware of the noise. [6] gives
an approach to tackle the problem by splitting the parameters into controllable and
uncontrollable ones. Or a sensitivity analysis should be done to check the sensitivity of
the manipulator.
2. The problem becomes complex.
3. Design process becomes time consuming.
4. In most of the problems, the noise factors causing variation are considered to be
independent. In practice, they might be dependent.

Solving a Multi-Objective Robust Optimization Problem

There are many approaches in the literature to address these kind of problems [6]. One
of the efficient approaches is to define a robustness index (RI) and to include it as an
objective function to be optimized. The flowchart 2.6 illustrates the proposed postopti-
mality sensitivity analysis technique adopted by Wang et al. [7]:

Figure 2.6: flowchart of post-optimality sensitivity analysis [7]

As explained before, the properties of wood vary with moisture, temperature and
other environmental factors [12]. Hence Robust design approach is to be adopted so
that the sensitivity of performances to variations are minimized without controlling the
sources of these variations.

2.4 Optimization Methodologies

2.4.1 Introduction

Wikipedia defines mathematical optimization (alternatively, optimization or mathemat-
ical programming) as the selection of a best element (with regard to some criteria) from
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some set of available alternatives. In the simplest case, an optimization problem consists
of maximizing or minimizing a real function by systematically choosing input values from
within an allowed set and computing the value of the function.

Once the optimal design problem is formulated as shown in the previous sections, the
common procedure is to classify it into the existing optimization problems and to look
for an algorithm that could solve it. Two main categories of optimization problem are
convex and non-convex [44]. The algorithms to find the solution are based on this classifi-
cation. In many cases, softwares like MATLAB can be used to solve several optimization
problems since it has built-in functions. But, it is necessary to understand the algorithm
behind these functions to solve the problem in hand, to analyse the results and to modify
the algorithm to suit the problem if necessary. The following sections describe various
classifications of an optimization problem and the latest and efficient algorithms to find
a solution for those problems:

2.4.2 Categories of optimization problems

Recalling equation 3.1, a general optimization problem can be modelled as [45]:

minimize
x

f0(x)

subject to fi(x) ≤ bi, i = 1, . . . ,m.
(2.2)

All the optimization problems can be classified as convex and non-convex:
The class of optimization problems in which the constraint functions are convex are called
convex optimization problems [46], which means they satisfy the inequality

fi(αx+ βy) ≤ αfi(x) + βfi(y)

for all x, y ∈ Rn and all α, β ∈ R with α + β = 1 and α ≥ 0 and β ≥ 0.

Two very widely known and used special subclasses of convex optimization: least-
squares and linear programming:

• A least squares problem is an optimization problem with no constraints and an
objective which is a sum of squares of terms of the following form:

Minimize f0(x) = ||Ax−B||2 =
k∑
i=1

(ai
Tx− bi)2

Here, A ∈ Rk×n (with k ≥ n), ai
T are the rows of A, and the vector x ∈ Rn is

the optimization variable. Recognizing an optimization problem as a least-squares
problem is straightforward; we only need to verify that the objective is a quadratic
function (and then test whether the associated quadratic form is positive semidefi-
nite).

The two main techniques in a least square problem are [46]:

1. Weighted least squares with objective function

f0(x) =
k∑
i=1

wi(ai
Tx− bi)2 ;w1, ..., wk > 0
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2. Regularization, with objective function

f0(x) =
k∑
i=1

(ai
Tx− bi)2 + ρ

n∑
i=1

xi
2 ; ρ > 0

• Linear programming(LP), is an important class of optimization problems is in
which the objective and all constraint functions are linear [46, 45] :

minimize
x

cTx

subject to ai
Tx ≤ bi, i = 1, . . . ,m.

(2.3)

Here the vectors c, a1, ..., am ∈ Rn are scalars b1, ..., bm ∈ R are problem parameters
that specify the objective and constraint functions. If we consider equation 3.1, an
optimization problem is called a linear program if the objective functions satisfy:

fi(αx+ βy) = αfi(x) + βfi(y)

for all x, y ∈ Rn and all α, β ∈ R

Nonlinear optimization (or nonlinear programming, NLP) is the term used
to describe an optimization problem when the objective or constraint functions are not
linear [46]:

minimize
x

f(x)

subject to gi(x) ≤ bi, ∀i = 1, 2, ...,m and x ≥ 0
(2.4)

where f(x) and the gi(x) are given functions of the n decision variables. Sadly, there are
no effective methods for solving the general nonlinear programming problem. Methods for
the general nonlinear programming problem therefore take several different approaches,
each of which involves some compromise: Local optimization, in which the compromise
is to give up seeking the optimal x, which minimizes the objective over all feasible points.
Instead we seek a point that is only locally optimal, which means that it minimizes the
objective function among feasible points that are near it, but is not guaranteed to have
a lower objective value than all other feasible points.

Quadratic programming (QP) is a special case of NLP with the following math-
ematical model [46, 45]:

minimize
x

f(x) = cTx− 1

2
xTQx

subject to ATx ≤ b, and x ≥ 0
(2.5)

where c is a row vector, x and b are column vectors, Q and A are matrices, and the su-
perscript T denotes the transpose. QPs generalize both LPs and ordinary least-squares:
IF Q is a null matrix, QP reduces to LP and when Q = QT ≥ 0, QP reduces to a least
square prblem.

When the constraints are also quadratic in a QP, its called a Quadratic constrained
Quadratic Programming (QCQP) problem [46].

The problems that are not convex are called non-convex optimization problems
[46]. It encompasses all nonlinear programming problems that do not satisfy the assump-
tions of convex programming. QPs and QCQPs can be convex or non-convex.
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2.4.3 Algorithms for finding the solution

A solution method for a class of optimization problems is an algorithm that computes a
solution of the problem (to some given accuracy), given a particular problem from the
class, i.e., an instance of the problem [46].

Solution for convex problems

Thus, most of these algorithms to solve a convex problem fall into one of these following
three categories.

• Sequential-approximation algorithms: includes linear approximation and quadratic
approximation methods. These algorithms replace the nonlinear objective function
by a succession of linear or quadratic approximations:

1. Simplex method is one of the effective methods in solving the LP problems
[45]:
The corner points of a feasible region are called the CPF(Corener Point Fea-
sible) solutions. Simplex is an iterative algorithm with the following steps:

– Initialization: Set up to start iterations, including finding an initial CPF
solution.

– Optimality test: Is the current CPF solution optimal? If yes, stop. if no,
go to the next step.

– Iteration: Perform an iteration to find a better CPF solution.

Extensions and variations of the simplex method also are used to perform
postoptimality analysis (including sensitivity analysis) on the model.

2. Ordinary least square problems without any constraints can be solved using
linear algebra methods like SVD (Singular Value Decomposition). Con-
sider a QP as in equation 4.4, For such convex quadratic functions, any local
minimum is global if Q = QT ≥ 0. In fact, when Q > 0, then the unique
minimizer is x∗ = −Q−1c. It turns out one can leverage this approach to
minimizing more general functions, using an iterative algorithm, based on a
local quadratic approximation of the the function at the current point. The
approach can then be extended to problems with constraints, by replacing the
original constrained problem with an unconstrained one, in which the con-
straints are penalized in the objective.

• Sequential unconstrained algorithms [46]: includes penalty function and bar-
rier function methods. These algorithms convert the original constrained optimiza-
tion problem to a sequence of unconstrained optimization problems whose optimal
solutions converge to the optimal solution for the original problem:

1. Unconstrained minimization: Newton’s method : When an unconstrained
minimization problem is considered, where we seek to minimize a twice-differentiable
function f . If f is convex, global minima might be obtained. We start with
initial guess x0. At each step t, we update our current guess xt by minimizing
the second-order approximation f̃ of f at xt, which is the quadratic function.

If f is not convex, we might run into a local minima.
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2. Constrained minimization: Interior-point algorithm:

The basic idea behind interior-point methods is to replace the constrained
problem by an unconstrained one, involving a function that is constructed with
the original problem functions. The following concepts give a rough sketch of
how this algorithm can be implemented.

Concept 1: Shoot through the interior of the feasible region toward an optimal
solution.
Concept 2: Move in a direction that improves the objective function value at
the fastest possible rate.
Concept 3: Transform the feasible region to place the current trial solution
near its center, thereby enabling a large improvement when concept 2 is im-
plemented.

The interior-point approach is limited by the need to form the gradient and
Hessian of the function f above. For extremely large-scale problems, this task
may be too daunting.

• Gradient algorithms [46, 45]:

1. Unconstrained case: Gradient methods offer an alternative to interior-point
methods, which is attractive for large-scale problems. Typically, these algo-
rithms need a considerably larger number of iterations compared to interior-
point methods, but each iteration is much cheaper to process. Perhaps the
simplest algorithm to minimizing a convex function involves the iteration
xt + 1 = xt − αt 5 f(xt) where, αt > 0 is a parameter. The interpreta-
tion of the algorithm is that it tries to decrease the value of the function by
taking a step in the direction of the negative gradient.

2. Constrained case: The gradient method can be adapted to constrained prob-
lems, via the iteration xt + 1 = P (xt − αt 5 f(xt)) where P is the projection
operator, which to its argument z associates the point closest (in Euclidean
norm sense) to z in C. Depending on problem structure, this projection may
or may not be easy to perform.

Solution for non-convex problems

• Sequential Unconstrained Minimization Technique (SUMT) [46]: As the
name implies, SUMT replaces the original problem by a sequence of unconstrained
optimization problems whose solutions converge to a solution (local optimum) of
the original problem.

• Heuristic algorithms [47, 48] are recently gaining interest and prove to be effi-
cient most of the times even though they might not produce the exact solution in
every case with certainty. Nevertheless, a stochastic high–quality approximation of
a global optimum is probably more valuable than a deterministic poor–quality local
minimum provided by a classical method or no solution at all.

The most important and versatile heuristic algorithms are briefly described by re-
ferring [47, 48] :
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1. Simulated Annealing (SA):
- Kirkpatrick, Gelatt and Vecchi (1983).
- Based on analogy between combinatorial optimization and annealing process
of solids.
- Accepts uphill move, only with given probability (decreases in a number of
rounds to zero)
- Initialise a temperature, T and keep reducing it until the constraints are met
for the given numer of iterations.

2. Threshold Accepting (TA):
- Dueck and Scheuer (1990).
- Deterministic analog of Simulated Annealing.
- Sequence of temperatures T replaced by sequence of thresholds τ .

3. Tabu Search (TS):
- Glover and Laguna (1997).
- Designed for exploration of discrete search spaces with finite set of neighbor
solutions.
- Avoids cycling (visiting same solution more than once) by use of short term
memory (tabu list, most recently visited solutions).
- A simple way to update memory is to remove older entries from tabu list.
- Stopping criterion: given number of iterations or number of consecutive
iterations without improvement.

4. Genetic algorithm (GA):
- Imitates evolutionary process of species that sexually reproduce.
- Do not operate on a single current solution, but on a set of current solutions
(population).
- New individuals are generated with cross-over : combines part of genetic
patrimony of each parent and applies a random mutation. If new individual
(child), inherits good characteristics from parents, it has higher probability to
survive.

5. Ant colonies (AC):
- Colorni, Dorigo and Maniezzo (1992).
- Imitates the way ants search for food and find their way back to their nest.
- First an ant explores its neighborhood randomly. As soon as a source of food
is found it starts to transport food to the nest leaving traces of pheromone on
the ground which guide other ants to the source.
- Intensity of the pheromone traces depend on quantity and quality of food
available at source as well as from distance between source and nest, as for a
short distance more ants will travel on the same trail in a given time interval.
- As ants preferably travel along important trails their behavior is able to
optimize their work.
- Pheromone trails evaporate and once a source of food is exhausted the trails
will disappear and the ants will start to search for other sources.
- The search area of the ant corresponds to a discrete set of solutions.
- The amount of food is associated with an objective function.
- The pheromone trail is modelled with an adaptive memory.

Meta-heuristics involves one or more of these heuristic procedures working together
to find the optimal solution [47, 48].
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In general, an optimization problem can be classified into convex and non-convex.
Least squares and linear programming fall into the former category where as non-linear
programming, especially quadratic programming fall into the latter.

Solutions for convex problems include sequential approximation algorithms, sequential
unconstrained algorithms and gradient algorithms. Therefore, categorizing an optimiza-
tion problem is important since it narrows down the search for algorithms to solve it.

2.5 Steps to be carried out

• Defining the problem of interest and gathering relevant data : The problem of
interest has already been defined as the optimal and robust design of a wooden
robot. The existing techniques are studied and the technique that suits the problem
the most is to be chosen. If there is a program to solve this shape optimization
problem with inputs as the properties of wood, then analyzing the results will help
in making the choice of wood at a later stage. Secondly, the focus would be on
sensitivity analysis to find a robust solution.

• Formulating a mathematical model to represent the problem : Calculation of the
stiffness matrix of the wooden link and then that of the manipulator is to be done
with utmost care. Also, after including the robustness indices, a complete opti-
mization problem would be defined.

• Develop a procedure for deriving solutions to the problem from the model : The
solutions for similar optimization problems are studied. This narrows down the
search of algorithms to solve it. First priority is to use softwares like MATLAB
and to use the already existing functions to get a robust and an optimal solution.
Second priority is to improve the algorithm with the main intention of decreasing the
computation time while not affecting the solution. Different topology optimization
methods are considered. Among these methods, BESO, which is based on the
evolutionary process in nature is studied thoroughly and is found to be useful for
the optimal and robust design of the link.

• Testing : Once the solution is obtained, it should be tested in a software to check
if it behaves the way it is expected to behave. Validation is a crucial step to verify
that the thesis going in the right direction.

• Implementation : If time and resources permit, it would be interesting to manu-
facture a topologically optimized wooden link and to see the difference before and
after replacing the metal link on the robot with this wooden link.



Chapter 3

FEM

Finite Element Method (FEM) is one of the main parts of the topology optimization
process. To come up with a final topology, the initial design domain is discretized into
finite elements such that the elements can be removed or kept based on a criteria even-
tually to get the final topology. More the number of finite elements, better the design.
Nonetheless, a mesh-independent filter explained in the following chapters provides a de-
sign independent of the number of mesh chosen for the design.

In this chapter, the theory of finite element formulation is expressed and each step
in FEA are briefly explained. Mainly the steps involved in FEM are explained with
preference to a 4-noded rectangular element which is used in the later sections for
topology optimization.

Lines 206 to 232 perform finite element analysis of the given design domain in the
MATLAB code for shape optimization of a wooden robot link given in Appendix A.

3.1 Finite Element Formulation

Finite Element Method is a numerical method to solve problems of engineering and
mathematical physics like structural analysis, fluid flow, heat transfer, mass transport
and electromagnetic potential [49].

For problems involving complicated geometries, loading and material properties, it is
generally not possible to obtain analytical solutions since they involve solutions to the
ordinary or partial differential equations which are mostly unobtainable or difficult to ob-
tain. Hence finite element formulation is adopted which results in a system of algebraic
equations rather than differential equations. It yields approximate values of unknowns at
discrete points in the continuum. Therefore, in the finite element method, instead of solv-
ing the problem for the entire body in one operation, equations are formulated for each
discretized finite element and they are combined to obtain the solution of the whole body.

The general steps in the finite element method are [49] :

• Select the element type.

• Select an interpolation function.

• Define the stress/strain or strain/displacement relationships.

25
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• Derive the element stiffness matrix and equations.

• Assemble the element equations to obtain the global equations and introduce bound-
ary conditions.

• Solve for nodal displacements.

These steps are briefly discussed with some examples:

3.1.1 Selecting the element type and finding the interpolation
functions

For a general field problem, the field variable of interest is expressed on an element basis
in the discretized form. Field variables can be linear or angular displacements at the
nodes. Since the field variables, φi are computed only at nodes, the field variables at any
other point in the element, φe(x, y, z) are given by the following approximate relation [8]:

φe(x, y, z) =
M∑
i=1

Ni(x, y, z)φi (3.1)

where, M is the number of element degrees of freedom. Ni are called the interpolation
or shape functions. The interpolation functions are most often polynomial forms of
the independent variables, derived to satisfy certain required conditions at the nodes.

4 node square element

Rectangular elements are convenient for use in modeling regular geometries [8]. These
kind of elements are used in the further sections for topology optimization in two-
dimension. The simplest of the rectangular family of elements is the four-node rectangle
shown in Figure 3.1, where it is assumed that the sides of the rectangular are parallel to
the global Cartesian axes.

Figure 3.1: 4 node square element [8].

By convention, we number the nodes sequentially in a counterclockwise direction,
as shown. As there are four nodes and 4 degrees of freedom, a four-term polynomial
expression for the field variable, φ is appropriate.
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The following expression can be used to ensure geometric isotropy [8] :

φ(x, y) = a0 + a1x+ a2y + a3xy

Applying the four nodal conditions φ(x1, y1) = φ1, φ(x2, y2) = φ2, φ(x3, y3) = φ3 and
φ(x4, y4) = φ4 and writing in matrix form gives

φ1

φ2

φ3

φ4

 =


1 x1 y1 x1y1
1 x2 y2 x2y2
1 x3 y3 x3y3
1 x4 y4 x4y4



a0
a1
a2
a3


which gives the polynomial coefficients as

a0
a1
a2
a3

 =


1 x1 y1 x1y1
1 x2 y2 x2y2
1 x3 y3 x3y3
1 x4 y4 x4y4


−1 

φ1

φ2

φ3

φ4


In terms of the nodal values, the field variable is then described by

φ(x, y) =
[
1 x y xy

] 
a0
a1
a2
a3

 =
[
1 x y xy

] 
1 x1 y1 x1y1
1 x2 y2 x2y2
1 x3 y3 x3y3
1 x4 y4 x4y4


−1 

φ1

φ2

φ3

φ4


From the equation (3.1), the shape functions can be determined as

N1

N2

N3

N4

 =
[
1 x y xy

] 
1 x1 y1 x1y1
1 x2 y2 x2y2
1 x3 y3 x3y3
1 x4 y4 x4y4


−1

Since, the expression for the interpolation functions seems to be complex and hence a
more judicious choice of coordinates is employed to reduce the complexity. The normal-
ized coordinates (also known as natural coordinates or serendipity coordinates) r and s
are employed as follows:

r =
x− x̄
a

s =
y − ȳ
b

where 2a and 2b are the width and height of the rectangle, respectively, and the coordi-
nates of the centroid are

x̄ =
x1 + x2

2
ȳ =

y1 + y4
2

Therefore, r and s are such that the values range from -1 to +1, and the nodal coor-
dinates are as in figure 3.2:
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Figure 3.2: Transition to natural coordinates [8].

Considering the condition that the shape functions should have a value of 1 at the
corresponding node, the shape functions can be obtained by inspection [8] :

N1(r, s) =
1

4
(1− r)(1− s) (3.2)

N2(r, s) =
1

4
(1 + r)(1− s) (3.3)

N3(r, s) =
1

4
(1 + r)(1 + s) (3.4)

N4(r, s) =
1

4
(1− r)(1 + s) (3.5)

hence
φ(x, y) = φ(r, s) = N1(r, s)φ1 +N2(r, s)φ2 +N3(r, s)φ3 +N4(r, s)φ4 (3.6)

8 node cubic element

An 8-node element can be used in modelling for a 3-dimensional topology optimization.
For a 8 node cubic element (rectangular parallelepiped) as shown in fig 3.3 the interpo-
lation functions can be described as [8] :

Figure 3.3: 8 noded cubic element in cartesian and natural co-ordinates with origin at
the centroid [8].
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N1(r, s, t) =
1

8
(1− r)(1− s)(1 + t) N2(r, s, t) =

1

8
(1 + r)(1− s)(1 + t)

N3(r, s, t) =
1

8
(1 + r)(1 + s)(1 + t) N4(r, s, t) =

1

8
(1− r)(1 + s)(1 + t)

N5(r, s, t) =
1

8
(1− r)(1− s)(1− t) N6(r, s, t) =

1

8
(1 + r)(1− s)(1− t)

N7(r, s, t) =
1

8
(1 + r)(1 + s)(1− t) N8(r, s, t) =

1

8
(1− r)(1 + s)(1− t)

where,

r =
x− x̄
a

s =
y − ȳ
b

t =
z − z̄
b

x̄ =
x2 − x1

2
ȳ =

y3 − y2
2

z̄ =
z5 − z1

2

and the field variable is described as

φ(x, y, z) =
8∑
i=1

Ni(r, s, t)φi

3.1.2 Defining the strain-displacement relationships

Strain-displacement relationship in 3 dimensions for linear displacements u, v and w in
x, y and z directions is as follows. More details on the strain for a wooden element are
in the next chapter :

ε =



∂u
∂x
∂v
∂y
∂w
∂z

∂u
∂y

+ ∂v
∂x

∂u
∂z

+ ∂w
∂x

∂v
∂z

+ ∂w
∂y


=



∂u
∂x

0 0
0 ∂v

∂y
0

0 0 ∂
∂z

∂
∂y

∂
∂x

0
∂
∂z

0 ∂
∂x

0 ∂
∂z

∂
∂y


uv
w

 = [L]

uv
w



It is noted that for two dimensions, just the first, second and the fourth columns are
considered.

3.1.3 Stress strain relationships for a wooden element

This section explains how the stress strain relations are found out for a wooden element.
Stress tensor σij, that completely defines the state of stress at a point inside a material

in the deformed placement or configuration can be shown as below in figure 3.4:
By changing the tensor notation to matrix notation, stress tensor and the strain tensor

are related by Hooke’s law as follows [10]:

σi = Cijεi = σi =


C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66

 εi (3.7)
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Figure 3.4: Components of stress in three dimensions [9].

Cij is called the elastic stiffness tensor written in a matrix form. It is sometimes called
as the elastic stiffness matrix. But they are not the same. The derivation of the latter
is explained later. If there is a plane of symmetry, we need less independent parameters
to express the stiffness matrix. Wood, being an orthotropic material has three planes of
symmetry as shown in figure 3.5

Figure 3.5: Wood modelled as an orthotropic material [10].

Hence, 9 independent parameters are sufficient to express Cij as shown in the following
matrix [13]:

σi =


C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

 εi
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Rather, it’s easy to express the elastic compliance tensor for the tangential(T), radial(R)
and longitudinal(L) directions of the wood than the elastic stiffness tensor as shown below
in matrix form. σ, τ , ε, γ denote the direct stress, shear stress, direct strain and shear
strain respectively. E, G and ν are the Young’s modulus of elasticity, Shear modulus of
elasticity and Poisson’s ratio respectively [13]. From equation (3.7)

σi = Cijεi

Hence,
εi = C−1ij σi

For a wooden element, this relation can be expressed as
εLL
εRR
εTT
γRT
γTL
γLR

 =



1
EL

−νLR

EL
−νLT

EL
0 0 0

−νRL

ER

1
ER

−νRT

ER
0 0 0

−νTL

ET
−νTR

ET

1
ET

0 0 0

0 0 0 1
GRT

0 0

0 0 0 0 1
GTL

0

0 0 0 0 0 1
GLR




σLL
σRR
σTT
τRT
τTL
τLR

 (3.8)

where, σ, τ , ε, γ denote the direct stress, shear stress, direct strain and shear strain
respectively. E, G and ν are the Young’s modulus of elasticity, Shear modulus of elasticity
and Poisson’s ratio respectively [13].

Since there are 12 variables, 9 are independent due to the relation

νij
Ei

=
νji
Ej
, i 6= j ; i, j = L,R, T (3.9)

where, νij is the poisson’s ratio. The first letter, i of the subscript refers to direction of
applied stress and the second letter, j to direction of lateral deformation. The values
of young’s moduli E and moduli of torsion G for different species of wood for different
density and humidity are listed in table 3.1 [13]:

Species Density
(G/cm3)

Humidity
(%)

EL
(MPa)

ER
(MPa)

ET
(MPa)

GRT

(MPa)
GTL

(MPa)
GLR

(MPa)

Balsa 0.1 9 2490 120 40 10 90 130
Maple 0.58 9.6 10200 1550 890 300 1120 1240
Oak 0.67 11.6 5810 2190 990 400 780 1320
Beech 0.74 10.5 14010 2280 1160 470 1080 1640
Fir 0.39 12 11830 920 510 40 730 760
Pine 0.54 9.7 16610 1120 380 70 680 1780

Table 3.1: List of elastic constants for some wood species [13].

Similarly, poisson’s ratio ν for some species of wood at approximately 12% moisture
content is listed in table 3.2 [12]. The dashes denote that those values are very small and
are less precisely determined than the other values.
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Species νLR νLT νRT νTR νRL νTL
Balsa 0.229 0.488 0.665 0.231 0.018 0.009
Maple 0.434 0.509 0.762 0.354 0.063 0.044
Oak 0.350 0.448 0.560 0.292 0.064 0.033
Fir 0.341 0.332 0.437 0.336 - -
Pine 0.347 0.315 0.408 0.308 - -

Table 3.2: Poisson’s ratios for various species at approximately 12% moisture content
[12].

3.1.4 Deriving the elemental stiffness matrix

The elemental stiffness matrix is derived for a 4-node square element. The same procedure
can be used for other element types. For a 4-node element, assuming the degrees of
freedom at each node to be the linear displacements in x and y directions, u and w, the
matrix L relating the strain and displacements ε = L[u, v]T can be written as [8]

L =

∂u∂x 0
0 ∂v

∂y
∂u
∂y

∂v
∂x


Referring to (3.6), the field variables, u and v can be expressed in terms of the nodal

displacements as

[
u
v

]
= [N ]δ =

[
N1 0 N2 0 N3 0 N4 0
0 N1 0 N2 0 N3 0 N4

]


u1
v1
u2
v2
u3
v3
u4
v4


where, Ni are the interpolation functions as defined in equations (3.2) to (3.5) and ui

and vi are the linear displacements at node i. Thus the relation between the strain and
the nodal displacements can be written as :

ε = [L]

[
u
v

]
= [L][N ]δ = [B]δ

If the stress-strain relationship is given as

σ = [D]ε (3.10)

,
The matrix [D] for plain stress of a two-dimensional isotropic element with Young’s

modulus, E and Poisson’s ratio, ν is given by

[D] =

−
E

ν2−1 −
νE
ν2−1 0

− νE
ν2−1 −

E
ν2−1 0

0 0 E(ν−1)
2(ν2−1)
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Similarly, using the stress strain relations for wood, elemental stiffness matrix can be
derived for wood that depends on the Young’s moduli along the longitudinal and radial
directions, Poisson’s ratio and shear modulus in the LR plane, EL, ER, νLR and GLR

respectively. The D matrix used to derive the stiffness matrix for wood is given below:

[D] =


EL

2

EL−νLR
2ER

νLRELER

EL−νLR
2ER

0

νLRELER

EL−νLR
2ER

ELER

EL−νLR
2ER

0

0 0 GLR


then the elastic elemental stiffness matrix can be derived as shown below [50]:

The elastic potential energy of an element of a body is given by [50]:

Ue =
1

2

∫
V

σT εdV (3.11)

where, V is the volume of the body, σ and ε are the six-dimensional stresses and strains.
The elastic potential energy of an element can also be defined in terms of its elastic

stiffness matrix Ke as [50]:

Ue =
1

2
qe
TKeqe (3.12)

From, equations (3.10), (3.11) and (3.12)

Ke =

∫
V

[B]T [D][B]dV (3.13)

Using the above equation, the stiffness matrix for a 4-node isotropic element can be
derived as:

Ke =
E

1− ν2



3−ν
6

1+ν
8

−3−ν
12

−1+3ν
8

−3+ν
12

−1−ν
8

ν
6

1−3ν
8

1+ν
8

3−ν
6

1−3ν
8

ν
6

−1−ν
8

−3+ν
12

−1+3ν
8

−3−ν
12

−3−ν
12

1−3ν
8

3−ν
6

−1−ν
8

ν
6

−1+3ν
8

−3+ν
12

1+ν
8

−1+3ν
8

ν
6

−1−ν
8

3−ν
6

1−3ν
8

−3−ν
12

1+ν
8

−3+ν
12

−3+ν
12

−1−ν
8

ν
6

1−3ν
8

3−ν
6

1+ν
8

−3−ν
12

−1+3ν
8

−1−ν
8

−3+ν
12

−1+3ν
8

−3−ν
12

1+ν
8

3−ν
6

1−3ν
8

ν
6

ν
6

−1+3ν
8

−3+ν
12

1+ν
8

−3−ν
12

1−3ν
8

3−ν
6

−1−ν
8

1−3ν
8

−3−ν
12

1+ν
8

−3+ν
12

−1+3ν
8

ν
6

−1−ν
8

3−ν
6


In the same way, the stiffness matrix for wood can be derived. Ke for wood is not

displayed here since the elements of it are quite big though it has the dimension 8−by−8
for a 4-node two dof rectangular node.
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In Appendix A, the MATLAB code for topology optimization is given where lines 235
to 247 define the elemental stiffness matrix for yellow poplar in the LR (Longitudinal-
Radial) plane.

Once we have the elastic stiffness matrix of the wooden link, it can be used in opti-
mizing the design of the link which will be discussed in the subsequent sections.

3.1.5 Finding the global stiffness matrix and finding the un-
known displacements

The corresponding nodal elements of the local stiffness matrices, Ke are added to obtain
the global stiffness matrix K for the N finite elements:

[K] =
N∑
e=1

[Ke]

The nodal displacements U are solved for the forces F applied by the following relation :

[K]U = F

The derived stiffness matrix is validated with a FE software ANSYS. Before that
stiffness modelling in ANSYS is understood.

3.2 Stiffness modelling in ANSYS workbench

To verify if FEM code written in MATLAB, for some beams the results are compared
with a Finite Element Software, ANSYS whose results are shown later. Hence, the theory
behind the modelling in ANSYS workbench is studied and a brief explanation is given
below [51].

• Stiffness matrix : ANSYS uses the same stiffness matrix expression for a finite
element as given in equation (3.13).

• Failure criteria : ANSYS follows a failure criteria and gives an error if the loads
applied are causing material failure [51]. In our case, fatigue loads are not applied
and hence this problem need not be addressed.

• Type of elements : To have a correct comparison, a 4-node rectangular element is
used in ANSYS. But, in ANSYS reference guide, they are called as 2-D and ax-
isymmetric 4 node quadrialteral solids [51] and in ANSYS terminology, they are
called PLANE13 or PLANE42 elements. However the shape functions in the AN-
SYS guide for these elements are exactly the ones given in equation (3.2). Though
8 node elements are not used in this thesis, they could be used for 3d topology
optimization in the future. They are termed as SOLID45 in ANSYS terminology.

• Meshing parameters: All elements are forced to be quadratic and the element size
is kept same. each element is of dimension 1mm× 1mm with unit thickness.
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Validation of the derived stiffness matrix

Figure 3.6: Cantilever beam.

A cantilever beam as shown in figure 3.6 is considered. For the 20 N load applied,
two types of materials are considered:

1. Structural steel. The properties considered are Young’s modulus E = 200GPa
and Poisson’s ratio, ν = 0.3

2. Yellow poplar. The orthotropic properties in three different directions, longi-
tudingal(L), radial(R) and tangential(T) are taken from the wood handbook
[12] as follows: EL = 10893.7Mpa, ET

EL
= 0.043, ER

EL
= 0.092, GLR

EL
= 0.075,

GLT

EL
= 0.069, GRT

EL
= 0.011, νLR = 0.318, νLT = 0.392, νRT = 0.703, νTR =

0.329, νRL = 0.030, νTL = 0.019.

Figure 3.7: FE analysis of a cantilever beam of yellow poplar in ANSYS

The deformation is calculated at the hanging end using the stiffness matrix, K
derived as given in the previous section in MATLAB. The deformation is also cal-
culated by modelling the cantilever beam in ANSYS. The results are listed in the
following table 3.3. Also the figure 3.7 shows the FE analysis for the yellow poplar
in ANSYS where the deformation can be seen on the left top of the image.
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Type ANSYS MATLAB(derived K)
Structural steel 0.0673mm m 0.067mm
Yellow poplar 1.26mm 1.2mm

Table 3.3: Deformation of the cantilever beam.

3.3 Conclusion

FEA is a vital part of the topology optimization process. The steps involved in
Finite Element Analysis are explained with preference to the 4-node rectangular
element since it is the most widely used element for two-dimensional topology op-
timization.

Also, the methodology used to derive the stiffness matrix for a wooden element is
explained which is validated in ANSYS. The stiffness matrix is used for the topology
optimization in the following chapter. Since, the results are validated in ANSYS at
every step of the design process, FEM in ANSYS is briefly explained and it shows
how the stiffness modelling explained matches well with that of ANSYS.



Chapter 4

Shape optimization of a wooden
robot link

The method of Bidirectional Evolutionary Structural Evolution (BESO) [31, 32, 33,
11] is used as the basis for the shape optimization of a wooden robot link.

Evolutionary Structural Optimization (ESO) [31] method is inspired by the evolu-
tion of organisms over the period of time where material is removed to obtain an
optimum topology. BESO (Bi-directional Evolutionary Optimization) is the exten-
sion of ESO [11] where the material can be added or removed to obtain an optimum
topology.

In ESO/BESO methods, a structure is optimized by removing and adding elements.
That is to say that, the element itself, rather than its associated physical or material
parameters, is treated as the design variable [11]. The following sections explains the
steps involved in the topology optimization of the wooden link along with references
to the MATLAB code. The optimized designs are also depicted which are vaildated
using the FE software ANSYS.

4.1 Design domain

The robotic arm for which the topology is optimized has 2 holes with fixed and
loaded parts as shown in figure as the design domain 4.1a. The first hole which is
fixed is the actuated joint where the motor is connected and the second hole where
the load is applied is connected to the next link in the robot. The discretized design
domain is as shown in figure 4.1b. It is noted that the material is always kept for
a small region around the holes. Moment of inertia is considered always about the
center of the fixed hole.

Lines 4 to 60 in the MATLAB code written in Appendix A show how the design
domain, BESO parameters and the boundary conditions are defined.

37
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(a) Design domain for topology opti-
mization

(b) Descretized design domain

Figure 4.1: Initial design environment to find an optimum topology

4.2 Optimization problem

Since BESO [11] involves density function x taking values 0 or 1 which do not
depend on the material properties, it can be easily adopted to solve a topology
optimization problem for wooden materials. Hence, BESO was adopted to solve
the following topology optimization problem, to find the optimum topology such
that the mass moment of inertia about the fixed hole is minimum under a given set
of displacement constraints:

minimize
x

I(x) =
N∑
i=1

xiIi

subject to uj ≤ u∗j

KU = F

xi = xmin or 1

(4.1)

where, I(x) is the total moment of inertia which is calculated as the sum of the
moment of inertia of all the elements. Ii is the inertia of each element, xi is called
the density function taking values 0 or 1 and N is the total number of elements in
the design domain. . To avoid singularity problems, xi is not allowed to take a 0
value instead xmin which is usually a value close to zero. Here, xmin = 0.001. uj
and u∗j denote the jth displacement and its constraint where j can be any node in
the FE analysis. Here, j is the centre of the second hole where the displacement is
constrained. Note that the displacement constraint may be replaced by the mean
compliance constraint [52, 53]. K is the stiffness matrix relating the displacement
vector U to the load applied F .
Inertia of each element, Ii is calculated as shown below:

Referring to figure 4.2, for the link shown, mass moment of inertia about the centre
of each parallelepiped element (whose co-ordinates are (x1, y1)) with unit dimensions
and mass m,

I i1 =
m

12

By the principal axis theorem, moment of inertia about the centre of the fixed hole
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Figure 4.2: Calculating mass moment of inertia of each finite element

with co-ordinates (a1, b1),

Ii = I ih = I i1 +m[(x1 − a1)2 + (y1 − b1)2]

Refer lines 91 and 92 of the MATLAB code in Appendix A.

A similar problem with volume as the objective function and a displacement con-
straint has been solved in [54]. Using the same technique, inertia can be minimized
for a given displacement constraint.

In order to solve this problem using the BESO method, the displacement constraint
is added to the objective function by introducing a Lagrangian multiplier λ (follow-
ing the procedure in [52]) :

f1(x) =
N∑
i=1

Iixi + λ(uj − u∗j) (4.2)

Refer line 96 of the MATLAB code in Appendix A.

It is seen that the modified objective function is equivalent to the original one and
the Lagrangian multiplier can be any constant if the displacement constraint is
satisfied.

4.3 The BESO procedure adopted and flowchart

The evolutionary iteration procedure to solve the problem (4.1) is given as follows
[11]:

1. Define the design domain, boundary conditions : The design domain is
a link with two holes as defined in section 4.1. Boundary conditions are the
fixed and loaded nodes as shown in figure 4.1a.

2. Discretize the design domain using a finite element mesh and assign
initial property values (0 or 1) for the elements to construct an
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initial design : Finite element meshing is done as explained in the chapter
on FEM. 4-node square elements are used to mesh. The initial design looks
like figure 4.1b. The number of finite elements are the choice of the user. For
example, for a design domain of dimensions 50mm by 20mm, Meshing of 50
by 20 elements or 100 by 40 elements can be used. It is noted that, more the
number of finite elements, more the computational time to obtain an optimum
topology.

3. Perform finite element analysis and then calculate the elemental
sensitivity number : Knowing the loads applied and the global stiffness
matrix K, finite element analysis is done to obtain the displacement at each
node. This displacement is used to obtain the sensitivity number which will be
explained in section 4.4. It can be considered as the derivative of the objective
function or how the objective function changes with changes in the design
variable or density function xi.

4. Filter the sensitivity number and average it with its history informa-
tion and then save the resulted sensitivity number for next iteration
: The algorithm is based on BESO and hence is inherent to problems like
checkerboards (consecutive 0-1 values making the final design difficult to in-
terpret and manufacture) and mesh-dependencies (optimal design depends on
the mesh when it is varied from being coarse to fine meshing). Filtering the
sensitivities as in section 4.5 and averaging them with their history informa-
tion can help tackle the problem. BESO is also known to cause disturbances
and sometimes it might not converge to a point, These problems are tackled
again by averaging the sensitivity numbers as it is made clear in section 4.6.

5. Determine the jth displacement in the next iteration, Uk+1
j and set it

to the displacement constraint U∗j as specified by the user : Knowing
the displacement, Uk

j in the current iteration k at the jth node, the displace-
ment in the next iteration can be found out using the equation (4.6).

6. Determine the threshold of sensitivities and the corresponding tar-
get volume for the next iteration : By setting the displacement in the
next iteration to be the constraint i.e. Uk+1

j = U∗j , threshold of the sensitiv-
ities and the corresponding design values xi can be calculated. By summing
the values of xi over the total volume of the design domain gives the corre-
sponding volume fraction Vc. The methodology to find the threshold th and
the corresponding volume fraction Vc are explained in section 4.7.

7. Add and delete elements according to the procedure described in
section 4.8 : Once, the volume, Vc is determined, to ensure that the design
slowly converges to this volume, only a small amount of material is added
removed. Hence, volume added or deleted is decided by the evolution ratio ER
as shown in equation (4.7). Section 4.8 describes how it is done. Nonetheless,
this step is optional just to see the gradual change of volume from the initial
domain.

8. Repeat steps 2–7 until the convergence criterion is satisfied : The
steps are repeated until volume fraction Vc or the optimal design xi correspond-
ing to the displacement constraint is achieved and the convergence criterion
(4.8) is satisfied.
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Each step is described in detail in the following sections. A flowchart for shape
optimization of the wooden link using BESO is given in following figure 4.3.

Figure 4.3: Flowchart for the shape optimization of the wooden link.
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4.4 Sensitivity analysis

The core of the BESO procedure in sensitivity analysis. It is quite similar to the
gradient descent method in mathematical programming. The sensitivity of each
element is calculated and a threshold is defined based on the constraints. The el-
ement is kept (x = 1) or removed (x = 0.001) if the sensitivity of that element is
more or less than the threshold. The latter steps are explained in sections 4.7 and
4.8.

The derivative of the modified objective function f1(x) defined in equation (4.2) is

df1
dxi

= Ii + λ
du

dxi

To calculate
duj
dxi

, a virtual unit load fj is introduced, in which only the correspond-
ing jth component is equal to unity and all other components are equal to zero.
Therefore,

uj = fTj u

Based on the sensitivity analysis in previous sections, we obtain

duj
dxi

= −pxp−1i uTijK
0
i ui (4.3)

where uij is found from the following adjoint equation

fj −Kuij = 0

The above equation shows that uij is the virtual displacement vector of the ith
element resulted from a unit virtual load fj . Note that the dimension of ui and
uij is the same as that of u. However, all components in ui and uij that are not
related to element i are zero. Similarly, the dimensions of K0

i are the same as those
of K but all components in K0

i that are not related to element i are zero. Hence,
substituting (4.3) in the equation (4.2), we get

df1
dxi

= Ii − λpxp−1i uTijK
0
i ui

Note that here, the virtual load is considered the same as the actual load applied.
The reason behind that is the displacement that matters the most is at the centre
of the second hole where the loads are applied. That’s the node j where the con-
straint is applied. Considering the nodes around it where the loads are applied, will
automatically constrain the displacement at the centre. Moreover, the total virtual
load applied should be unity as is the total actual load applied.

When a uniform mesh is used (i.e. elements being of the same volume), the relative
ranking of sensitivity of each element can be defined by the following sensitivity
number

αi = − 1

λp

(
df1
dxi
− Ii

)
= xp−1i uTijK

0
i ui (4.4)

Sensitivity numbers for every element are calculated in line 93 of the MATLAB code
in Appendix A.
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4.5 Filter scheme for BESO method

As mentioned in the literature review, often the topology optimization procedures
result in checkerboard patterns where there are consecutive white and black regions
like a chessboard. Sometimes the design depends on the number of finite elements
meshed. To avoid checkerboards and mesh-dependencies, a filter scheme is to be
applied. For BESO, the following heuristic and simple filter scheme is applied which
is quite similar to the SIMP filter scheme [11]. Before applying the filter scheme,
nodal sensitivity numbers which do not carry any physical meaning on their own
are defined by averaging the elemental sensitivity numbers as follows [11]

αj
n =

M∑
i=1

wiαi
e

where M denotes the total number of elements connected to the jth node. wi is
the weight factor of the ith element and

∑M
i=1wi = 1. wi can be defined as

wi =
1

M − 1

(
1− rij∑M

i=1 rij

)

where rij is the distance between the centre of the ith element and the jth node.
The above weight factor indicates that the elemental sensitivity number has larger
effect on the nodal sensitivity number when it is closer to the node. The above
nodal sensitivity numbers will then be converted into smoothed elemental sensitivity
numbers. This conversion takes place through projecting nodal sensitivity numbers
to the design domain. Here, a filter scheme is used to carry out this process. The
filter has a length scale rmin that does not change with mesh refinement. The
primary role of the scale parameter rmin in the filter scheme is to identify the
nodes that will influence the sensitivity of the ith element. This can be visualized
by drawing a circle of radius rmin centred at the centroid of ith element, thus
generating the circular sub-domain Ωi as shown in Figure 4.4.

Figure 4.4: Nodes located inside the circular sub-domain Ωi are used in the filter scheme
for the ith element [11].
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Usually the value of rmin should be big enough so that Ωi covers more than one
element. The size of the sub-domain Ωi does not change with mesh size. Nodes
located inside Ωi contribute to the computation of the improved sensitivity number
of the ith element as

αi =

∑K
j=1w(rij)αj

n∑K
j=1w(rij)

where K is the total number of nodes in the sub-domain Ωi , w(rij) is the linear
weight factor defined as

w(rij) = rmin − rij j = 1, 2, ..., K

It can be seen that the filter scheme smoothes the sensitivity numbers in the whole
design domain. Thus, the sensitivity numbers for void elements are automatically
obtained. They may have high values due to high sensitivity numbers of solid
elements within the sub-domain Ωi . Therefore, some of the void elements may be
changed to solid elements in the next iteration.

The mesh-independency filter used by Sigmund and Petersson [55] is similar to this
filter except that they use element sensitivities than the nodal sensitivities. Also,
since they include the density of the element in the filter, the sensitivity number
for void elements will be infinite. The BESO filter produces results very similar
to those obtained by applying a local gradient constraint [56]. Also, averaging the
sensitivities as explained in the following section 4.6 is found to be an effective way
to avoid mesh-dependencies.

Subroutine lines 181 to 196 in the MATLAB code in Appendix A are for filtering
the sensitivities.

4.6 Stabilizing the Evolutionary Process

Unlike SIMP and homogenization methods, with ESO/BESO methods, large os-
cillations are often observed in the evolution history of the objective function [11].
The reason for such chaotic behaviour is that the sensitivity numbers of the solid
(1) and void (0) elements are based on discrete design variables of element presence
(1) and absence (0). This makes the objective function and the topology difficult
to converge. Huang and Xie [57] has found that averaging the sensitivity number
with its historical information is an effective way to solve this problem. The simple
averaging scheme is given as

αi =
αki + αk−1i

2
(4.5)

where k is the current iteration number. Then let αi
k = αi which will be used for

the next iteration. Thus, the updated sensitivity number includes the whole history
of the sensitivity information in the previous iterations.
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Figure 4.5: Design domain of a short cantilever [11].

For example, for a cantilever beam shown in figure 4.5 with a coarse mesh of 32 by
20 elements, Figure 4.6b shows the evolution history obtained by adopting the sta-
bilization scheme defined in equation (4.5). Compared to the result in Figure 4.6a,
the new solution is highly stable in both the topology and the objective function
(the mean compliance) after the constraint volume fraction (50%) is achieved.

(a) without the stabilization scheme (b) with the stabilization scheme

Figure 4.6: Comparison of evolution histories [11]

Line 105 to 107 in the MATLAB code in Appendix A stabilize the evolution process.

4.7 Determination of the structural volume to

satisfy the constraints

Once, the sensitivities are found, filtered and averaged, the prescribed constraints
are considered and the design xi which meets these constraints is found out. In
other words, the corresponding volume fraction Vc can be found out which is used
later to evolve gradually to an optimal design from an initial design.
With the sensitivity of the displacement uj in equation (4.3), the variation of the
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displacement due to changes in design variables can be estimated by

uk+1
j = ukj +

∑
i

dukj
dxi

∆xi (4.6)

where ukj and uk+1
j denote the jth displacement in the current and next iterations

respectively. From the above equation, the threshold of the sensitivity number as
well as the corresponding volume, Vc, can be easily determined by letting uk+1

j = u∗.

The threshold is determined using the bi-sectioning algorithm given for SIMP in
[27]. The bi-sectioning algorithm is initialized by taking the lowest sensitivity of the
elements as l1 and the highest one as l2. Initially, the threshold is considered as the
half of the bounds l1 and l2. Then the threshold, th is calculated at every iteration
such that the constraint is satisfied. This procedure is repeated until the interval
which bounds the threshold has its size less than the convergence criteria. Also the
design is changed at every iteration in this subroutine and the final design values
of xi are obtained corresponding to the threshold, th that satisfies the constraints.
The design is changed by adding and deleting elements. The general procedure
to add and delete the elements is described in the following section 4.8 Using xi,
the volume fraction Vc is calculated which is just the sum of all values of xi over
the total volume of the initial design domain. If xijnew is the design for which the
constraints are satisfied, then, the corresponding volume is

Vc =

∑N
i=1

∑M
j=1 x

ij
new

N ×M

where, N and M are the number of finite elements in the x and y directions of the
design domain. Their values will be proportional to the dimensions of the initial
design domain. Now, to reach this volume fraction, the following section explains
how the elements are removed and added.

Subroutine lines 130-160 in the MATLAB code in Appendix A find out the corre-
sponding volume fraction Vc satisfying the constraint.

4.8 Element Removal/Addition and Convergence

Criterion

We now have the final design and the corresponding volume fraction Vc. However,
the resultant volume fraction Vc may be much larger or far smaller than that of the
current design. In order to have a gradual evolution of the topology, the following
equation is adopted to determine the structural volume for the next iteration:

V k+1 =

{
max(V k(1− ER), V c) when V k > V c

min(V k(1 + ER), V c) when V k ≤ V c (4.7)

The above equation ensures that the volume change in each iteration be less than
the prescribed evolutionary volume ratio, ER, which defines the maximum varia-
tion of the structural volume in a single iteration. But this step is optional since a
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design which meets the constraints based on the sensitivity of the objective function
is already obtained.

To add or remove elements to attain the required design gradually, the sensitivity
numbers of all elements, both solid and void, are calculated as described in the
section 4.4. The elements are sorted according to the values of their sensitivity
numbers (from the highest to the lowest). For solid element (1), it will be removed
(switched to 0) if

αi ≤ αthdel

For void elements (0), it will be added (switched to 1) if

αi > αthadd

where αthdel and αthadd add are the threshold sensitivity numbers for removing and
adding elements, and αthdel is always less than or equal to αthadd . αthdel and αthadd can
be considered as the same and the threshold can be found out by the bi-sectioning
algorithm explained in the previous section 4.7.

The cycle of finite element analysis and element removal/addition continues until
the corresponding design or volume fraction Vc is reached while the displacement
constraints are satisfied and the following convergence criterion (4.8) (defined in
terms of the change in the objective function) is satisfied.

error =
|
∑N

i=1 Ik−i+1 −
∑N

i=1 Ik−N−i+1|∑N
i=1 Ik−i+1

≤ τ (4.8)

where I is the objective function denoting moment of inertia about the centre of the
fixed hole, k is the current iteration number, τ is a allowable convergence tolerance
and N is an integer number. Normally, N is selected to be 5 which implies that
the change in the mean compliance over the last 10 iterations is acceptably small.

Subroutine ADDEL : lines 163-178 in the MATLAB code in Appendix A are to find
out the new design by adding or deleting elements

4.9 Implementation

The MATLAB program given in Appendix A is implemented for the design domain
as shown in figure 4.1a. Two cases are considered :

CASE 1 : Forces on the second hole of the link are acting only in one di-
rection : As shown in figure 4.1a, the forces are acting only in y direction. This is
usually the case when the robot is vertical and due to gravity, the forces act only in
one direction. The procedure in section 4.3 is adopted to solve this kind of problem.

CASE 2 : Forces on the second hole might act in opposite directions :
This is the case when the robot is horizontal. Referring to figure 4.1a, the forces
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might be in y direction when the link is moving in one direction and in negative y
direction when the link starts moving in the opposite direction. It is obvious that
in this case, the final optimal design should be symmetric about the horizontal axis
AA′ in figure, 4.1a to account for forces in both directions. Hence, an extra step is
included in the optimization algorithm :

Once the sensitivities are filtered, the sensitivity of an element and its mirror el-
ement about the axis AA’ are checked and the maximum of these sensitivities is
considered as the new sensitivity value for both the elements.

In Appendix A, the lines of the subroutine 198 to 203 are to obtain a symmetrical
design for CASE 2.

Consider a displacement constraint of u∗j = 0.02mm for a design domain of dimen-
sion 50mm−by−20mm (hence nelx = 50 and nely = 20) and unit thickness. With
BESO parameters, evolutionary rate, er = 0.02 and rmin = 3, the optimal designs
for the two cases mentioned above are shown in figure 4.7 :

[U]=beso_inertia(50, 20, 0.02, 3)

(a) Case 1 : Forces in only one direction (b) Case 2 : Forces in oppposite directions

Figure 4.7: Optimal design for the two cases based on direction of force applied

For a displacement constraint u∗j = 0.02mm as shown in Appendix A, at the centre
of the second hole, case 1 yielded a displacement of uj = 0.0202mm and the sym-
metric design of case 2 resulted in uj = 0.0192mm. These displacements are quite
close to the constraint indicating the constraints are satisfied while minimizing the
inertia of the wooden robot link.

4.10 Validation of deformation for the link with

two holes

Both these final designs for the two cases mentioned in the previous section 4.9 are
modelled in ANSYS to check if the values of the deformations at the centre of the
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Type ANSYS MATLAB(softbeso code)
Case 1 : Force only in one direction 0.015 0.020mm
Case 2 : Force in two opposite directions 0.016 0.019mm

Table 4.1: Deformation of the optimized topology of a cantilever beam.

second hole match. The figure 4.8 indicates the FE analysis done in ANSYS. The
deformations are compared in the table 4.1 and it is concluded that they match
quite well.

(a) FE analysis for case 1 (b) FE analysis for case 2

Figure 4.8: FE analysis of the optimized designs in figure 4.7 in ANSYS

4.11 Robust design

It is evident by now that the properties of wood might vary due to differences like
temperature, geographical location, humidity etc. Hence robust design approach is
studied to be able to tackle the problem. The following figure 4.9 shows the varia-
tion of properties of different materials. For example, poplar wood in longitudinal
directions has its Young’s modulus varying form 0.8GPa to 1.4GPa with 1.1GPa as
the nominal value.

Figure 4.9: Variation of mechanical properties of several materials [2].
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The design which is least sensitive to these changes can be formulated as an opti-
mization problem with the objective function being

C = F TdU

where, F is the force vector with the dimension of number of nodes in the FEM, C
is the compliance due to the change in deformation. A smaller value of C implies
a less sensitive design. Hence C can be called as the Robustness index which
is to be minimized in the optimization problem. dU is a vector having the same
dimension as F and it contains changes in deformation due to the changes in the
properties of the wood. It can be expressed as follows

dU = (K + dK)−1dKU

which is derived from KU = F , the changes in dK are due to the changes in the
Young’s modulus, EL and ER denoted as dEL and dER of wood as shown in figure
4.9. It is calculated in the following way :

dK =
∂K

∂EL
dEL +

∂K

∂ER
dER

A multi-objective optimization problem can be formulated considering both the
inertia and the robustness index which is not done here due to the time constraint.

4.12 Conclusion

The core of the thesis is to perform the topology optimization. As explained in the
literature review, BESO is chosen to solve the topology optimization problem to
minimize the inertia since it has many advantages compared to other topological
optimization problems.

The stages in a topology optimization include Finite Element Analysis, Sensitivity
Analysis and Filtering and Stabilization to avoid some inherent problems associated
with the optimization problem. These stages are explained and the equations used
are derived which are useful to apply for minimizing the mass moment of inertia.

At every stage, reference is done to Appendix A to better understand the MATLAB
code written for the shape optimization of the wooden robot link. Finally, the
obtained optimized designs are modelled in ANSYS to compare the results and they
are seen to match well, though the little discrepancies may be due to the modelling
part. One thing to note is that the forces might act in different directions as shown
in section 4.9. One of the cases is chosen based on the application so that the
corresponding final design can be selected.

Robustness index gives an idea on the sensitivity of the design to the change in
parameters of the wood due to different uncontrollable factors.



Chapter 5

Conclusions and future work

Conclusions

Recent developments in Robotics are tremendous and robots are used almost every-
where. But the environmental impact of these bots made of components of metals
or alloys or plastics are often ignored. Hence, the project aims at replacing one of
the links of a parallel manipulator with an environment-friendly material, wood.

High speed parallel manipulator IRSbot2, developed in IRCCyN is introduced
and the the aim of the project is dictated as replacing one of its metal links with
a wooden link. The low-embodied energy, low carbon impact and sustainability
of wood make it a better choice in replacing the metal links. But, it also has its
demerits. Since wood is orthotropic, wood modelling is not simple. The change
of properties of wood with moisture and temperature make it challenging to design
a wooden link.

The problem considered is, the optimal design of the link. For the optimal design
of a link considering mass moment of inertia, topological optimization is employed.
The shape optimization of a wooden robot link with moment of inertia as the
objective function and a deformation constraint is solved adopting BESO method.
All the codes for topology optimization are written in MATLAB (Appendix
A gives the MATLAB code written for the topology optimization of a wooden
robot link) where the discretization of the design domain is done based on Finite
Element Analysis. Hence it is very important to validate the results with the help
of a Finite Element software. Here, ANSYS is used to find out the deformations
at the required points of the design if it matches with the deformation obtained
in MATLAB. Robust design is a must due to the use of wood for the design. A
robustness index is introduced to obtain a least sensitive design.

51
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Future work

Using the robustness index as shown in the last chapter, a multi-objective op-
timization problem is to be solved with objective functions as moment of inertia
and the robustness index. BESO code can be applied for the optimization by con-
sidering the objective function as the weighted sum of those objective functions.
Drawing a Pareto front will let us make a decision on which design is to be chosen
for the required application of replacing the metal link of the robot.

Once, the optimal and robust design of the wooden link are accomplished, optimal
design of the whole manipulator is to be done with the metallic links replaced by
wood. Here, the idea would be to perform the stiffness modelling of the manip-
ulator and to find a robust design for the manipulator with the wooden link that
can match the performance of the original manipulator using standard optimization
techniques.

This work will be continued under the project of RobEcolo, whose purpose is to
prove, by developing brand new optimal and robust design approaches (for each
design step, i.e. conceptual design, embedded design, detailed design, prototyping)
combined with advanced controllers, that it is possible to reach the accuracy per-
formance of current industrial robots made of metallic materials which have stable
dimensions with respect to the variation of the atmospheric conditions and con-
stant or known mechanical properties. The objective for the project is defined as
the design of a 2 degrees of freedom wooden parallel robot with repeatability lower
than 500 microns, deformations (under a load of 1 kg) lower than 500 microns in a
workspace of about 500mm× 500mm.
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Appendix A

MATLAB code for shape
optimization of the wooden link

The next code will be directly imported from a file

1 %%%%%% SHAPE OPTIMIZATION OF A WOODEN ROBOT LINK %%%%%%%%%%%%%%%%%%%%%
2 %%%%%% BASED ON THE SOFT−KILL BESO CODE BY X. HUANG and Y.M. Xie %%%%%
3 f unc t i on [U]= b e s o i n e r t i a ( nelx , nely , er , rmin ) ;
4 %% INITIALIZE BESO PARAMETERS
5 ne lx =50;
6 ne ly =20;
7 rmin=1.5 ;
8 er =0.02;
9

10 x ( 1 : nely , 1 : ne lx ) = 1 ; % I n i t i a l des ign value f o r opt imiza t i on
11 v o l f r a c =1; % I n i t i a l volume f r a c t i o n
12 i = 0 ;
13 change = 1 . ;
14 penal = 3 . ; % pena l i z a t i o n power as in SIMP
15 Umax=−200; % Constra int on deformation
16 lambda=1; % Lagrangian parameter
17

18 %% DEFINE THE DESIGN DOMAIN
19 % Two ho l e s in the l i n k
20 r1=ne ly /7 ; r2=ne ly /7 ;
21 b1=nely /2 ; b2=nely /2 ;
22 a1=nelx /6 ; a2=5∗ne lx /6 ;
23 e1=nely /12 ; e2=nely /12 ;
24 f o r e l y =1: ne ly
25 f o r e l x =1: ne lx
26 i f s q r t ( ( e ly−b1 ) ˆ2+( elx−a1 ) ˆ2)<r1 | | s q r t ( ( e ly−b2 ) ˆ2+( elx−a2 )

ˆ2)<r2
27 pas s i v e ( e ly , e l x )=1;
28 x ( e ly , e l x ) =0.001;
29 e l s e
30 pas s i v e ( e ly , e l x )=0;
31 end
32 % Mater ia l f o r a th i c kne s s e=e1=e2 around the ho l e s
33 i f s q r t ( ( e ly−b1 ) ˆ2+( elx−a1 ) ˆ2)>r1 && sqr t ( ( e ly−b1 ) ˆ2+( elx−a1 )

ˆ2)<r1+e1 | | s q r t ( ( e ly−b2 ) ˆ2+( elx−a2 ) ˆ2)>r2 && sqr t ( ( e ly−b2 ) ˆ2+( elx
−a2 ) ˆ2)<r2+e2

34 keep ( e ly , e l x )=1;
35 x ( e ly , e l x )=1;

54
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36 e l s e
37 keep ( e ly , e l x )=0;
38 end
39 end
40 end
41 %% DEFINING BOUNDARY CONDITIONS
42 %FIXED HOLE
43 f i x e d ( 1 : ( ne ly+1)∗( ne lx+1) )=0;
44 f o r e l y =1: ne ly
45 f o r e l x =1: ne lx
46 i f round ( sq r t ( ( e ly−b1 ) ˆ2+( elx−a1 ) ˆ2) )==round ( r1 )
47 f i x e d ( ( ne ly+1)∗( e lx −1)+e ly ) = 1 ;
48 end
49 end
50 end
51 %HOLE WITH LOAD
52 load ( 1 : ( ne ly+1)∗( ne lx+1) )=0;
53 f o r e l y =1: ne ly
54 f o r e l x =1: ne lx
55 i f e l x==round ( a2 ) && e ly==round (b2−r2 ) | | e l x==round ( a2 ) &&

e ly==round ( b2+r2 ) | | e l x==round ( a2−r2 ) && e ly==round (b2 ) | | e l x==
round ( a2+r2 ) && e ly==round (b2 )

56 load ( ( ne ly+1)∗( e lx −1)+e ly )=1;
57 end
58 end
59 end
60

61 %% START iTH ITERATION
62 whi le change > 0 .001
63 i = i + 1 ;
64 % Finding the next volume f r a c t i o n f o r gradual evo lu t i on o f

topo logy
65 i f i >1;
66 v o l f r a c=sum(sum(x ) ) /( ne lx ∗ ne ly ) ;
67 o lddI = dI ;
68 i f v o l f r a c>Vc
69 v o l f r a c=max( v o l f r a c ∗(1− er ) ,Vc) ;
70 e l s e
71 v o l f r a c=min ( v o l f r a c ∗(1+ er ) ,Vc) ;
72 end
73 end
74

75 % FE−ANALYSIS
76 [U, Uj]=FE( nelx , nely , x , penal , load , f i x ed ) ;
77

78 % OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS
79 [KE] = lk ;
80 I ( i ) = 0 . ;
81 I0 =0.217; % Maximum value o f i n e r t i a
82 dens i ty =4.2e−7; %in kg/mmˆ3
83 m=dens i ty ; % Volume o f each element =1mmˆ3
84 f o r e l y = 1 : ne ly
85 f o r e l x = 1 : ne lx
86 n1 = ( ne ly+1)∗( e lx −1)+e ly ;
87 n2 = ( ne ly+1)∗ e l x +e ly ;
88 dI ( e ly , e l x )=0;
89 Ue = U( [ 2∗ n1−1;2∗n1 ; 2∗n2−1;2∗n2 ; 2∗n2+1;2∗n2+2; 2∗n1+1;2∗

n1+2] ,1) ;
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90 Uej = Uj ( [ 2∗ n1−1;2∗n1 ; 2∗n2−1;2∗n2 ; 2∗n2+1;2∗n2+2; 2∗n1
+1;2∗n1+2] ,1) ;

91 I e = m∗(1/6+( elx−a1 ) ˆ2+( ely−b1 ) ˆ2) ; % Moment o f i n e r t i a o f
each element

92 I ( i ) = I ( i ) + x ( ely , e l x ) ˆ penal ∗ I e ; % Total moment o f
i n e r t i a

93 dI ( e ly , e l x ) = (x ( e ly , e l x ) ˆ( penal−1)∗Uej ’∗KE∗Ue) /abs (Umax) ;
% S e n s i t i v i t y number

94 end
95 end
96 I1 ( i )=I ( i ) / I0+lambda ∗(U(1742 ,1 )−Umax) /abs (Umax) ; % New ob j e c t i v e

func t i on ( normal ized )
97

98 % FILTERING OF SENSITIVITIES
99 [ dI ] = check ( nelx , nely , rmin , dI ) ;

100

101 % SYMMETRICAL DESIGN UPDATE
102 [ dI ] = symmetry ( nelx , nely , dI ) ;
103

104 % STABLIZATION OF EVOLUTIONARY PROCESS
105 i f i > 1 ;
106 dI = ( dI+olddI ) / 2 . ;
107 end
108

109 % CORRESPONDING VOLUME FRACTION BASED ON THE DISPLACEMENT
CONSTRAINT

110 [ Vc]=volume ( nelx , nely , dI , x ,U, Uj ,Umax, pass ive , keep ) ;
111

112 % BESO DESIGN UPDATE
113 [ x ] = ADDDEL( nelx , nely , dI , vo l f r a c , pass ive , keep ) ;
114

115 % CONVERGENCE CRITERION
116 i f i >10;
117 change=abs (sum( I ( i −9: i −5) )−sum( I ( i −4: i ) ) ) /sum( I ( i −4: i ) ) ;
118 end
119

120 % PRINT RESULTS
121 di sp ( [ ’ I t . : ’ s p r i n t f ( ’%4i ’ , i ) ’ Obj . : ’ s p r i n t f ( ’%10.4 f ’ , I1 ( i ) )

. . .
122 ’ Vol . : ’ s p r i n t f ( ’%6.3 f ’ , sum(sum(x ) ) /( ne lx ∗ ne ly ) ) . . .
123 ’ ch . : ’ s p r i n t f ( ’%6.3 f ’ , change ) ] )
124

125 % PLOT DENSITIES
126 colormap ( gray ) ; imagesc(−x ) ; ax i s equal ; ax i s t i g h t ; ax i s o f f ;

pause (1 e−6) ;
127 end
128

129 %%%%% FINDING Vc , CORRESPONDING VOLUME FRACTION %%%%%%%
130 f unc t i on [Vc]=volume ( nelx , nely , dc , x ,U, Uj ,Umax, pass ive , keep )
131 l 1 = min (min ( dc ) ) ;
132 l 2 = max(max( dc ) ) ;
133 j =0;
134 [KE] = lk ;
135 penal=3;
136 whi le ( l2−l 1 ) / l2 >1.0e−5
137 j=j +1;
138 du( j )=0;
139 xold=x ;
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140 th = ( l 1+l2 ) / 2 . 0 ; % thre sho ld o f the s e n s i t i v i t y
141 x = max(0 . 001 , s i gn ( dc−th ) ) ; % Update the des ign based on the

th r e sho ld
142 x ( f i nd ( pa s s i v e ) ) =0.001;
143 x ( f i nd ( keep ) )=1;
144 f o r e l y = 1 : ne ly
145 f o r e l x = 1 : ne lx
146 n1 = ( ne ly+1)∗( e lx −1)+e ly ;
147 n2 = ( ne ly+1)∗ e l x +e ly ;
148 Uej = Uj ( [ 2∗ n1−1;2∗n1 ; 2∗n2−1;2∗n2 ; 2∗n2+1;2∗n2+2; 2∗n1

+1;2∗n1+2] ,1) ;
149 Ue = U( [ 2∗ n1−1;2∗n1 ; 2∗n2−1;2∗n2 ; 2∗n2+1;2∗n2+2; 2∗n1+1;2∗

n1+2] ,1) ;
150 du( j )=du( j )−penal ∗x ( e ly , e l x ) ˆ( penal−1)∗Uej ’∗KE∗Ue∗( x ( e ly ,

e l x )−xold ( e ly , e l x ) ) ;
151 end
152 end
153 Uk=max(U(1742 ,1)+du ,Umax) ; % Finding the disp lacement in the next

i t e r a t i o n
154 % Checking the c on s t r a i n t and changing the i n t e r v a l o f

s e n s i t i v i t i e s
155 i f Uk > Umax;
156 l 1 = th ;
157 e l s e l 2 = th ;
158 end
159 end
160 Vc=sum(sum(x ) ) /( ne lx ∗ ne ly ) ; % Corresponding volume f r a c t i o n f o r the

new des ign
161

162 %%%%%%% UPDATE FOR THE NEXT ITERATION %%%%%%%%%
163 f unc t i on [ xnew]=ADDDEL( nelx , nely , dc , vo l f r a c , pass ive , keep )
164 l 1 = min (min ( dc ) ) ;
165 l 2 = max(max( dc ) ) ;
166 whi le ( l2−l 1 ) / l2 >1.0e−5
167 th = ( l 1+l2 ) / 2 . 0 ;
168 %i f dc i s g r e a t e r than th , add element , e l s e d e l e t e element .
169 xnew = max(0 . 001 , s i gn ( dc−th ) ) ; %Updating the des ign v a r i a b l e s x
170 xnew( f i nd ( pa s s i v e ) ) =0.001;
171 xnew( f i nd ( keep ) )=1;
172 %Checking i f volume f r a c t i o n due to the new des ign < the t a r g e t

volume
173 i f sum(sum(xnew) )−v o l f r a c ∗( ne lx ∗ ne ly ) > 0 ;
174 l 1 = th ;
175 e l s e
176 l 2 = th ;
177 end
178 end
179

180 %%%%%%% MESH−INDEPENDENCY FILTER %%%%%%%%%%
181 f unc t i on [ dc f ]=check ( nelx , nely , rmin , dc )
182 dc f=ze ro s ( nely , ne lx ) ;
183 f o r i = 1 : ne lx
184 f o r j = 1 : ne ly
185 sum=0.0;
186 f o r k = max( i−f l o o r ( rmin ) ,1 ) : min ( i+f l o o r ( rmin ) , ne lx )
187 f o r l = max( j−f l o o r ( rmin ) ,1 ) : min ( j+f l o o r ( rmin ) , ne ly )
188 f a c = rmin−s q r t ( ( i−k ) ˆ2+( j−l ) ˆ2) ;
189 sum = sum+max(0 , f a c ) ;
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190 dc f ( j , i ) = dc f ( j , i ) + max(0 , f a c ) ∗dc ( l , k ) ;
191 end
192 end
193 dc f ( j , i ) = dc f ( j , i ) /sum ;
194 end
195 end
196

197 %%%%%%%%% SYMMETRY %%%%%%%%%%
198 f unc t i on [ dI ] = symmetry ( nelx , nely , dI )
199 f o r e l y =1: ne ly
200 f o r e l x =1: ne lx
201 dI ( e ly , e l x )=max( dI ( e ly , e l x ) , dI ( nely−e l y +1, e l x ) ) ;
202 end
203 end
204

205 %%%%%%%%%% FE−ANALYSIS %%%%%%%%%%%%%%
206 f unc t i on [U, Uj]=FE( nelx , nely , x , penal , load , f i x ed )
207 [KE] = lk ;
208 K = spar s e (2∗ ( ne lx+1)∗( ne ly+1) , 2∗( ne lx+1)∗( ne ly+1) ) ;
209 F = spar s e (2∗ ( ne ly+1)∗( ne lx+1) ,1 ) ; % Actual load
210 U = ze ro s (2∗ ( ne ly+1)∗( ne lx+1) ,1 ) ; % Displacement due to ac tua l load
211 Fj = spar s e (2∗ ( ne ly+1)∗( ne lx+1) ,1 ) ; % v i r t u a l load
212 Uj = ze ro s (2∗ ( ne ly+1)∗( ne lx+1) ,1 ) ; % disp lacement due to v i r t u a l load
213 f o r e l x =1: ne lx
214 f o r e l y = 1 : ne ly
215 n1 = ( ne ly+1)∗( e lx −1)+e ly ;
216 n2 = ( ne ly+1)∗ e l x +e ly ;
217 edof = [2∗n1−1; 2∗n1 ; 2∗n2−1; 2∗n2 ; 2∗n2+1; 2∗n2+2; 2∗n1+1; 2∗

n1+2] ;
218 K( edof , edo f ) = K( edof , edo f ) + x ( ely , e l x ) ˆ penal ∗KE;
219 end
220 end
221

222 % DEFINE LOADS AND SUPPORTS
223 F(2∗ f i nd ( load ) ,1 ) = −0.25;
224 Fj (2∗ f i nd ( load ) ,1 ) = −0.25;
225 f i x e ddo f s = union (2∗ f i nd ( f i x ed ) ,2∗ f i nd ( f i x ed )−1) ;
226 a l l d o f s = [ 1 : 2 ∗ ( ne ly+1)∗( ne lx+1) ] ;
227 f r e e d o f s = s e t d i f f ( a l l d o f s , f i x e dd o f s ) ;
228 % SOLVING
229 U( f r e edo f s , : ) = K( f r e edo f s , f r e e d o f s ) \ F( f r e edo f s , : ) ;
230 U( f i x eddo f s , : )= 0 ;
231 Uj ( f r e edo f s , : ) = K( f r e edo f s , f r e e d o f s ) \ Fj ( f r e edo f s , : ) ;
232 Uj ( f i x eddo f s , : )= 0 ;
233

234 %%%%%%% ELEMENT STIFFNESS MATRIX f o r YELLOW POPLAR (LR) %%%%%%%%
235 f unc t i on [KE]= lk
236 E L=1.1; %in GPa
237 E R=0.092∗E L ;
238 G L R=0.075∗E L ;
239 nu LR=0.318;
240 KE = 1/2∗ [ ( 2∗G L R) /3 + (2∗E Lˆ2) /(3∗ (E L − nu LRˆ2∗E R) ) , G L R/2 + (

nu LR∗E L∗E R) /(2∗ (E L − nu LRˆ2∗E R) ) , G L R/3 − (2∗E Lˆ2) /(3∗ (E L
− nu LRˆ2∗E R) ) , (nu LR∗E L∗E R) /(2∗ (E L − nu LRˆ2∗E R) ) − G L R
/2 , − G L R/3 − E Lˆ2/(3∗(E L − nu LRˆ2∗E R) ) , − G L R/2 − (nu LR∗
E L∗E R) /(2∗ (E L − nu LRˆ2∗E R) ) , E Lˆ2/(3∗(E L − nu LRˆ2∗E R) ) −
(2∗G L R) /3 , G L R/2 − (nu LR∗E L∗E R) /(2∗ (E L − nu LRˆ2∗E R) ) ;
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241 G L R/2 + (nu LR∗E L∗E R) /(2∗ (E L − nu LRˆ2∗E R) ) , (2∗G L R) /3 +
(2∗E L∗E R) /(3∗ (E L − nu LRˆ2∗E R) ) , G L R/2 − (nu LR∗E L∗E R) /(2∗ (
E L − nu LRˆ2∗E R) ) , (E L∗E R) /(3∗ (E L − nu LRˆ2∗E R) ) − (2∗G L R)
/3 , − G L R/2 − (nu LR∗E L∗E R) /(2∗ (E L − nu LRˆ2∗E R) ) , − G L R/3
− (E L∗E R) /(3∗ (E L − nu LRˆ2∗E R) ) , (nu LR∗E L∗E R) /(2∗ (E L −
nu LRˆ2∗E R) ) − G L R/2 , G L R/3 − (2∗E L∗E R) /(3∗ (E L − nu LRˆ2∗
E R) ) ;

242 G L R/3 − (2∗E Lˆ2) /(3∗ (E L − nu LRˆ2∗E R) ) , G L R/2 − (nu LR∗E L∗
E R) /(2∗ (E L − nu LRˆ2∗E R) ) , (2∗G L R) /3 + (2∗E Lˆ2) /(3∗ (E L −
nu LRˆ2∗E R) ) , − G L R/2 − (nu LR∗E L∗E R) /(2∗ (E L − nu LRˆ2∗E R) ) ,
E Lˆ2/(3∗(E L − nu LRˆ2∗E R) ) − (2∗G L R) /3 , (nu LR∗E L∗E R) /(2∗ (

E L − nu LRˆ2∗E R) ) − G L R/2 , − G L R/3 − E Lˆ2/(3∗(E L − nu LRˆ2∗
E R) ) , G L R/2 + (nu LR∗E L∗E R) /(2∗ (E L − nu LRˆ2∗E R) ) ;

243 (nu LR∗E L∗E R) /(2∗ (E L − nu LRˆ2∗E R) ) − G L R/2 , (E L∗E R) /(3∗ (
E L − nu LRˆ2∗E R) ) − (2∗G L R) /3 , − G L R/2 − (nu LR∗E L∗E R) /(2∗ (
E L − nu LRˆ2∗E R) ) , (2∗G L R) /3 + (2∗E L∗E R) /(3∗ (E L − nu LRˆ2∗
E R) ) , G L R/2 − (nu LR∗E L∗E R) /(2∗ (E L − nu LRˆ2∗E R) ) , G L R/3 −
(2∗E L∗E R) /(3∗ (E L − nu LRˆ2∗E R) ) , G L R/2 + (nu LR∗E L∗E R)

/(2∗ (E L − nu LRˆ2∗E R) ) , − G L R/3 − (E L∗E R) /(3∗ (E L − nu LRˆ2∗
E R) ) ;

244 − G L R/3 − E Lˆ2/(3∗(E L − nu LRˆ2∗E R) ) , − G L R/2 − (nu LR∗E L∗
E R) /(2∗ (E L − nu LRˆ2∗E R) ) , E Lˆ2/(3∗(E L − nu LRˆ2∗E R) ) − (2∗
G L R) /3 , G L R/2 − (nu LR∗E L∗E R) /(2∗ (E L − nu LRˆ2∗E R) ) , (2∗
G L R) /3 + (2∗E Lˆ2) /(3∗ (E L − nu LRˆ2∗E R) ) , G L R/2 + (nu LR∗E L∗
E R) /(2∗ (E L − nu LRˆ2∗E R) ) , G L R/3 − (2∗E Lˆ2) /(3∗ (E L − nu LR
ˆ2∗E R) ) , (nu LR∗E L∗E R) /(2∗ (E L − nu LRˆ2∗E R) ) − G L R/2 ;

245 − G L R/2 − (nu LR∗E L∗E R) /(2∗ (E L − nu LRˆ2∗E R) ) , − G L R/3 − (
E L∗E R) /(3∗ (E L − nu LRˆ2∗E R) ) , (nu LR∗E L∗E R) /(2∗ (E L − nu LR
ˆ2∗E R) ) − G L R/2 , G L R/3 − (2∗E L∗E R) /(3∗ (E L − nu LRˆ2∗E R) ) ,
G L R/2 + (nu LR∗E L∗E R) /(2∗ (E L − nu LRˆ2∗E R) ) , (2∗G L R) /3 +
(2∗E L∗E R) /(3∗ (E L − nu LRˆ2∗E R) ) , G L R/2 − (nu LR∗E L∗E R) /(2∗ (
E L − nu LRˆ2∗E R) ) , (E L∗E R) /(3∗ (E L − nu LRˆ2∗E R) ) − (2∗G L R)
/3 ;

246 E Lˆ2/(3∗(E L − nu LRˆ2∗E R) ) − (2∗G L R) /3 , (nu LR∗E L∗E R) /(2∗ (
E L − nu LRˆ2∗E R) ) − G L R/2 , − G L R/3 − E Lˆ2/(3∗(E L − nu LRˆ2∗
E R) ) , G L R/2 + (nu LR∗E L∗E R) /(2∗ (E L − nu LRˆ2∗E R) ) , G L R/3 −
(2∗E Lˆ2) /(3∗ (E L − nu LRˆ2∗E R) ) , G L R/2 − (nu LR∗E L∗E R) /(2∗ (

E L − nu LRˆ2∗E R) ) , (2∗G L R) /3 + (2∗E Lˆ2) /(3∗ (E L − nu LRˆ2∗E R)
) , − G L R/2 − (nu LR∗E L∗E R) /(2∗ (E L − nu LRˆ2∗E R) ) ;

247 G L R/2 − (nu LR∗E L∗E R) /(2∗ (E L − nu LRˆ2∗E R) ) , G L R/3 − (2∗
E L∗E R) /(3∗ (E L − nu LRˆ2∗E R) ) , G L R/2 + (nu LR∗E L∗E R) /(2∗ (E L
− nu LRˆ2∗E R) ) , − G L R/3 − (E L∗E R) /(3∗ (E L − nu LRˆ2∗E R) ) , (
nu LR∗E L∗E R) /(2∗ (E L − nu LRˆ2∗E R) ) − G L R/2 , (E L∗E R) /(3∗ (E L
− nu LRˆ2∗E R) ) − (2∗G L R) /3 , − G L R/2 − (nu LR∗E L∗E R) /(2∗ (E L
− nu LRˆ2∗E R) ) , (2∗G L R) /3 + (2∗E L∗E R) /(3∗ (E L − nu LRˆ2∗E R) )
] ;
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engineering design optimization problems: A sensitivity analysis approach.
Pesquisa Operacional, 32(3):575–596, 2012.

[7] Wang W., Caro S., Bennis F., Soto R., and Crawford B.,. Multi-objective
Robust Optimization using a Post-optimality Sensitivity Analysis Technique :
Application to a Wind Turbine Design. ASME Journal of Mechanical Design,
Vol. 137(DOI : 10.1115/1.4028755):pp. 011403–1–011403–11, 2015.

[8] David V Hutton. Fundamentals of Finite Element Analysis. McGraw-Hill, Jun
1, 2003.

[9] Wikimedia Commons. Components stress tensor cartesian, 12 March 2009.

[10] College of San Francisco. Course handouts of composite materials, 2009.

60



Dissertation 61

[11] Mike Xie Xiaodong Huang. Evolutionary Topology Optimization of Continuum
Structures: Methods and Applications. John Wiley and sons, Australia, 2010.

[12] General Technical Report FPL-GTR-190. Wood Handbook, Wood as an en-
gineering material. United States Department of Agriculture Forest Service,
Madison, Wisconsin, April 2010.

[13] M.Maya, Ecole Nationale Superieure d’arts et metiers. Le comportement
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