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Chapter 1

Introduction

The advantages of parallel robots over serial robots for high speed applications is a subject
which is drawing much attention of late. Currently parallel robots are finding more and more
acceptance in high-speed pick-and-place operations. Parallel robots significantly improve the
throughput of many robotic tasks [3, 21]. The drive for higher operational speeds and higher
payload-to-weight ratios is shifting the design of manipulators to more lightweight structures
[25].

In contrast to serial manipulators, parallel robots offer a lower mass-to-inertia ratio and a
higher stiffness-to-mass ratio1 [20]. These benefits come at the price of increased modeling and
design complexity. The design of parallel robots is accompanied with several closed kinematic
chains with inherent kinematic constraints.

As for all high-speed mechanisms, vibratory phenomena appear that deteriorate the robot
accuracy and its dynamic performance. The performance criteria on speed and accuracy have
rendered classical rigid body dynamics for the description of the dynamic behaviour of such
systems inadequate [22]. Due to the inherent flexibility of these lightweight structures, inertial
forces result in unwanted structural vibration [28]. These vibrations deteriorate not only the
accuracy and performance of the manipulator but also cause significant wear and tear on the
components [15].

1Structural Rigidity



Chapter 1. Introduction

Problem Statement

The IRCCyN2 robotics team has recently proposed a new high speed parallel manipulator,
IRSBot2, with two degrees of freedom. Investigate the use of an optimal motion generator for the
reduction of vibrations in IRSBot2 by carefully planning the displacements of the end effector.
The optimality of this motion generator is concerned with the level of vibration reduction and
the speed at which the pick-and-place operation is conducted. The scope of this thesis is as
follows:

• Development of an elastodynamic model of the IRSBot2

• Design of a motion generator:

– The definition of the geometric path as based on the Adept Cycle
– The definition of the motion profile or temporal control law

• Spectral analysis of the control law and manipulator response to verify that the natural
modes of vibration are not excited

This bibliographic report consolidated recent work done in vibration reduction, thereby pro-
viding a thorough foundation from which vibration in parallel manipulators can be managed in
particular for pick-and-place tasks common in industry today.

In accordance with the literature studied, this bibliographic work was divided into three
chapters concerning:

1. Elastodynamic Modeling

2. Trajectory Design

3. Control

The thesis work limits the scope of the material identified in the bibliographic report and in
this masters dissertation, the work is divided as follows:

1. Geometric and Kinematic Modeling

2. Elastodynamic Modeling

3. Trajectory Design

4. Simulation

2Institut de Recherches en Communications et Cybernétique de Nantes
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Chapter 1. Introduction 1.1 Parallel Robots

1.1 Parallel Robots
Before expanding on the above mentioned areas, a brief introduction to parallel robots is

provided. Particularities relevant to this work are highlighted. The master thesis of Germain [10]
provides a comprehensive overview of parallel robots used for pick-and-place tasks in industry
today.

Pick-and-place operations comprise both primary handling and case packing (see figure 1.1)[18].
These operations usually require between 2 and 4 degrees of freedom (DOF) - typically two or
three translational degrees of freedom and if required, one rotational degree of freedom [10, 11, 9].

Figure 1.1: Pick-and-place operation for the packaging of healthcare products [19].

Several four degree of freedom parallel robots exist on the market today. Robots with 3
translational degrees of freedom and one rotational degree of freedom about the z-axis are
capable of performing Schönflies motions. Adept Technology [13] currently have the fastest
pick-and-place robot, the Quattro (number 1 in figure 1.2) in production. The Quattro is
capable of performing up to 240 cycles per minute 3. Figure 1.2 also shows the Flex-picker delta
robot from ABB (2) and the McGill SMG robot (3).

For tasks requiring two degrees of freedom (DOF), such as the one considered for this thesis,
simpler robots may be used [10]. Two degree of freedom robots are considered as planar robots
and are used to position a point in the plane of operation. The Par2 (number 4 in figure 1.2)
developed in the ANR4 100g Objective project and the Elau PacDrive D2 (5) [7] are examples
of 2DOF designs.

A key design requirement for these robots is to ensure structural rigidity perpendicular to the
operation plane, thereby resisting forces normal to this plane. This requirement is for instance
addressed by the second set of legs in the Par2 robot rendering it much stiffer than the PacDrive
D2. Nonetheless, Germain [10] notes several drawbacks of the Par2:

3Standard cycle: 25mm/350mm/25mm
4Agence Nationale de la Recherche

3



Chapter 1. Introduction 1.2 IRSBot2

Figure 1.2: Contemporary parallel robots [10].

1. It has a complex architecture.

2. The inclusion of stiff metallic belts for the prevention of lateral motion introduces undesired
elasticity.

3. High tolerance requirements for its manufacturing and construction due to the number of
joints.

4. The identification of its dynamic behaviour is difficult to obtain.

1.2 IRSBot2
The newly conceived IRSBot2 (see figure 1.3) responds to the aforementioned drawbacks. The

IRSBot2 structure is of spatial architecture and offers certain advantages [10]:

1. It consists of only two legs, thereby reducing the overall mass and improving the dynamic
behaviour of the system.

2. The design is such that a number of the links, rather than being subjected to bending, are
only subjected to tensile, compression and torsional forces, also improving the dynamic
performance of the design.

In figure 1.4, the global coordinate frame O, attached to the fixed base, is shown in plane P0
and the moving platform (always parallel to the base) is defined in plane P1. Each leg consists
of two distinct parts. The upper part, composed of links 0i, 1i, 2i, 3i forms a parallelogram. The
lower part, of greater complexity, exists between links 3i and 7i. Note that the joint axes y1ji
are always within plane P1 which, in turn is always parallel to planes P0 and P2. Furthermore
note that the axes y1ji and z2ji are orthogonal. The assembly of the lower part of the leg gives
rise to the spatial movement particular to IRSBot2. The geometric description of the robot will
briefly be discussed. For more detail the reader is directed to Germain [10].

4



Chapter 1. Introduction 1.2 IRSBot2

Figure 1.3: Schematic of IRSBot2 leg [10]

Loop Closure

The loop closure equations are used to develop the inverse and geometric models. Germain
[10] uses the parametrization shown in figure 1.4 with the definition of the virtual link l2eq to
define the loop closure equations. The ± symbol designates + to leg 1 and − to leg 2:

Inverse Geometric Model

The inverse geometric model (IGM) gives the joint positions, q1 and q2, as a function of the
Cartesian coordinates, x and z, of the end effector. As with other parallel manipulators, the loop
closure equations allow the IGM to be easily expressed. The expression of the IGM is included
as is from [10]. Here ± refers to the working modes:

5



Chapter 1. Introduction 1.2 IRSBot2

Direct Geometric Model

The direct geometric model (DGM) is also derived from the loop closure equations and is
presented as in Germain [10]. Here ± refers to the assembly modes of the robot:

Simplified Model

As a preliminary study, the chosen model was simplified. The simplest parallel mechanism
with revolute joints resembling the IRSBot2, is a planar five bar mechanism (figure 1.4)

Figure 1.4: Planar five bar mechanism [26]

In the next chapter (Chapter 2), firstly the rigid and elastic kinematics of the planar five
bar mechanism will be developed. Secondly the elastodynamic modeling is developed from first
principles and lastly, the resultant model is verified.

6



Chapter 2

Modeling

2.1 Elastodynamic Modeling
Elastodynamic modeling can be done using either a hybrid Newton Euler approach or a

Lagrangian Formulation. The Lagrangian formulation is opted for, and is developed in the next
section.

2.1.1 Lagrangian Formulation

The Lagrange equations are used to derive the elastodynamic model as it is readily applied to
the analysis of closed loop structures. The Lagrangian formulation equates the nonconservative
forces acting on the system to the change of energy in the system [1]. The Lagrangian L of a
robot or manipulator is defined as the difference between the kinetic energy E and the potential
energy U :

L = E − U (2.1)

The formulation of the constituent terms of the Lagrangian are shown in equations 2.2 and 2.3.
Development of the inertia, M, and stiffness, K, matrices found in the kinetic and potential
energy terms vary according to the elastodynamic modeling used. For beam j:

Kinetic Energy :
Ej = 1

2 q̇j
TMjq̇j (2.2)

where

Mj : is the symmetric positive definite inertia matrix of beam j 1.
qj : is the vector of generalized coordinates qj = [xAj , yAj , θj ,qej ]T (see figure 2.1).

Potential Energy
Vej = 1

2qj
TKjqj (2.3)

where

Kj : is the stiffness matrix of beam j

1The inertia matrix is also referred to as the mass matrix



Chapter 2. Modeling 2.1 Elastodynamic Modeling

x0

y0

xAj

yAj
θj

uxj=Φxqexj
uyj=Φyqeyj

uxj
uyj

Figure 2.1: Generalized coordinates for each beam, qe = [qex qey ]T

2.1.2 Elastodynamic Modeling

The various elastodynamic modeling techniques used to develop the Lagrangian formulation
are compared and contrasted next, with the motivation for the use of Assumed Modes is discussed
in section 2.1.2.

Finite Element Modeling

This method represents each link as an assembly of a finite number of elements, wherein each
element is a continuous member of the link [17]. Linear finite elements make use of polynomial
interpolation functions (expressing nodal displacements) or assumed mode techniques to charac-
terize a link’s elastic behaviour [5, 25]. Boundary conditions, changes in geometry and physical
properties can be easily accounted for with the finite element method (FEM) [25]. Greater
model accuracy is used by either using more elements or by using higher order elements [21].

Lumped Parameter Model

Lumped parameter models or rigid finite element models [29], also referred to as the finite
segment method by Shabana [24], describe manipulators as a set of interconnected rigid bodies
[22]. The manipulator links are discretized into a series of rigid bodies which are then connected
by linear springs thereby introducing flexible features to the model [25]. The method of lumped
parameters is also referred to as the method of Virtual Joints or VJM [3] and is considered to
be the simplest method to implement.

In its standard formulation, the method does not lend itself well to closed loop robots.
Briot, Pashkevich and Chablat [3] address the problem of passive joints in closed loop robots
and propose a reduced method which decreases the dimension of the problem by using assumed
mode techniques. Despite its simplicity, Theodore and Ghosal [25] indicate that the method
is seldom used due to the difficulty of determining the spring constants. Pashkevich, Chablat
and Wenger [20] do however propose a method of determining the virtual stiffness from a finite
element link stiffness evaluation.

8



Chapter 2. Modeling 2.1 Elastodynamic Modeling

Assumed Modes

The assumed mode method (AMM)2 describes flexible displacements by a truncated modal
series, in terms of spatial mode eigen functions and time-varying mode amplitudes [6, 25]. The
truncated modal series refers to a subgroup of trigonometric functions each depicting the physical
modal behaviour of links or beams. The mode shapes can be found by solving the free vibration
problem for a given set of boundary conditions.

The mode shapes are characterized by their corresponding eigen vectors and occur at a fre-
quency given by the associated eigen values [4]. If clamped-mass boundary conditions are chosen,
time-varying mode amplitudes occur as the frequency equations are time dependent3. Clamped-
free boundary conditions are used for simplification purposes at the expense of overestimated
natural frequencies. The AMM is modeled using the floating reference frame discussed in section
2.2.2 [28].

2.1.3 Chosen Formulation: Assumed Modes

Dwivedy and Eberhard [6] present an extensive review on various elastodynamic modeling
approaches. The bibliographic report compared and contrasted the Assumed Modes Method, the
Finite Element Method and Lumped Parameter Modeling. Based on the bibliographic survey,
the Assumed Modes Method was chosen as the modeling approach. The supporting factors of
this approach are [25]:

• Assumed Modes is recommended for manipulators with flexible links of uniform cross-
section

• Well suited for numerical simulations

The approach calls for the superposition of elastic motions on the rigid motions in the system
[22, 28]. The properties of the Assumed Modes approach are listed next:

• Flexible displacements are represented by truncated modal series [6, 25]

• Floating reference frames are introduced to superpose the flexible deformations on the
rigid positions of the distal end of each link [2, 5, 21, 24]

• Beam deformations are described with appropriate shape functions

Shape Functions

The truncated modal series used to describe the deformation of a beam are referred to as
the shape functions. For the planar case, bending and tension-compression deformations are
considered. The shape functions, Φ are coupled with time varying elastic coordinates qe [6, 25].
In bending, these coordinates are perpendicular to the undeformed axial direction of the beam,
whereas they are collinear with this axis in tension-compression deformation. The vector Φ is
of size 1× k, with k being the number of modes used for modeling.

A two degree of freedom pick and place robot is typically actuated at its base. It is assumed
that the actuated links are rigidly connected to these actuators, as such, these links are modeled
as beams in bending [2]. For link j:

2Also called the Rayleigh-Ritz approach [3, 21]
3The clamped-mass rather than the clamped-free boundary conditions are used to include the inertial effects

of other links [25]

9



Chapter 2. Modeling 2.1 Elastodynamic Modeling

Clamped-free :

φjk(ξ) = sin(αkljξ) + ak cos(αkljξ)− sinh(αkljξ)− ak cosh(αkljξ) (2.4)

where

ak and αklj : are modal parameters for mode k [22]
ξ = x

lj
: lj is length of link j and x is the position along the axial direction of the beam

The first three modal parameters are considered and are taken from Bouzgarrou et al [2]:

Mode ak αklj

1 -1.3622 1.8751
2 -0.98186 4.6941
3 -1.0008 7.8548

Table 2.1: Modal parameters for bending deformation

The distal links are assumed to be pin-connected, and are thus only loaded in the axial direc-
tion. This loading corresponds to cases in which a beam experiences only tensile or compressive
deformations:

Pin Connected :
φjk(ξ) = sin

(
(2k − 1)π2 ξ

)
(2.5)

where

ξ = x
lj

: lj is length of link j and x is the position along the axial direction of the beam

The normalized shape functions are shown in figure 2.2.
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Figure 2.2: Mode shapes in bending and tension-compression

Having introduced the assumed modes method of modeling and the relevant shape functions,
the inertial and stiffness matrices may now be developed.
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2.1.4 Inertia Matrix

The inertia matrix, Mj, in equation 2.2 may now be developed. The kinetic energy of a
elastic beam, j, may now expressed using the shape functions [2, 22, 5]:

E = 1
2

∫ lj

0
ṙTMṙMdx (2.6)

The velocity vector, ṙM, is defined according to the type of deformation modeled on the beam.
rM describes the position of a point on a deformed beam in the global reference frame as follows:

rM =
[
xAj

yAj

]
+ R(θj)

[
ljξ
0

]
+ R(θj)

[
uxj (ξ, t)
uyj (ξ, t)

]
(2.7)

where

xAj and yAj : Locate the base of link j

R(θj) : A rotation matrix which orientates the beam at an angle θj

uxj (ξ, t) and uyj (ξ, t) : Are the deformations on the beam evaluated at position ξ at time t:

uxj (ξ, t) = Φx(ξ)qexj
(t)

uyj (ξ, t) = Φy(ξ)qeyj
(t)

Deriving expression 2.7 with respect to time, the velocity of the point rM, for a beam in pure
bending (deformation only being allowed in uyj (ξ, t), i.e. uxj (ξ, t) = 0) may be found:

ṙM =
[
1 0 −Φyqeyj

0
0 1 ljξ Φy

]
˙xAj

˙yAj

θ̇j
˙qeyj

 (2.8)

To obtain the mass matrix for a beam in pure bending, the following calculation, contained in
2.6, must be performed:

Mj = mj

∫ 1

0


1 0
0 1

−Φyqeyj
ljξ

0 Φy


[
1 0 −Φyqeyj

0
0 1 ljξ Φy

]
dξ (2.9)

This results in the following mass matrix, dimensioned according to the number of generalized
coordinates:

Mj = mj

∫ 1

0


1 0 −Φyqeyj

0
0 1 ljξ Φy

−qeyj
TΦy

T ljξ (ljξ)2 ljξΦy

0 Φy
T ljξΦy

T Φy
TΦy

 dξ (2.10)

Similarly the mass matrix of a beam in tension and compression may be found. Here, deforma-
tion is only allowed in uxj (ξ, t) and so uyj (ξ, t) = 0):

ṙM =
[
1 0 0 Φx
0 1 ljξ + Φxqexj

0

]
ẋAj

ẏAj

θ̇
q̇exj

 (2.11)
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This results in the following mass matrix:

Mj = mj

∫ 1

0


1 0 0 Φx
0 1 ljξ + Φxqexj

0
0 ljξ + qexj

TΦx
T (ljξ)2 + 2ljξΦxqexj

+ qexj
TΦx

TΦxqexj
0

Φx
T 0 0 Φx

TΦx

 dξ
(2.12)

Beams which experience both bending and tension-compression deformation (i.e. deformation
is allowed in both uxj (ξ, t) and uyj (ξ, t)), are described as follows:

ṙM =
[
1 0 −Φyqeyj

Φx 0
0 1 ljξ + Φxqexj

0 Φy

]

ẋAj

ẏAj

θ̇j
q̇exj

q̇eyj

 (2.13)

Resulting in the rather complicated mass matrix:

Mj = mj

∫ 1

0



1 0 −Φyqeyj
Φx 0

0 1 ljξ + Φxqexj
0 Φy

−qeyj
TΦy

T ljξ + qexj
TΦx

T ∆ −qeyj
TΦy

TΦx Υ
Φx

T 0 −Φx
TΦyqeyj

Φx
TΦx 0

0 Φy
T ΥT 0 Φy

TΦy

 dξ
(2.14)

With,

∆ = (ljξ)2+qexj
TΦx

TΦxqexj
+qeyj

TΦy
TΦyqeyj

+2ljξΦxqexj
−2qeyj

TΦy
TΦxqexj

−2ljξΦyqeyj

Υ = ljξΦy + qexj
TΦx

TΦy

2.1.5 Stiffness Matrix

The stiffness matrix, Kj, in equation 2.2 is necessary for the evaluation of the elastic potential
energy of a elastic beam. For beams in bending [25]:

Kyj = EIj
l3j

∫ 1

0

(
∂2uy(ξ, t)

∂ξ2

)2

dξ (2.15)

Considering the first 3 modes of deformation, the stiffness matrix of a beam in pure bending is
expressed as the diagonal matrix Ky:

Kyj = EIj
l3j



∫ 1
0

(
∂2φy1 (ξ)
∂ξ2

)2
dξ 0 0

0
∫ 1

0

(
∂2φy2 (ξ)
∂ξ2

)2
dξ 0

0 0
∫ 1

0

(
∂2φy3 (ξ)
∂ξ2

)2
dξ


(2.16)

Similarly for beams in tension and compression:

Kxj = EAj
lj

∫ 1

0

(
∂uy(ξ, t)

∂ξ

)2
dξ (2.17)
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Thus, for the first three modes:

Kxj = EAj
lj


∫ 1

0

(
∂φx1 (ξ)
∂ξ

)2
dξ 0 0

0
∫ 1

0

(
∂φx2 (ξ)
∂ξ

)2
dξ 0

0 0
∫ 1

0

(
∂φx3 (ξ)
∂ξ

)2
dξ

 (2.18)

For beams which deform in both bending and tension-compression, the stiffness matrix K is
augmented diagonally4:

Kj =
[
Kxj 0
0 Kyj

]
(2.19)

2.1.6 Equations of Motion

The dynamics of the complete system may be solved by creating the total inertia and stiffness
matrices, Mtot and Ktot. The matrices are collected in diagonal matrices as follows:

Mtot =


M1 0 . . . 0
0 M2 . . . 0
...

... . . . ...
0 0 . . . Mn

 (2.20)

and,

Ktot =


Ktot1 0 . . . 0

0 Ktot2 . . . 0
...

... . . . ...
0 0 . . . Ktotn

 (2.21)

Where,

n : refers to the number of elastic beams in the system

and,

Ktotj =
[
03×3 0

0 Kj

]
(2.22)

The Lagrangian formulation of the elastodynamic problem is developed from the Lagrangian
defined in 2.1. For closed loop robots, the loop closure constraints are reflected in the formulation
[28]:

F = d

dt

[
∂L

∂q̇

]T
−
[
∂L

∂q

]
+ ΨT

q λ (2.23)

Where,

F : is the vector sum of nonconservative external forces. In the absence of external forces this
is simply equal to the joint torques, Γ

Ψ = ∂Ψ
∂q is c × N matrix with c the number of constraints and N the number of parameters.
Ψ = [CT BT AT ]T

λ : is a c× 1 vector of Lagrange multipliers

q = [q1,q2, . . . ,qn]T , refers to the concatenation of the generalized coordinate vectors of each
beam in the system

4Attention must be paid to the ordering of the elastic terms in the generalized coordinate vector
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The Ψ matrix is referred to as a Jacobian matrix in robotics literature and is responsible for
the loop closure equations as discussed in section 2.2.4. It should be noted that the potential
energy term, in the case of flexible manipulators, refers to both the gravitational potential energy
and the elastic potential energy U = Vg + Ve [2, 22, 25]. The Lagrangian formulation 2.23 is
now developed in a stepwise manner:

Kinetic Energy

First the time-velocity derivative term is analyzed. Note that a new inertia matrix, MR,
is used. This matrix is appropriately oriented within the global reference frame as shown in
equation 2.25.

d

dt

[
∂E

∂q̇

]T
= d

dt

[
∂ 1

2 q̇TMRq̇
∂q̇

]T
(2.24)

with,
MR = RtotMtotRtot

T

where,

Rtot =


R1 0 . . . 0
0 R2 . . . 0
...

... . . . ...
0 0 . . . Rn


and,

Rj =
[
R(θj) 0

0 Ikj×kj

]
(2.25)

where,
θj : is the rotational term in the generalized coordinate vector qj

kj : refers to the number of modes included on beam j

The result of equation 2.24 may thus be expressed as follows:

d

dt

[
∂E

∂q̇

]T
= MRq̈ + ṀRq̇ (2.26)

with,
ṀR = ṘtotMtotRtot

T + RtotṀtotRtot
T + RtotMtotṘT

tot

As seen earlier, the inertia matrix Mtot is a function of the elastic coordinates qe, which, in
turn are time variant, thus the time derivative leads to the Ṁtot term seen in equation 2.1.6.

Next the positional derivative term may be evaluated, this is done for each generalized coor-
dinate h:

∂E

∂qh
=
∂ 1

2 q̇TMRq̇
∂qh

= 1
2 q̇TMRqh

q̇ (2.27)

where,
MRqh

= RqhMRT + RMqhRT + RMRqh
T

Collectively, the position derivative of beam j may be written:

∂E

∂qj
= MRqj

=


0
0

1
2 q̇Tj

(
Rθj

MjRT + RMjRT
θj

)
q̇j

1
2 q̇Tj

(
RMqej

R
)

q̇j


(3+kj)×1

(2.28)

where
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kj : refers to the number of modes modeled on beam j

Rθ =
[
− sin θ − cos θ
cos θ − sin θ

]

Elastic Potential Energy

The elastic potential energy is not a function of q̇ and thus the time-velocity derivative term
is zero. The position derivative term is left to be determined as follows, note that this term is in
fact only related to the elastic coordinates qe due to the construction of Ktot in equation 2.21:

∂Ve
∂q =

∂ 1
2qKtotq
∂q = Ktotq (2.29)

It can be seen that this term reduces the well known Hook’s law, relating an applied force to a
corresponding elastic deformation.

Gravitational Potential Energy

Finally the gravitational potential energy may be assessed. The gravitational potential
energy Vgj for beam j is determined at the beam mid-point using the mass mj of the link:

Vgj =
∫
m

gT
−−−→
OM∗jdm = mjgT

∫ 1

0

−−−→
OM∗jdξ (2.30)

with
−−−→
OM∗j :

−−→
OM j =

[
xAj

yAj

]
+ R

[
lj
2
0

]
︸ ︷︷ ︸

−−→
OMj

+ R
[
uxj (ξ, t)
uyj (ξ, t)

]
︸ ︷︷ ︸

−−−→
MM∗

j

(2.31)

with uxj = φxj (ξ)qexj
, uyj = φyj (ξ)qeyj

, and g = [0− g]T , the term for the gravitational effects
can be found from:

Vgj = mjg(yAj + l

2 sin(θj) + αqej) (2.32)

where, α: is a vector depending on θj . The gravitational efforts may be found from:

Vgj

qj
= Qj

T (2.33)

Open Loop Lagrangian Formulation

The terms developed in the preceding subsections may now be combined to form the open
loop Lagrangian formulation, that is to say, that at this point in time, the closure constraints
are ignored:

F = MRq̈ + H (2.34)

where the Coriolis and gravitational elements are included in the vector H:

H = ṀRq̇ −
(
MRq −Ktotq −Q

)
(2.35)
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Ordering and regrouping of the Lagrangian Formulation

It is desired to collect and reorder the elements in equation 2.34 according to the actuated,
elastic and passive coordinates. This reordering allows the elastodynamic model to conform to
the modeling used during the development of the kinematic relations of the system. The process
of reordering may be explained as follows:

• Identify all actuated coordinates, note their indexing and assign them to the vector qa

• Identify all elastic coordinates, note their indexing and assign them to the vector qe

• Identify all passive coordinates, note their indexing and assign them to the vector qp. If
there are supplementary passive coordinates, such as the inclusion of lumped masses or
inertias, their associated coordinates be appended to qp. The inclusion of these masses
must be reflected on the diagonal of the mass matrix MR and must also be appended to
the gravitational efforts Q5

• Identify all coordinates which are implicitly constrained. Eliminate the corresponding rows
and columns from Mtot and eliminate the appropriate elements from the Coriolis and
gravitational terms vector H. Implicitly constrained coordinates are coordinates which
can, under no condition, experience any form of motion. For the five bar mechanism
considered, the set of implicitly constrained generalized coordinates are the x and y base
positions of the actuated links.

The reordering allows the independent and dependent coordinates to be distinguished as qi =
[qa,qe]T and qd = qp. This gives rise to the generalized coordinate vector of the following form:

q =
[

qi
qd

]
=

qa
qe
qp

 (2.36)

The open loop Lagrangian expression may thus be written with greater detail:Γa
Γe
Γp

 =

Maa Mae Map
Mea Mee Mep
Mpa Mpe Mpp


q̈a

q̈e
q̈p

+

Ha
He
Hp

 (2.37)

2.1.7 Closed Form Dynamic Models

The closure constraints may be introduced into equation 2.37. This will allow the formulation
of the inverse and direct dynamic models. These models are used as follows:

• The inverse dynamic model, delivers the required actuator efforts τa and the resultant
elastic deformations in acceleration, q̈e, as a function of a desired trajectory in the actuated
coordinates qa, q̇a and q̈a

• The direct dynamic model, determines the resultant independent coordinate accelerations
as a response to an applied τa. This is to say that the direct dynamic model determines
q̈i = [q̈a, q̈e]T 6

The complete system of equations for a closed loop robot is written:I 0 CT
na×np

0 I BT
ne×np

0 0 AT
np×np


τaτe
λ

 =

Γa
Γe
Γp

 =

Maa Mae Map
Mea Mee Mep
Mpa Mpe Mpp


q̈a

q̈e
q̈p

+

Ha
He
Hp

 (2.38)

5Additional lumped masses do not invoke Coriolis effects and are represented as zeros in the vector Hp
6Note that qa and qe are not dynamically independent as the elastic deformations emerge from actuation of

the system
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In equation 2.38, the following assumptions are made:

• Γp = ATλ, in other words, there are no efforts exerted directly on the passive coordinates.
The effect of the passive coordinates are represented by λ and will be grouped on the
independent coordinates.

• τe = 0, the elastic coordinates are un-actuated and all dynamic and gravitational efforts
exerted on the elastic coordinates will be in equilibrium due to Hook’s law, Ktotq

The effect constraints will be observable on the actuated and elastic coordinates, equation 2.38
may be reduced. Firstly, the dynamic relations for the independent coordinates, qi = [qaqa]T ,
are expressed as follows:[

I 0
0 I

] [
τa
0

]
=
[

Maa Mae Map
Mea Mee Mep

] [
q̈a
q̈e

]
q̈p +

[
Ha
He

]
+
[

CT

BT

]
λ (2.39)

Secondly, considering the dependent coordinates qd = qp, the expression for λ is developed:

ATλ = [ Mpa Mpe Mpp ]

 q̈a
q̈e
q̈p

+ Hp (2.40)

Solving for the vector Lagrange multipliers λ:

λ = AT−1

[ Mpa Mpe Mpp ]

 q̈a
q̈e
q̈p

+ Hp


Having obtained an expression for λ, substitution into equation 2.39 gives:

[
I 0
0 I

] [
τa
0

]
=
[

Maa −CTAT−1Mpa Mae −CTAT−1Mpe Map −CTAT−1Mpp
Mea −BTAT−1Mpa Mee −BTAT−1Mpe Mep −BTAT−1Mpp

] q̈a
q̈e
q̈p


+
[

Ha −CTAT−1Hp
He −BTAT−1Hp

]
(2.41)

Using the kinematic relations to express the passive joint accelerations, q̈p, a method for group-
ing dynamic effects related to the dependent coordinates on the independent coordinates:

q̈p = −A−1(Ȧq̇p + Ḃq̇e) + Ċq̇a + Bq̈e + Cq̈a

Such that; [
Map −CTAT−1Mpp
Mep −BTAT−1Mpp

]
q̈p (2.42)

Adopting the notations,

Ja = −A−1CJe = −A−1B J̇a = −A−1Ċ
J̇e = −A−1ḂJ̇p = −A−1Ȧ

The reduced inertia matrix is derived:

M∗ =
[

Maa
∗ Mae

∗

Mea
∗ Mee

∗

] [
q̈a
q̈e

]
(2.43)
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With the constituent terms as follows:

Maa
∗ =Maa + JT

a Mpa + MapJa + JT
a MppJa

Mae
∗ =Mae + JT

a Mpe + MapJe + JT
a MppJe

Mea
∗ =Mea + JT

e Mpa + MepJa + JT
e MppJa

Mee
∗ =Mee + JT

e Mpe + MepJe + JT
e MppJe

(2.44)

The reduced Coriolis and gravitational effect vector, for the actuated coordinates is:

H∗a =Ha + JT
a Hp +

(
Map[J̇a J̇e J̇p] + JT

a Mpp[J̇a J̇e J̇p]
)q̇a

q̇e
q̇p


For the elastic coordinates:

H∗e =He + JT
e Hp +

(
Mep[J̇a J̇e J̇p] + JT

e Mpp[J̇a J̇e J̇p]
)q̇a

q̇e
q̇p


Finally we can write the closed loop dynamic model as follows:[

τa
0

]
=
[

Maa
∗ Mae

∗

Mea
∗ Mee

∗

] [
q̈a
q̈e

]
+
[

H2
a

H2
e

]
(2.45)

2.1.8 Direct Dynamic Model

The preceding equations may be used to develop the direct dynamic model of the closed loop
robot. In the direct dynamic model, the generalized efforts τa are known and the independent
coordinate accelerations q̈i are sought. Two formulations are presented here.

DDM: Classical Formulation

[
q̈a
q̈e

]
=
[

Maa
∗ Mae

∗

Mea
∗ Mee

∗

]−1([
τa
0

]
−
[

H∗a
H∗e

]
−
[

0
Kqe

])
(2.46)

From a simulation point of view, it was found that the classical formulation was numerically
unstable due to the numerical integration needed to find the independent coordinate velocities q̇i
and positions qi. To overcome this problem, a recursive scheme solving rather for the actuated
coordinate accelerations q̈a and the elastic coordinate positions qe was opted for. It should
be noted that while the actuated coordinates, qa may be geometrically independent from the
elastic coordinates qe, they are however dynamically dependent. This is due to the fact that
the elastic deformations are as a result of the actuated dynamics of the system.

DDM: Alternate Formulation

The alternate formulation opts to solve for qe and thus q̈e may be found through derivation.
Equation 2.45 may be developed as follows:

0 = Mea
∗q̈a + Mee + H∗e

Extracting the stiffness term from H∗e, qe may be found:

qe = Ke
−2 (Mea

∗q̈a + Mee + H∗∗e ) (2.47)
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Solving for q̈a
τa = Maa

∗q̈a + Mae + H∗a
Thus,

q̈a = Maa
∗−1 (taua −Mae −H∗a) (2.48)

The alternate formulation seemingly decouples the dynamic dependence of the elastic de-
formations from the actuated dynamics. However, if the qe is solved for recursively, with the
generalized velocities and accelerations being modified with in each recursion, equation 2.45 will
converge to an admissible result. This method facilitates and ensures stability of the simulation
process.

2.1.9 Inverse Dynamic Model

In the inverse dynamic problem, q̈a is known and the required efforts τa and emergent q̈e are
sought. Again the classical and alternate formulations of the elastodynamic problem is presented
(figure 2.3):

IDM: Classical Formulation

The dynamic dependence between actuated and elastic coordinates is evident from the fact
that it is first necessary to solve for q̈e before the solution for τq can be found:

q̈e = −Mee
∗−1(Mea

∗q̈a + H∗e + Kqe) (2.49)

τa = [Maa
∗ Mae

∗]
[

q̈a
q̈e

]
+ H∗a (2.50)

Again, for simulation purposes, the alternate formulation of the inverse dynamic problem is de-
veloped. Note that the alternate formulation of the IDM, requires significantly less manipulation
of the dynamic equations7:

IDM: Alternate Formulation

[
τa
−Kqe

]
=
[

I 0 JT
a

0 I JT
e

] [
Γa

ΓeΓp

]
(2.51)

The expressions for τe and qe are thus as follows:

τa = Γa + JT
a Γp (2.52)

qe = −K−1
e (Γe + JT

e Γp) (2.53)

The alternate solution of the inverse dynamic model is also solved for recursively with appropriate
updating of the coordinate velocities and accelerations to ensure convergence. The simulations
of the IDM and the DDM have been coupled to verify that they are indeed inverse operations.

7Note the the stiffness term in H∗
e has been moved to the left hand side of equation 2.51
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Figure 2.3: Schematic of the simulated system

2.1.10 Five Bar Mechanism Model

The dimensioning and parametrization of the five bar mechanism was chosen as follows:

Links li Length [m] Di Diameter [d] mi Mass [kg]
link1 0.24 0.035 0.6258
link2 0.38079 0.035 0.9928

Other Parameters
a Base offset [m] 0.1
ρ Density [kg/m3] 2710
Y Young’s Modulus [GPa] 70

Table 2.2: Parameters of the modeled five bar mechanism

For a link i in bending, the following mass and stiffness matrices are obtained. The mass
matrix is a 6× 6 matrix, the first three columns are:

Mi = mi



1 0 δ1 0 0 0
0 1 0.5li 1.067 0.4260 0.2586
δ1 0.5li δ2 0.7748li 0.08905li 0.03587li
0 1.067 0.7748li 1.8564 0 0
0 0.4260 0.08905li 0 0.9641 0
0 0.2586 0.03587li 0 0 0


(2.54)

with,

δ1 =− 1.067qie1
− 0.4260qie2

− 0.2586qie3

δ2 =(1.856q2
ie1

+ 0.9641q2
ie2

+ 1.006q2
ie3

+ 0.333l2i )

The region of the bending stiffness matrix contains non zero elements for the region related to
the elastic coordinates:

Ki:,4:6 = Y Ii
l3i

22.93 , 0 0
0 468.0 , 0
0 0 3952

 (2.55)
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where Ii = πD4
i

64 is the second moment of inertia area of the beam

For a link i in tension-compression, the following form of mass matrix is obtained:

Mi = mi



1 0 0 0.6366 0.2122 0.1273
0 1 δ1 0 0 0
0 δ1 δ2 0 0 0

0.6366 0 0 0.5 0 0
0.2122 0 0 0 0.5 0
0.1273 0 0 0 0 0.5


(2.56)

with

δ1 =0.5li + 0.6366qie1
+ 0.2122qie2

+ 0.1273qie3

δ2 =0.333l2i + 0.8106liqie1
− 0.09006liqie2

+ 0.03242liqie3
+ 0.5q2

ie1

+ 0.5q2
ie2

+ 0.5q2
ie3

The region of the tension compression stiffness matrix:

Ki:,4:6 = Y Ai
li

1.23370 0 0
0 11.1033 0
0 0 30.8425

 (2.57)

where Ai = πD2
i

4 is the cross-sectional area of the beam

The mass and stiffness matrices are used in equations 2.20 and 2.21 to construct the total mass
and stiffness matrices. In the next section, these matrices, and the model which they represent
are compared and verified against a finite element model.

2.2 Geometric and Kinematic Modeling

2.2.1 Rigid Inverse Geometric Model

The parallel robot is controlled with a desired trajectory in the task space, for this the inverse
geometric model is needed. First the rigid inverse geometric model is developed. This model
allows the active joint trajectories to be computed 8. As the number of degrees of freedom of the
end effector are the same as the number of degrees of freedom for a single leg, each leg may be
treated separately. The parallel robot may be seen as the combination of two kinematic chains,
each being a SCARA type robot meeting at the end effector position from the right and the left.

The rigid case assumes that the end effector position X is known, with it, the joint variables
for each leg may be found. The position of the end effector as seen in the left leg may be
expressed as follows: [

x
y

]
=
[
−a
0

]
+ l1

[
cos q11
sin q11

]
+ l2

[
cos q12
sin q12

]
(2.58)

Similarly, we can express the position of the end effector in terms of the joint variables associated
with the right leg: [

x
y

]
=
[
a
0

]
+ l1

[
cos q21
sin q21

]
+ l2

[
cos q22
sin q22

]
(2.59)

8The active joints are also referred to as the actuated coordinates in the context of the set of generalized
coordinates
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q12
q22

q21q11

x,y

l1 l1

l2l2

g

+ a-a

x0

y0

Figure 2.4: Rigid Geometric Model

Active Joint Variables

The rigid inverse geometric model is computed by expressing the length, l2 in terms of the
active joint variable, q11 and q21. For the left leg:

l22 = [x− (−a+ l1 cos q11)]2 + [y − (l1 sin q11)]2

⇔ −2l1(x+ a) cos q11 − 2l1 sin q1 +
[
(x+ a)2 + y2 + l21 − l22

]
⇔ A1 cos q11 +B1 sin q11 + C1 (2.60)

Following the development in [10] , assign:

t1 = tan q11
2

thus,

cos q11 = 1− t21
1 + t21

sin q11 = 2t1
1 + t21

Solving for q11,

q11 = 2 tan−1

−B1 + ε
√
B2

1 +A2
1 − C2

1

C1 −A1

 for B2
1 +A2

1 ≥ C2
1 (2.61)

with ε = ±1

Similarly for the right leg, the following is obtained:

l22 = [(a+ l1 cos q21)− x]2 + [(l1 sin q21)− y]2

⇔ A2 cos q21 +B2 sin q21 + C2 (2.62)

thus,

q21 = 2 tan−1

−B2 + ε
√
B2

2 +A2
2 − C2

2

C2 −A2
for B2

2 +A2
2 ≥ C2

2

 (2.63)

with ε = ±1
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Passive Joint Variables

The passive joint variables, q12 and q22, may now be computed. For the left leg,

cos q12 = x−(−a+l1 cos q11)
l2

sin q12 = y−(−l1 sin q11)
l2

Giving,
q12 = atan2(sin q12, cos q12) (2.64)

For the right leg,

cos q22 = x−(a+l1 cos q21)
l2

sin q22 = y−(l1 sin q21)
l2

Finally,
q22 = atan2(sin q22, cos q22) (2.65)

In the next section the geometry of robot is developed from the elastic perspective, thereby
introducing deformation of the robot linkages.

2.2.2 Elastic Inverse Geometric Model

The inverse geometric model for the elastic behaviour of the system is more complex. In this
model, the actuated coordinates are maintained as calculated from the rigid IGM. The elastic
coordinates now come into effect and cause a displacement between the distal end of the rigid
link to the deformed position of the distal end of the elastic link.

Floating Reference Frames

Before the elastic model can be developed, the method of floating reference frames9 must
be introduced. This method is readily used for the assumed mode method of elastodynamic
modeling. Small deformations are assumed and the overall body motion is considered to be the
superposition of a nonlinear rigid body displacement and a linear elastic displacement [22, 28]
(see figure 2.5). Two sets of coordinates are used to describe the location of the distal end of
the link10 [2, 5, 21, 24]; the first describes the position and orientation of the rigid component
of motion and the second describes the elastic deformation of the link with respect to the frame
at the link base.

Figure 2.5: Superposition of rigid and elastic motions for clamped-free boundary conditions [28]

9Also referred to as a moving reference frame
10Furthest from the base
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The transformation may be expressed as follows [2, 22]:
kpi,j = kri,j + kui,j (2.66)

where
kpi,j : is the 4× 1 vector coordinate of point i, j expressed in frame Rk.
kri,j : is the rigid component of kpi,j.
kui,j : is the component of elastic displacements determined as a function of the mode shapes

or eigen vectors.
The development of the inverse geometric model is done for each leg of the robot, leading

to the relationships shown in 2.67. For the elastic model, the unknowns correspond to the
passive joints (i.e. the dependent coordinates). For links which are not implicitly constrained
the positions of each link base is included among the dependent coordinates. In figure 2.6, the
deformations in uyij denote deflections in bending11 and deformations in uxij denote deflections
in tension-compression in link j of leg i.

qp =
[
x12 y12 q12 x22 y22 q22 x y

]T

ux11

uy11

uy21

ux21

ux12
ux22

uy22
uy12

l2

l2

l1

l1

x, y

x22, y22
x12, y12

x0

y0

lij

lij
*

uyij

uxij

base 

coordinates

distal 

coordinates
xlocal

ylocal qij
*

y0

x0

+ a-a 

Figure 2.6: Elastic Geometric Model

The active joint variables q11 and q21 (i.e. qa) are assumed to be perfectly rigid and are
taken directly from the rigid geometric model. The elastic coordinates qe are geometrically
independent from both the active and passive joints and forms part of the set of independent
generalized coordinates qi = [qa qe]:[

x
y

]
=
[
x12
y12

]
+ l∗12

[
cos q∗12
sin q∗12

]
=
[
x22
y22

]
+ l∗22

[
cos q∗22
sin q∗22

]
(2.67)

For a general link lij , the deformed link length l∗ij is expressed as follows:

l∗ij =
√

(li + uxij )2 + u2
yij

q∗ij =qij + tan−1
(
uyij

l∗ij

)
11perpendicular to the beam axis
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The Cartesian positions of the two passive joints are expressed as a function of the deformed
link lengths and the resultant joint positions. These Cartesian positions are define the location
of the base of links l12 and l22, these positions are needed to express the state of each beam in
terms of its set of generalized coordinates. For the left leg, Cartesian position of the point X12
is defined: [

x12
y12

]
=
[
−a
0

]
+ l∗11

[
cos q∗11
sin q∗11

]
(2.68)

Similarly for the right leg, the Cartesian position point X22 is defined:[
x22
y22

]
=
[
a
0

]
+ l∗21

[
cos q∗21
sin q∗21

]
(2.69)

Having obtained four of the set of 8 dependent coordinates, the angular positions of q12 and
q22 are obtained by subtracting equation 2.68 from 2.69 as follows,

l∗22

[
cos q∗22
sin q∗22

]
=
[
x12 − x22
y12 − y22

]
+ l∗12

[
cos q∗12
sin q∗12

]
(2.70)

Squaring and adding the terms in x and y:

l∗
2

22 = [(x12 − x22) + l∗12 cos q∗12]2 + [(y12 − y22) + l∗12 sin q∗12]2 (2.71)

Replacing (x12 − x22) with dx and (y12 − y22) with dy, allows the terms to be collected and
rewritten in the form:

dx cos q∗12 + dy sin q∗12 = l∗22 − (dx2 + dy2 + l∗
2

12)
2l∗12

(2.72)

The above trigonometric relation is in the form Ae sin θ+Be cos θ = Ce and is resolved as follows
[15]:

cos q∗12 = AeCe + εBe
√
A2
e +B2

e − C2
e

A2
e +B2

e

sin q∗12 = AeCe − εBe
√
A2
e −B2

e − C2
e

A2
e +B2

e

Taking ε = 1, the solution of q∗12 may be found:

q∗12 = atan2(sin q∗12, cos q∗12) (2.73)

And finally, for q12

q12 = q∗12 − tan−1
(
uy12

l∗12

)
(2.74)

with

Ae = dx = x12 − x22 (2.75)
Be = dy = y12 − y22 (2.76)

Ce = l∗
2

22 − (dx2 + dy2 − l∗12)
2l∗12

(2.77)

q22 is computed next:
cos q∗22 = Ae + l∗12 cos q∗12

l∗22
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sin q∗22 = Be + l∗22 sin q∗12
l∗22

Thus,
q∗22 = atan2(sin q∗22, cos q∗22)

And finally for q22,

q22 = q∗22 − tan−1
(
uy22

l∗22

)
(2.78)

Having found q12 and q22, the remainder of the set of dependent coordinates, the Cartesian
position of the end effector, is found:[

x
y

]
=
[
x12
y12

]
+ l∗12

[
cos q∗12
sin q∗12

]
(2.79)

In the next subsection, the kinematic relations relating the dependent coordinate velocities
and accelerations to the independent coordinates are developed for the rigid and elastic models.

2.2.3 Rigid Kinematic Model

The rigid kinematic model related the end effector velocities and accelerations, Ẋ and Ẍ, to
the velocities and acceleration of the joint variables ˙qLi and ¨qLi in each leg i.

Rigid Velocities

The kinematic relations are found by differentiating the geometric relations with respect to
time. Deriving equation 2.58:[

ẋ
ẏ

]
= q̇11

[
−l1 sin q11
l1 cos q11

]
+ q̇12

[
−l2 sin q12
l2 cos q12

]
(2.80)

A similar expression for the right leg is found, by differentiating equation 2.2.1. The general
kinematic expression for leg i may be written as follows:[

ẋ
ẏ

]
︸ ︷︷ ︸

Ẋ

=
[
−l1 sin qi1 −l2 sin qi2
l1 cos qi1 l2 cos qi2

]
︸ ︷︷ ︸

BLi

[
q̇i1
q̇i2

]
︸ ︷︷ ︸

q̇Li

(2.81)

For the left leg, i = 1,
q̇L1 = B−1

L1Ẋ (2.82)

And for the right leg i = 2,
q̇L2 = B−1

L2Ẋ (2.83)

Rigid Accelerations

For the left leg the acceleration terms may be expressed as follows[
ẍ
ÿ

]
=q̈11

[
−l1 sin q11
l1 cos q11

]
+ q̇2

11

[
−l1 cos q11
−l1 sin q11

]

+ q̈12

[
−l2 sin q12
l2 cos q12

]
+ q̇2

12

[
−l2 cos q12
−l2 sin q12

] (2.84)
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Similar expressions for the left and right legs may be developed and the joint accelerations of
leg i, may be written in the general form:

q̈Li = B−1
Li (I2x2Ẍ− ḂLiq̇L2) (2.85)

with ḂLi, being the time derivative of rigid Jacobian matrix BLi expressed as follows:

ḂLi =
[
−q̇i1l1 cos qi1 −q̇i2l2 cos qi2
−q̇i1l1 sin qi1 −q̇i2l2 sin qi2

]
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2.2.4 Elastic Kinematic Model

The elastic kinematic model expresses the dependent coordinate velocities and accelerations
q̇d and q̈d, in terms of the independent coordinate velocities and accelerations q̇i and q̈i. The
principle followed is similar to that of the rigid kinematics, however the floating reference frames
come into effect as shown in figure 2.7.

+ a-a 
A11B11 A21B21

A12B12 A22B22

A13B13
A23B23

A14B14
A24B24

A25B25A15B15

Figure 2.7: Elastic geometric model for leg i

Using the vector notation shown in 2.7, the position of the passive joint located at X12 can
be developed:

X12 =
[
x12
y12

]
= −−−−→A11B11 +−−−−→A12B12 +−−−−→A13B13

=
[
−a
0

]
+ l1

[
cos q11
sin q11

]
+ R(q11)

[
ux11

uy11

] (2.86)

The position of the end effector X may be expressed for the left leg as follows:

X =
[
x
y

]
=X12 +−−−−→A14B14 +−−−−→A15B15

=
[
x12
y12

]
+ l2

[
cos q12
sin q12

]
+ R(q12)

[
ux12

uy12

] (2.87)
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Similarly for the right leg of the robot, the position of X22 may be found:

X22 =
[
x22
y22

]
= −−−−→A21B21 +−−−−→A22B22 +−−−−→A23B23

=
[
a
0

]
+ l1

[
cos q21
sin q21

]
+ R(q21)

[
ux21

uy21

] (2.88)

Once again the position of the end effector, X may be expressed in terms of the generalized
coordinates associated with the right leg:

X =
[
x
y

]
=X22 +−−−−→A24B24 +−−−−→A25B25

=
[
x22
y22

]
+ l2

[
cos q22
sin q22

]
+ R(q22)

[
ux22

uy22

] (2.89)

Elastic Velocities

For each leg i; differentiation leads to the velocities of the passive joints Xi2:

Ẋi2 =
[

˙xi2
˙yi2

]
+ ˙qi1l2

[
− sin qi1
cos qi1

]
+ ˙qi1Ṙ(qi1)

[
uxi1

uyi1

]

+ R(qi1)
[
u̇xi1

u̇yi1

] (2.90)

The velocity of the end effector Ẋ, can be expressed in terms of the generalized coordinates
of each leg i:

Ẋ =
[
ẋ
ẏ

]
=
[

˙xi2
˙yi2

]
+ ˙qi2l2

[
− sin qi2
cos qi2

]
+ ˙qi2Ṙ(qi2)

[
uxi2

uyi2

]

+R(qi2)
[
u̇xi2

u̇yi2

] (2.91)

With the rotation matrices defined as follows:

R(θ) =
[

cos θ − sin θ
sin θ cos θ

]
Ṙ(θ) = ∂R

∂θ
=
[
− sin θ − cos θ
cos θ − sin θ

]

In the case of assumed modes (to be introduced in section 2.1.2), the deformation ux and uy are
expressed in terms of the shape functions and elastic deformations:

ux = Φx(ξ)qex(t) uy = Φy(ξ)qey(t)

And thus, in terms of velocity,

u̇x = Φx(ξ)q̇ex(t) u̇y = Φy(ξ)qey(t)

Setting qe = [qex,qey]T , the coefficients corresponding to qa, qe and qp may be collected in
equation 2.90: [

I 0
0 I

] [
ẋ11
ẏ11

]
=
[

sin q11 Φy11

cos q11 Φy11

]
q̇ey11

+
[
−l1 sin q11 − cos q11uy11

l1 cos q11 − sin q11uy11

]
q̇11
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Also in equation 2.91:[
I 0
0 I

] [
ẋ
ẏ

]
=
[

I 0
0 I

] [
ẋ11
ẏ11

]
+
[

cos q12 Φx12

− sin q12 Φx12

]
q̇ex12

+
[
−l2 sin q12 − sin q12ux11

l2 cos q12 + cos q12ux11

]
q̇12

The same process may be followed for leg two. In all, 8 equations will be generated. Two
corresponding to Ẋ12, another two related to Ẋ22 and four equations (two for each leg) related
to the velocity of the end effector, Ẋ. The terms may be reordered and grouped in the following
form:

0 = Aq̇p + Bq̇e + Cq̇a (2.92)

The coefficient matrix associated of the passive coordinates:

A =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
−1 0 sin q12Φy11qex12 0 0 0 1 0
0 −1 − cos q12Φy11qex12 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 −1 0 sin q22Φy22qex22 1 0
0 0 0 0 −1 − cos q22Φy22qex22 0 1


(2.93)

The advantage of this formulation is that A is square and is thus invertible. The coefficient
matrix for the elastic coordinates is given by:

B =



− sin q11Φy11 0 0 0
− cos q11Φy11 0 0 0

0 − cos q12Φy12 0 0
0 sin q12Φy12 0 0
0 0 − sin q21Φy21 0
0 0 − cos q21Φy21 0
0 0 0 − cos q22Φy22

0 0 0 sin q22Φy22


(2.94)

And finally the coefficient matrix of the actuated coordinates is expressed as follows:

C =



l1 sin q11 + cos q11Φy11qey11 0
−l1 cos q11 + sin q11Φy11qey11 0

0 0
0 0
0 l1 sin q21 + cos q21Φy21qey21

0 −l1 cos q21 + sin q21Φy21qey21

0 0
0 0


(2.95)
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The passive coordinate velocities are obtained from:

q̇p = −A−1 (Bq̇e + Cq̇a) (2.96)

Elastic Accelerations

The accelerations are found by differentiating equation 2.92 with respect to time:

0 = Aq̈p + Bq̈e + Cq̈a + Ȧq̇2
p + Ḃq̇2

e + Ċq̇2
a

The passive coordinate accelerations are calculated:

q̈p = −A−1
(
Bq̈e + Cq̈a + Ȧq̇2

p + Ḃq̇2
e + Ċq̇2

a

)
(2.97)

with

Ȧ = ∂A
∂q Ḃ = ∂B

∂q Ċ = ∂C
∂q

In the next section, the dynamics of the system are derived from first principles. The dynamic
models involve the development of the inertial matrices, stiffness matrices, Coriolis and gravity
vectors for each link. These elements are synthesized in such a way that the closed loop dynamics
of the system may be modeled.
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2.3 Model Verification
Understanding the behaviour of a robot with respect to its vibratory characteristics is essential

to the verification of its theoretical elastodynamic model, also serving to the development of
appropriate controllers. The frequency analysis of a robot modeled with floating reference frames
entails a reordering and reworking of the robot mass matrix.

The natural frequencies and mode shapes of the robot in a given configuration can be found
by solving for the eigenvalues, ω2

n, and eigenvetors u in [12, 21]:(
K− ω2

nMfreq
)

u = 0 (2.98)

where

K : Is the ne × ne12 stiffness matrix of the system

Mfreq : Is the ne × ne modified inertia matrix of the system

2.3.1 Modified Inertia Matrix

The unmodified inertia matrix, M, based on the set of generalized coordinates, may be
reordered according to the independent qi = [qa,qe], and dependent coordinates qd = qp, as
seen earlier:

M =

Maa Mae Map
Mea Mee Mep
Mpa Mpe Mpp

 (2.99)

In the above matrix, the following principle dimensioning applies:

• Maa is a na × na13 matrix

• Mee is a ne × ne matrix

• Mpp is a np × np14 matrix

The modification of the inertia matrix M, leads to the reduced matrix, Mfreq, required in
equation 2.3. Two sets of equations are required to modify the inertia matrix. Firstly, the
expression of the system’s kinetic energy 2.2, is evaluated assuming q̇a = 0. Secondly, the
kinematic relations of the system are used to express the passive coordinate velocities q̇p in
terms of the elastic coordinate velocities q̇e.

As the resonance frequency of the robot is to be determined in a fixed position, the kinetic
energy of the system may be developed to obtain the corresponding reduced inertia matrix.
Taking q̇a = 0, the kinetic energy is expressed as follows:

E = 1
2
[
0T q̇Te q̇Tp

] Maa Mae Map
Mea Mee Mep
Mpa Mpe Mpp


 0

q̇e
q̇p

 (2.100)

Using the kinematic relations,
Aq̇p + Bq̇e + Cq̇a = 0 (2.101)

12ne is the number of elastic coordinates in the system
13na is the number of actuated coordinates in the system
14np is the number of passive coordinates in the system
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Substitution of q̇a = 0, allows q̇p to be defined in terms of q̇e:

q̇p = −A−1Bq̇e = Jeq̇e (2.102)

Substituting 2.102 into 2.100, the kinetic energy of the system may be rewritten in the form:

E = 1
2 q̇Te Mfreqq̇e (2.103)

Where,
Mfreq = Mee + Je

TMpe + MepJe + Je
TMppJe (2.104)

2.3.2 Frequency Analysis

The natural frequencies were investigated at several robot configurations (figure 2.8). To
compare the results, a finite element model was built in CASTEM. The results obtained from
the theoretical Assumed Modes Model (AMM) and the Finite Element Analysis (FEA) are
compared in table 2.3.
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Figure 2.8: Configurations for natural frequency verification

The CASTEM model uses simple beam elements to model the five bar mechanism. Each
link is modeled with 8 elements. The actuated coordinates are considered to be fixed and are
treated as cantilevered beams. The nodes corresponding to the passive coordinates are free, and
establish pinned connections for two un-actuated links. The first three modes of the actuated
beams can be seen in figure 2.9.

Figure 2.9: The first three modes shapes as per CASTEM at position [0.35, 0.3]
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As the modeling techniques are inherently different [6], it was found that the third natural
frequency in the AMM, corresponds to the 5th or 6th mode in the FEA. This discrepancy is
due to the fact that the FEA model allows the bending of the two distal links, whereas the
AMM assigns a traction-compression modal series to these two links. This property is both
the advantage and disadvantage of the assumed modes method. Unless the structure is well
understood, important structural behaviours may be overlooked. Nevertheless, it can be seen
that the results are satisfactory, with the first and second natural frequencies being accurate
within, at worst, a 3.126% accuracy. As expected, the third natural frequency shows some
deviation, with an error of up to 8.563% at the [0.2, 0.5] end effector position.

Effector
Position

1st Natural
Frequency [Hz]

2nd Natural
Frequency [Hz]

3rd Natural
Frequency [Hz]

[X,Y ] AMM FEA %Error AMM FEA %Error AMM FEA
15

%Error

[0.5, 0.1] 116.61 115.32 1.119 210.68 206.51 2.019 1877.3 1879.5 0.117
[0.4, 0.2] 136.13 134.59 1.144 157.27 156.19 0.691 1921.1 1833.4 4.783
[0.35, 0.3] 134.85 133.42 1.072 156.07 153.03 1.987 1923.2 1833.7 4.881
[0.3, 0.4] 127.86 126.42 1.139 168.02 166.93 0.653 1917.2 1806.2 6.145
[0.2, 0.5] 124.2 122.51 1.379 183.25 182.06 0.654 1908.1 1757.6 8.563
[0.0, 0.6] 140.64 136.41 3.101 226.67 219.80 3.126 1775.4 1890.2 6.073

Table 2.3: Natural Frequencies at Various Robot Configurations

In the case of a planar five bar mechanism, the links are pin connected and the bending modes are not
excited as they are only exposed to tensile and compressive forces, giving support to the approach taken
in the AMM. To incorporate this assumption in the FEA, the second moment of inertia of the distal links
were increased by a factor of 5. This increase in inertia, effectively allows the third natural frequency of
the FEA to coincide with the AMM (table 2.4), and drastically reduces the percentage error.

Effector
Position

3rd Natural
Frequency [Hz]

[X,Y ] AMM FEA %Error
[0.5, 0.1] 1877.3 1874.3 0.160
[0.4, 0.2] 1921.1 1916.8 0.224
[0.35, 0.3] 1923.2 1917.9 0.276
[0.3, 0.4] 1917.2 1914.9 0.120
[0.2, 0.5] 1908.1 1906.1 0.105
[0.0, 0.6] 1775.4 1710.3 3.806

Table 2.4: Third natural frequency with adjusted inertia in the FEA

34



Chapter 2. Modeling 2.3 Model Verification

In their study on the vibrational performance of parallel robots, Piras et al [21], perform a frequency
analysis of a region in the workspace of a 3-PRR robot, a similar study is performed here, the frequency
distribution for the first three natural frequencies are shown in figures 2.10, 2.11 and 2.12. The workspace
boundaries correspond to the type I (serial singularities) present in this robotic structure. The relative
sizing of the links do not allow a type II (parallel singularity) to be obtained in the workspace.
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Figure 2.10: Contour plot of first natural frequency in workspace
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Figure 2.11: Contour plot of second natural frequency in workspace
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Figure 2.12: Contour plot of third natural frequency in workspace

From the figures two key characteristics may be observed:

• Natural frequencies in the "centre" workspace tend to be low

• The natural frequency drops dramatically as one approaches the singularity conditions
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Tool Mass Effects
The previous studies did not incorporate the mass of the effector tool or payload. This mass greatly

affects the structural resonances of the robot by altering the natural frequencies. This is to say that the
structural resonance of the robot is a function of its configuration and its loading condition. The effect
of the tool mass mtool, is investigated for the following cases: 0kg, 1kg, 10kg and 100kg, see figure 2.13:
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Figure 2.13: First natural frequency in workspace as a function of tool mass

It can be seen that increasing the mass of the tool decreases the resonance frequencies. The major
frequencies in the workspace are 130Hz, 100Hz, 40Hz and 15Hz respectively. The effect of payload on
the robot would be similar, it may at this point be anticipated that the control strategies for the robot
should be adapted to instances with and without payload.
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2.3.3 Deformation Analysis
To verify the accuracy of the stiffness matrix, the deformation of the robotic structure is investigated

under certain loading conditions. The end effector is placed at the positions shown in figure 2.14. A
comparison between the deformations predicted in the AMM and the FEA are presented in tables 2.5
and 2.6.

0 0.2 0.4 0.6 0.8

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

← dy : 0.16579mm
atX=[0.5, 0.1]′

← dy : 0.090899mm
atX=[0.4, 0.2]′

← dy : 0.085743mm
atX=[0.35, 0.3]′

← dy : 0.082869mm
atX=[0.3, 0.4]′

← dy : 0.058585mm
atX=[0.2, 0.5]′

← dy : 0.0082982mm
atX=[0, 0.6]′

Deformations − F
y
 = 100N

x [m]

y 
[m

]

Figure 2.14: Configurations for deformation verification

Static deformations on the structure may be calculated from evaluating the static equilibrium of the
robot. As the robot is assumed to be at rest, q̇ and q̈ are taken as 0:I 0 CT

na×np

0 I BT
ne×np

0 0 AT
np×np

τa
τe
λ

+

 0na×1
0ne×1

Floadnp×1

 = 0 (2.105)

Gravitational effects owing to the mass of the links and the tool are ignored and the observed deformations
are only due to the applied load. Solving for λ:

λ = −AT−1
Fload (2.106)

Solving for τe:
τe + BTλ = 0 (2.107)

τe = BTAT−1
Fload = −JeFload

Based on Hooks Law, the following applies τe = Kqe, therefore:

qe = K−1τe (2.108)

The results in tables 2.5 and 2.6 show very good accuracy. Poorer accuracy is however observed at
positions [0.5, 0.1] and [0.0, 0.6]. These two configurations are closer to the singular positions, giving rise
to poorer conditioning of the Jacobian matrices. It is notable that the structure becomes less stiff at
these positions.
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Effector
Position

Fx = 100N

[X,Y ] x− y AMM [µm] x− y FEA [µm] %Error

[0.5, 0.1] 15.082 -14.053 15.441 -14.366 2.323
[0.4, 0.2] 68.452 -21.306 68.6531 -21.362 0.293
[0.35, 0.3] 75.714 -21.099 75.935 -21.130 0.291
[0.3, 0.4] 79.073 -34.036 79.374 -34.061 0.379
[0.2, 0.5] 95.935 -39.097 96.3735 -39.112 0.455
[0.0, 0.6] 73.49 0.00277 75.236 7E-12 2.321

Table 2.5: Deformation under Fx = 100N

Effector
Position

Fy = 100N

[X,Y ] x− y AMM [µm] x− y FEA [µm] %Error

[0.5, 0.1] -14.077 165.79 -14.366 166.347 0.347
[0.4, 0.2] -21.283 90.899 -21.362 91.15 0.280
[0.35, 0.3] -21.077 85.745 -21.130 85.924 0.211
[0.3, 0.4] -34.028 82.869 -34.061 83.012 0.161
[0.2, 0.5] -39.1 58.585 -39.112 58.736 0.187
[0.0, 0.6] 0.00039 8.2982 0.0653 8.4985 2.360

Table 2.6: Deformation under Fy = 100N

In the next chapter various pick and place trajectories are developed and discussed. The trajectories
are compared and contrasted, and the frequency content is presented.
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Chapter 3

Trajectory Design

Pick-and-place tasks are commonly performed by industrial robots responsible for packing and assembly
operations [8, 10]. The procedure transfers an object from one workplace to another [10]. The scope of
this report is limited to the study of pick-and-place paths followed in a two dimensional, planar space.
The movement shown in figure 3.1 may nominally be achieved with a 2DOF robot. This standardized
geometric path is referred to as the Adept cycle and has dimensions of h = 25mm and l = 350mm [13].

Figure 3.1: Pick-and-place trajectory.

The standard adept cycle, shown in 3.1 has square corners, and introduce discontinuity in acceleration
when traversed. To overcome these discontinuities extremely high torques must be generated at the
actuators, this, coupled with the inertial effect of the moving system, give rise to unwanted vibrations.
To avoid these discontinuities the adept cycle is made smooth by introducing blends at the corners [8].

The rate at which the geometric path is followed is also a source of vibration. The motion profile,
governing the traversal of the path, must be well chosen and designed to minimize excitation of resonances
in the structure. The sampling of the geometric path as determined by the motion profile gives rise to
the trajectory. This chapter first introduces some geometric paths, followed by the presentation of typical
motion profiles. Finally, the resultant trajectories will be compared and discussed.
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3.1 Geometric Path
In this section various geometric curves will be introduced for blending purposes. The following

curves will be seen:

• Clothoid Curves

• Lamé Curves

• Polar Polynomials

Gauthier et al.[8] propose the blending dimensions shown in figure 3.2 to optimize the energy consumed
by a SCARA robot performing pick and place tasks. In the image, d corresponds to the vertical blending
length, and e to the horizontal blending length of a corner.

Figure 3.2: Adept half cycle using a Lamé curve [8]

3.1.1 Clothoids
Clothoids curves are discussed in great detail in path planning for autonomous vehicle literature.

These curves are the time optimal solution for given constraints in jerk[14]. Clothoid curves are defined
within the Cartesian frame as follows:

x(θ) = aC(θ) y(θ) = aS(θ) (3.1)

Where a is the clothoid sharpness and C(θ) and S(θ) are the Fresnel Integrals:

C(θ) = 1√
2π

∫ θ

0

cosu√
u
du S(θ) = 1√

2π

∫ θ

0

sin u√
u
du (3.2)

A clothoid curve is characterized by the curvature function [27]:

κ(θ) = dθ(s)
ds

=
√

2πθ
a

Kanayama and Miyake, [14] show that the Cartesian coordinates of a curve may be derived from its
curvature function as follows:

x(s) =
∫ s

0 cos
[
θ0 +

∫ t
0 κ(θ)dθ

]
dt

y(s) =
∫ s

0 sin
[
θ0 +

∫ t
0 κ(θ)dθ

]
dt (3.3)

Skeleton ray diagrams are used to constrain the blending of two consecutive straight line segments.
Clothoids are used in pairs and may be used to perform symmetric or un-symmetric blending. Each
cloithoid segment, i, is integrated from 0 to θi to find the resultant curve in Cartesian coordinates.
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Symmetric Blending
In symmetric blending the rays forming the skeleton diagram have equal lengths and the generated

blend consists of two clothoids with equal sharpness, a. The relative angle between the two rays α is
known as well as the length of each ray d. The two clothoids meet at P. From inspection one can see
that the blending occurs between 0 and α

2 (figure 3.3).

Figure 3.3: Symmetric blending ray diagram [27]

The relative angle α and the length of each ray are related by:

aC
(α

2

)
︸ ︷︷ ︸

x

+ aS
(α

2

)
︸ ︷︷ ︸

y

tan α2 = d

The clothoid sharpness, a, can thus be found:

a = d

C
(
α
2
)

+ S
(
α
2
)

tan α
2

(3.4)

Un-symmetric Blending
In un-symmetric blending, the ray lengths d and e are not equal (see figure 3.4). The blending curve

is generated by two clothoids A0 and A1 with associated parameters a0, θ0 and a1 and θ1 respectively.
As clothoid curvature is linear with respect to the inverse sharpness 1

a , certain restrictions to blending
apply [27].

Defining,
k = d

e
> 1

First Condition: k+cosα
sinα < C(α)

S(α) (3.5)

Satisfying 3.5 allows the blending of clothoids A0 and A1 generated from P0 to P, and from P1 to P
respectively. The two clothoids meet at point P with the same unsigned curvature1.

A second condition is necessary to ensure that the normal vectors of A0 and A1 coincide with the
normal vectors at P0 and P1:

1This meas that the tangent vectors T0 and T1 are equal but in opposite direction
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Figure 3.4: Un-symmetric blending ray diagram [27]

Second Condition: k+cosα
ksinα < C(α)

S(α) (3.6)

Having met both conditions, it is possible to find the two clothoids A0 and A1 which generate two
curve segments satisfying:

P = P0 + a0C(θ0)T0 + a0S(θ0)N0 (3.7)
P = P1 + a1C(θ1)T1 + a1S(θ1)N1 (3.8)

For a given set of g, h and α, and using the relations,

a1 = a0

√
θ1

θ0
θ1 = α− θ0

The clothoid sharpnesses, a0 and a1, can be found by expressing the projection of P onto each of the
rays:

d+ e cosα = a0C(θ0)− a1C(θ1) sin(π2 − α) + a1S(θ1) sinα

= a0C(θ0) + a0

√
α−θ0
θ0

C(α− θ0) cosα+ a0

√
α−θ0
θ0

S(α− θ0) sinα (3.9)

Similarly:

e sinα = a0S(θ0) + a0

√
α− θ0

0
C(α− θ0) sinα+ a0

√
α− θ0

θ0
S(α− θ0) sinα (3.10)

Solving for a0 in equations 3.9 and 3.10, and after some algebraic manipulation:

f(θ) =
√
θ [C(θ) sinα− S(θ)(k + cosα)] +

√
α− θ [S(α− θ)(1 + k cosα)− kC(α− θ) sinα)] (3.11)

The zeros of f must be found to obtain the solution for θ0. Walton and Meek, [27], propose a numerical
technique such bisection or Netwon’s method once the derivative of f is obtained. In the computational
environment the fmincon Matlab function was used, a non-linear equality constraint was used to set
f(θ) = 0. One notes that with the constraints in equations 3.5 and 3.6, for a given α, there exists a limit
to the ray length ratio k.
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Ray length ratio limits
The ray length ratio limits are obtained by changing the inequalities of equations 3.5 and 3.6 to

equalities. For the first condition:

k∗ + cosα
sinα = C(α)

S(α)
thus,

k∗ = C(α)
S(α) sin(α)− cos(α) (3.12)

For the second,
k∗ + cosα
k∗ sinα = C(α)

S(α)
thus,

k∗ = cos(α)
C(α)
S(α) sin(α)− 1

(3.13)

The clothoid pairs are to be introduced at the corners of the adept cycle, this means that α = π
2 . The

first condition is invoked if the ray along the vertical axis is longer than the one along the horizontal,
while the opposite is true for the second condition. The aspect ratio of the adept cycle is such that the
second condition would provide the maximum length e. If the vertical ray is chosen as d = h = 25mm,
we can find e = 44.5, the resultant clothoid pair is compared to the Lamé curve with the same dimensions
in figure 3.6.

3.1.2 Lamé Curves
Gauthier, Angeles and Nokleby [8] choose Lamé curves to define the transitional section of curve BC

(figure 3.2)because it allows a parametrization in Cartesian coordinates and is analytic throughout the
required path as it is limited to the first quadrant. With respect to figure 3.2, the normalized Lamé curve
may be defined as:

|u|m + |v|m = 1 (3.14)

The normalizing relationships are, u = x2
d and v = z2

e , where d and e refer to the half lengths of the
curve axes. The indice m is the degree of the curve. For m = 2 the Lamé curve represents a circle, as
m→∞ the curve approaches a square shape.

It was chosen to design the corner blend with the lowest order Lamé curve with a differentiable curva-
ture. For this m = 3 is needed, generating a cubic Lamé curve. Transforming to polar coordinates with
φ ∈ [0, π/2], the Cartesian coordinates, x and y, may be defined as a functions:

x(φ) = d(
1 + tan3 φ

)1/3 (3.15)

y(φ) = e tanφ(
1 + tan3 φ

)1/3 (3.16)

Note that the ray lengths given by d and e can be scaled independently, allowing a greater degree of
blending with the Lamé curve than with a clothoid pair.

3.1.3 Polar Polynomials
Polar polynomials are expressed with closed form equations and represent the simplest blending

approach. By defining the junction points d and e, specifying a turning angle σ and identifying appropriate
boundary conditions, polar polynomials in the form given in 3.17 may be found.

ρ(φ) = a0 + a1φ+ a2φ
2 + a3φ

3 + a4φ
4 . . . (3.17)
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Segovia et al [23] define the following simple curve for α = π/2 and θ ∈ [0, π/2] with ρ the radius
length. The polar polynomial in 3.18 is symmetric and can thus only be used for instances in which
d = e.

ρ(φ) = R

[
1 + φ2

2 −
φ3

π/2 + φ4

π2/2

]
(3.18)

The transformation of the polar polynomial into the Cartesian reference frame is done as follows:

x(φ) = ρ(φ)cos(φ) y(φ) = ρ(φ)sin(φ) (3.19)

3.1.4 Geometric Path Discussion
An overlay of the three geometric paths is shown in figure 3.5, table 3.1 shows the lengths of the

generated curves. The extended lengths refer to the curves shown in figure 3.6.
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Figure 3.5: Blending sections for the adept cycle

Curve Type Length [mm] Curve Type Length [mm]
Lamé 42.156 Extended Lamé 59.307

Clothoid 41.333 Extended Clothoid 57.015
Polar 41.106

Table 3.1: Blending lengths for geometric paths

Using the blending restrictions discussed in subsection 3.1.1, the following plot may be generated.
From table 3.1, it can be seen that the Lamé curve generates the longest blending length while the polar
polynomial generates the shortest. In the next section the various motion profiles will be introduced.
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Figure 3.6: Extended clothoid and Lamé curve generated for e = 44.5mm

3.2 Motion Profiles
A motion profile is a monotonic function in s describing the movement of the end effector along the

geometric path. It is of interest to define a trajectory so that it is continuous in acceleration. This is to
say that it is defined without discontinuities [16]. Pragmatism in industry however adopts profiles with
discontinuities as they allow for faster cycle times.

The motion profiles are designed to vary between s = 0 and s = 1, as a function of the normalized time
η = t

tf
(tf represents the cycle time). The motion profiles are designed with respect to this cycle time tf ,

the basis from which the necessary velocities and accelerations of the particular motion profile are found.
In upcoming subsections, the motion profiles discussed in the bibliographic report are presented.

3.2.1 Seventh Degree Polynomial
This motion profile is continuous in velocity, acceleration and jerk. Among the profiles investigated,

it provides for the smoothest motion along a given geometric path. The smoothness comes at the cost
of higher accelerations as shown in figure 3.7. The motion profile is determined from the following
polynomial:

s(η) = a7η
7 + a6η

6 + a5η
5 + a4η

4 + a3η
3 + a2η

2 + a1η + a0

The boundary conditions used to determine the coefficients are given in table 3.2:

Boundary Condition Value Boundary Condition Value
s(0) 0 s(1) 1
ṡ(0) 0 ṡ(1) 0
s̈(0) 0 s̈(1) 0...
s (0) 0 ...

s (1) 0

Table 3.2: Boundary conditions for the 7th degree polynomial
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The normalized seventh degree motion profile is defined in position s, velocity ṡ and acceleration s̈ in
equations 3.20, 3.21 and 3.22:

s(η) = −20η7 + 70η6 − 84η5 + 35η4 (3.20)

ṡ(η) = 1
tf

(
−140η6 + 420η5 − 420η4 + 140η3) (3.21)

s̈(η) = 1
tf

2 (−840η5 + 2100η4 − 1680η3 + 420η2) (3.22)

3.2.2 Trapezoidal Profile
The trapezoidal motion profile has jump discontinuities in acceleration occurring at η = 0, η = τ ,

η = 1− τ and η = 1. τ is the normalized acceleration time period. The trapezoidal profile is a piecewise
function, consisting of a constant acceleration phase followed by a constant velocity phase. By decreasing
the acceleration period τ , for a given tf , the higher the required acceleration (figure 3.7).

s(η) =


1
2η

2ka for η ≤ τ
(η − τ

2 )kv for τ < η ≤ 1− τ
1− 1

2 (1− η)2ka for 1− τ < η ≤ 1
(3.23)

ṡ(η) =


1
tf
ηka for η ≤ τ

1
tf
kv for τ < η ≤ 1− τ

1
tf

(1− η) ka for 1− τ < η ≤ 1
(3.24)

s̈(η) =


1
tf 2 ka for η ≤ τ
0 for τ < η ≤ 1− τ

1
tf 2 ka for 1− τ < η ≤ 1

(3.25)

For a fixed cycle time, and a desired acceleration period, the maximum normalized acceleration ka and
velocity kv are calculated as follows:

kv = 1
1− τ ka = kv

τ
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3.2.3 Bang-bang Profile
The bang-bang profile is only continuous in position and velocity, but lacks smoothness. Jump

discontinuities are present at η = 0, η = 0.5 and η = 1. The bang-bang profile provides the fastest cycle
time possible. Of the three profiles investigated, the bang-bang profile generates the lowest acceleration
values for a fixed cycle time tf (see figure 3.7).

s(η) =
{

2η2 for η ≤ 1
2

−2(η − 1)2 for η > 1
2

(3.26)

ṡ(η) =
{

4
tf
η for η ≤ 1

2

− 4
tf

(η − 1) for η > 1
2

(3.27)

s̈(η) =
{

4
tf 2 for η ≤ 1

2

− 4
tf 2 for η > 1

2
(3.28)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Motion Profile in Position

η

s

0 0.5 1
0

0.5

1

1.5

2

Motion Profile in Velocity

η

sd

0 0.5 1

−5

0

5

Motion Profile in Acceleration

η

sd
d

seventh
bangbang
trapezoidal 1/4
trapezoidal 1/8

Figure 3.7: Motion profiles generated for tf = 1
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3.3 Trajectory Characteristics
In this section, the effect of transversing a particular geometric path with a given motion profile is

studied. Essentially, the motion profile dictates the rate at which the Cartesian coordinates are sampled
from the geometric path.

Motion Profiles Geometric Paths
7th order polynomial Lamé curve

Bang-bang Clothoid pair
1
4 Trapezoidal Polar polynomial
1
8 Trapezoidal

Table 3.3: Tested motion profiles and geometric paths

The profiles and paths listed in table 3.3 allow 12 different path-profile combinations to be analyzed.
At this point, the motion profiles are generated for a cycle time of 1 second, various characteristics of the
generated trajectories may then be investigated. The 1

4 and 1
8 trapezoidal profiles refer to acceleration

durations of tf4 and tf
8 respectively2. As the cycle time is fixed at tf = 1, it can be seen, as in figure 3.7

that the trapezoidal trajectories require higher accelerations than the bang-bang trajectories.

Task Space
Table 3.4 shows a comparison of the velocity and acceleration characteristics of each trajectory. In the
table red indicates the highest value in either velocity or acceleration performance, while blue indicates
the lowest value. A trend that can be observed is that the Lamé curve requires higher velocities and
accelerations, due to the fact the it has the longest curve length (table 3.1).

Velocity [m/s] Acceleration [m/s2]
Motion Profiles Lamé Clothoid Polar Lamé Clothoid Polar

7th order polynomial 0.84068 0.83347 0.83608 7.7818 7.3686 7.0384
Bang-bang 0.76753 0.76095 0.76333 5.1687 4.7268 4.4662

1
4 Trapezoidal 0.51242 0.50802 0.50962 6.8895 6.2916 5.9544
1
8 Trapezoidal 0.43921 0.43545 0.43681 11.8115 10.7638 10.0453

Table 3.4: Task space velocity and acceleration comparison of generated trajectories

2Where tf is the cycle time
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The generated trajectories are presented in figures 3.8, 3.9 and 3.10.
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Figure 3.8: Lamé curve trajectories
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Figure 3.10: Polar polynomial trajectories
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Joint Space
The next study investigates the effect of trajectory following on the five bar mechanism. The inverse

geometric and kinematic models for the rigid case (sections 2.2.1 and 2.2.3) are used to compute the
actuated joint trajectories. The generated joint trajectories are assessed with respect to:

• motion profile - geometric path combinations

• cycle times

• blending lengths

Figures 3.11, 3.12 and 3.13 show the trajectories in the joint space for tf = 1. The spectral content of
each signal in acceleration is determined. Each figure shows the Power Spectral Density function of each
signal, relating distribution of energy in the signal to frequency. This distribution of energy is important
as it gives an indication to the extent whereby the resonance frequencies of the structure will be excited
by each trajectory. It can be observed that the spectral content of the 7th degree polynomial is much
more forgiving than those of the trapezoidal and bang-bang profiles.
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Figure 3.11: Lame curve joint space trajectory and spectral content

The characteristic features of each plot are shown in table 3.5:

Velocity [rad/s] Acceleration [rad/s2]
Motion Profiles Lamé Clothoid Polar Lamé Clothoid Polar

7th order polynomial 0.84045 0.8157 0.75216 25.0858 25.3279 21.2023
Bang-bang 0.75156 0.73162 0.68131 16.4343 16.4834 13.7179

1
4 Trapezoidal 0.86783 0.8448 0.78669 21.8879 21.9759 18.1215
1
8 Trapezoidal 1.1363 1.1061 1.0300 37.432 37.6681 30.9457

Table 3.5: Characteristic features of joint space trajectories
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Figure 3.12: Clothoid pair joint space trajectory and spectral content

0 0.2 0.4 0.6 0.8 1
2

2.2

2.4

2.6

2.8

3

3.2

Joint Trajectory in Position

t [s]

q 11
 [r

ad
]

0 0.2 0.4 0.6 0.8 1

−3

−2

−1

0

1
Joint Trajectory in Velocity

t [s]

qd
11

 [r
ad

/s
]

0 0.2 0.4 0.6 0.8 1

−50

−40

−30

−20

−10

0

10

20

30
Joint Trajectory in Acceleration

t [s]

qd
d 11

 [r
ad

/s
2 ]

0 100 200 300 400 500 600 700

10
−2

10
0

10
2

Power Spectrum

Frequency [Hz]

P
S

D

seventh
bangbang
trapezoidal 1/4
trapezoidal 1/8

seventh
bangbang
trapezoidal 1/4
trapezoidal 1/8

seventh
bangbang
trapezoidal 1/4
trapezoidal 1/8

seventh
bangbang
trapezoidal 1/4
trapezoidal 1/8

Polar Polynomial

Figure 3.13: Polar polynomial joint space trajectory and spectral content

The general trend of the motion profile-trajectory combination can be observed in figure 3.14. While
the difference is not great, it can be seen that Lamé curves correspond to trajectories with lower energy
while polar polynomials correspond to higher energies.
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Figure 3.14: Spectral content for the various geometric paths based on a 7th order polynomial traversal

Figures 3.15 and 3.16 show the effect of varying the cycle time and the blending length d3. As
expected, decreasing the cycle time tf inflates the energy content at all frequencies. Furthermore, the
shorter the blending length, and thus, the sharper the corner, the higher the energy content of the input
signal.
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3the symmetric case is considered, i.e. d = e
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Figure 3.16: Spectral content for seventh-lamé trajectories for symmetric blending lengths of d = 25mm,
d = 12.5mm and d = 6.125mm

Trajectory Discussion
From the analysis done in section 3.3, it is clear that there is a trade-off between the cycle time and

the amount of energy distribution in the trajectory signals. The following conclusions may be drawn:

• Shorter curve lengths require lower accelerations

• Lower cycle times require higher accelerations and increase the spectral content of the signal at all
frequencies

• Sharper corners increase the spectral content of the signal at all frequencies

In the next section the elastodynamic model of the five bar mechanism will be excited with the trajectories
discussed in this section.
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Chapter 4

Simulation

Adept Technology, Inc. [13], manufacturers of the worlds fastest robot, specify the following cycle-
time payload combinations for the standard adept cycle:

Adept Cycle (Std.) - Sustained
Standard Cycle: 25/305/25 (mm)
Payload [kg] Cycle time tf [s]

0.1 0.30
1.0 0.36
2.0 0.37
4.0 0.41
6.0 0.43

Table 4.1: Adept cycle times and payloads
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Figure 4.1: Position of the trajectory in the workspace (gravity is taken upwards)

In this section, it is assumed that a perfect controller is available. The inverse dynamic model (section
2.1.9) is used to evaluate the vibratory performance of the five bar mechanism as it traverses the various
trajectories (see figure 4.1). The simulations are conducted for the 0.1kg and 6.0kg cases listed in table
4.1. The simulation is run at a sampling frequency of 10MHz.
The following results will be presented and discussed:
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• Trajectory following in the task space

• Required joint torques

• Excited vibrations

• Spectral content of the vibratory signal

4.1 Simulation Set 1: 0.1kg tf = 0.3s

4.1.1 Vibrational Domain
The frequency analysis developed in section 2.3.2, may be used to determine the evolution of the

system’s natural frequency as it follows the adept cycle. Figure 4.2 represents the frequencies present on
a cycle with clothoid blending. It can be seen that the first natural frequency varies with ±2Hz about
126Hz, while the margin increases to ±7.5Hz about 1912Hz for the third natural frequency.

0 0.2 0.4 0.6 0.8 1

126

128

First Natural Frequency

s [m]

F
re

qu
en

cy
 [H

z]

0 0.2 0.4 0.6 0.8 1

160

170

Second Natural Frequency

s [m]

F
re

qu
en

cy
 [H

z]

0 0.2 0.4 0.6 0.8 1
1906

1910

1914

1918

Third Natural Frequency

s [m]

F
re

qu
en

cy
 [H

z]

Figure 4.2: Frequency distribution along Adept Cycle with a 100g payload. Line styles: - Lamé, - -
Clothoid, ... Polar

4.1.2 Simulation Results
The simulation results are now presented. In each figure, 12 results are superposed, line colour

represents the different motion profiles used. Figure 4.3 shows the velocity and accelerations obtained in
the task space with the inclusion of elastic deformation.

Task Space
The effect of deformation is most notable in the acceleration plot. The emergent trajectory does

not follow the expected trajectory in acceleration. At the end of the cycle time tf , the relative position
between the actual and expected position, the velocity and the acceleration of the end effector as averaged
per motion profile is given in table 4.2. Ideally, the relative position between the actual and desired end
effector positions is 0, while the desired velocity and acceleration are 0 in both cases.

From the table it can be observed that the end effector states in position are the best for the bang-
bang profile, this due to the fact that the bang-bang profile has the lowest acceleration value. What
is interesting to note, is that the 7th degree polynomial offers the best performance in velocity and
acceleration error, owing to the continuity and smoothness of its acceleration profile at this point.
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Figure 4.3: Simulation results for a 100g payload in the task space

Position [mm] Velocity [m/s] Acceleration [m/s2]
Motion Profiles xrel yrel ẋ ẏ ẍ ÿ

7th order polynomial -0.00349 -0.01559 0.00074 0.00081 0.4998 0.3127
Bang-bang 0.00068 0.00746 0.00042 0.00589 0.3998 -16.626

1
4 Trapezoidal 0.00184 0.01573 -0.00065 0.00647 0.6456 -22.756
1
8 Trapezoidal 0.00671 0.04156 -0.00559 0.00698 0.37523 -41.73167

Table 4.2: Terminal end-effector state at tf = 0.3 for a payload of 100g

Velocity [m/s] Acceleration [m/s2]
Motion Profiles Lamé Clothoid Polar Lamé Clothoid Polar

7th order polynomial 2.8032 2.8010 2.7881 88.652 90.736 89.602
Bang-bang 2.5689 2.5668 2.5549 59.677 61.849 53.019

1
4 Trapezoidal 1.7259 1.726 1.714 79.671 83.456 71.594
1
8 Trapezoidal 1.5130 1.5028 1.5123 154.65 146.94 128.40

Table 4.3: Maximum task space velocity and acceleration for a payload of 100g and a cycle time of tf =
0.3s

Joint Torques
The resultant joint torques show the effect of the vibrations on the required torque. The oscillations

in the torque signal are more pronounced for signals with discontinuities in vibration. From the behaviour
of the signals, it is clear to see that the vibrations are excited at these discontinuities. The bang-bang
profile shows excitation at the cycle mid-point while the trapezoidal signals show excitation at tf

4 and
tf
8 . The maximum torques required for each signal are summarized in table 4.4.
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Figure 4.4: Joint torques for a 100g payload. Line styles: - Lamé, - - Clothoid, ... Polar

Vibrations
The elastic coordinates qe are also obtained through the solution of the inverse dynamic model. The

elastic coordinates in bending and in tension-compression are presented in figures 4.5 and 4.6 respectively.

0 0.05 0.1 0.15 0.2 0.25 0.3

−5

0

5

x 10
−5 qe

11
 and qe

21

t [s]

qe
 [m

]

0 0.05 0.1 0.15 0.2 0.25 0.3
−0.02

−0.01

0

0.01

qed
11

 and qed
21

t [s]

qe
d 

[m
/s

]

0 0.05 0.1 0.15 0.2 0.25 0.3

−10

−5

0

5

10

15

qedd
11

 and qedd
21

t [s]

qe
dd

 [m
/s

2 ]

seventh
bangbang
trapezoidal 1/4
trapezoidal 1/8

seventh
bangbang
trapezoidal 1/4
trapezoidal 1/8

seventh
bangbang
trapezoidal 1/4
trapezoidal 1/8

Figure 4.5: Elastic Coordinates in Bending for a 100g payload. Line styles: - Lamé, - - Clothoid, ...
Polar
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Figure 4.6: Elastic Coordinates in Tension-Compression for a 100g payload. Line styles: - Lamé, - -
Clothoid, ... Polar

The spectral content of the signals may be analyzed to identify the excited frequencies. The signal
is shown between 0 and 700Hz as there is very little activity at higher frequencies. The results show
that the frequencies coinciding with the first and second resonances are excited. This is to be expected,
referring to figure 3.15, it can be seen that the energy of the input signal attenuates greatly after a
frequency of 300Hz.
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The results of this simulation set is summarized in table 4.4. The table firstly shows the maximum
torque required. Secondly the root mean square (RMS) value of the acceleration error is computed using
equation 4.1. Lastly, the maximum deflection in the elastic coordinates is noted, this maximum deflection
occurs in the links in bending.

RMSerror =

√∑n
1
(
Ẍdesired − Ẍactual

)2

n
(4.1)

where n is the number of data points

Lamé Clothoid Polar
Motion Profiles Torque [Nm]

7th order polynomial 33.6384 32.737 33.0867
Bang-bang 23.9012 23.1011 22.3707

1
4 Trapezoidal 30.6662 29.4722 28.56
1
8 Trapezoidal 51.3054 45.9056 47.4447
Motion Profiles RMS Acceleration Error [m/s2]

7th order polynomial 3.3563 3.8525 6.2169
Bang-bang 5.2095 5.3852 5.7002

1
4 Trapezoidal 5.2813 5.6053 5.9695
1
8 Trapezoidal 9.8592 8.7226 9.5968
Motion Profiles Max Deflection [mm]

7th order polynomial 0.04339 0.04223 0.04269
Bang-bang 0.03082 0.02979 0.02885

1
4 Trapezoidal 0.03957 0.03802 0.03684
1
8 Trapezoidal 0.0663 0.05931 0.06134

Table 4.4: Task space velocity and acceleration comparison of generated trajectories

From the table it can be seen that the worst performance, on all counts, is associated with the 1
8

trapezoidal profile as it requires the highest accelerations. The required torque is closely related to the
path length, and thus the lowest torques correspond to the polar polynomial trajectories. The best
performance in terms of the RMS acceleration error is associated with the smoothest trajectory, the 7th
degree polynomial-Lamé curve.
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Errors in the Task Space
The norm of the error in the task space is shown in figure 4.8. An understanding of the residual

deformations and energies in the signal may be obtained from studying table 4.5. While the smoothness
of a curve significantly decreases the residual error, the maximum acceleration achieved along a path plays
a dominant role. The trends correspond to those seen in 3.14. The polar polynomial has slightly higher
spectral energy at the natural frequencies of the robot and is associated with higher residual errors.

What is clear is that the smooth 7th order curve presents the best results in the error norms. At this
slower cycle speed of tf = 0.3 and low payload of 100g, the smoothness of the trajectory is the dominant
factor for the level of residual activity in position.
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Lamé Clothoid Polar
Motion Profiles Position [mm]

7th order polynomial 0.0157 0.0009 0.3109
Bang-bang 0.0078 0.0007 0.5573

1
4 Trapezoidal 0.0160 0.0017 0.9366
1
8 Trapezoidal 0.0439 0.0049 0.2872
Motion Profiles Velocity [m/s]

7th order polynomial 0.0009 0.0053 0.4973
Bang-bang 0.0049 0.0050 1.0716

1
4 Trapezoidal 0.0055 0.0055 0.2611
1
8 Trapezoidal 0.0087 0.0062 0.8352
Motion Profiles Acceleration [m/s2]

7th order polynomial 0.5573 0.0045 1.3193
Bang-bang 0.4973 0.0050 1.0716

1
4 Trapezoidal 0.8352 0.0045 1.3193
1
8 Trapezoidal 1.8212 0.0083 3.0404

Table 4.5: Residual norms at end effector end points

4.2 Simulation Set 2: 6.0kg tf = 0.43s

The cycle with the heaviest payload is now investigated (table 4.1). Compared to the simulation done
in the previous section (4.1), the payload is increased by a factor of 60 while the cycle time is increased
by a factor of 1.43.

4.2.1 Vibrational Domain
The heavier payload transforms the frequencies present along the geometric path (compare figures

4.2 and 4.9). The first natural frequency is now located at 58Hz ± 1Hz, the second at 80Hz ± 6Hz and
finally the third natural frequency at 1823Hz ± 13Hz.
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4.2.2 Simulation Results
Figure 4.10 shows the velocity and accelerations obtained in the task space with the inclusion of

elastic deformation. With the higher payload, oscillations about the desired end position of the end
effector become visible. Here the results are averaged according to the various geometric paths so that
the general trends may be seen.
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Figure 4.10: Simulation results for a 6kg payload in the task space. Line styles: - Lamé, - - Clothoid, ...
Polar

Position [mm] Velocity [m/s] Acceleration [m/s2]
Motion Profiles xrel yrel ẋ ẏ ẍ ÿ

7th order polynomial -0.00299 -0.04231 -0.00256 -0.00102 -1.1090 -2.9313
Bang-bang -0.00944 -0.02703 0.00801 0.00685 0.6245 -5.7937

1
4 Trapezoidal 0.01330 0.01512 0.01400 0.00966 -1.793 -12.188
1
8 Trapezoidal -0.09179 -0.01427 0.01707 0.02793 15.75267 -11.109

Table 4.6: Averaged terminal end-effector state at tf = 0.43 for a payload of 6000g

Table 4.7 shows the maximum velocities and accelerations occurring in the task space. As before, the
highest accelerations are associated with the 1

8 trapezoidal-Lamé trajectory.

Velocity [m/s] Acceleration [m/s2]
Motion Profiles Lamé Clothoid Polar Lamé Clothoid Polar

7th order polynomial 1.9581 1.9571 1.9504 48.476 47.094 50.31
Bang-bang 1.7962 1.7943 1.787 32.551 31.308 31.939

1
4 Trapezoidal 1.2185 1.2154 1.2256 47.465 46.194 45.352
1
8 Trapezoidal 1.0761 1.074 1.076 82.574 82.159 74.896

Table 4.7: Maximum task space velocity and acceleration for a payload of 6kg and a cycle time of tf = 0.43

63



Chapter 4. Simulation 4.2 Simulation Set 2

Joint Torques
The maximum torques required for each signal are summarized in table 4.8.
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Figure 4.11: Joint torques for a 6000g payload. Line styles: - Lamé, - - Clothoid, ... Polar

Vibrations
The elastic coordinates qe are also obtained through the solution of the inverse dynamic model.

The elastic coordinates in bending and in tension-compression are presented in figures 4.12 and 4.13
respectively.

Figure 4.14 shows the power spectral density of the elastic coordinates qe, the frequencies identified in
section 4.2.1 are identifiable as peaks in the figure. Again, the first two modes of vibration are dominant
as they are excited by the input trajectories.

The results of this simulation set is summarized in table 4.8. From the table, it can be seen that
high input accelerations, and thus high torques, correspond to the highest deflections (i.e. 1

4 trapezoidal
profile), while the opposite is true for low input accelerations (i.e. bang-bang).
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Figure 4.12: Elastic Coordinates in Bending for with a 6kg payload. Line styles: - Lamé, - - Clothoid, ...
Polar
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Figure 4.13: Elastic Coordinates in Tension-Compression for a 6000g payload. Line styles: - Lamé, - -
Clothoid, ... Polar

From the figures it can be seen that vibratory content of a given signal depends on the smoothness
of the trajectory, with less oscillations attributable to the 7th degree polynomial.
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Lamé Clothoid Polar
Motion Profiles Torque [Nm]

7th order polynomial 73.634 70.046 71.298
Bang-bang 56.084 50.848 50.734

1
4 Trapezoidal 75.208 74.605 62.496
1
8 Trapezoidal 125.45 124.45 119.16
Motion Profiles RMS Acceleration Error [m/s2]

7th order polynomial 2.7168 3.3724 6.641
Bang-bang 4.5245 4.7786 5.4098

1
4 Trapezoidal 6.0193 6.3989 8.6868
1
8 Trapezoidal 10.572 10.731 13.865
Motion Profiles Max Deflection [mm]

7th order polynomial 0.09700 0.09226 0.09392
Bang-bang 0.07387 0.06696 0.06681

1
4 Trapezoidal 0.09911 0.09832 0.08233
1
8 Trapezoidal 0.16540 0.16408 0.13813

Table 4.8: Task space velocity and acceleration comparison of generated trajectories

The smoother the trajectory and geometric path, the less oscillatory the signal, this is revealed through
the RMS error values. It can be seen that the 7th order polynomial-Lamé curve provides the best results
to this regard.
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Errors in the Task Space
The norm of the error in the task space for a payload of 6kg and a cycle time of tf = 0.43s is shown

in figure 4.15. The results are slightly different to those presented in figure 4.8. Although the bang-bang
profile yields a lower residual error norm in position than the 7th order polynomial, it can be seen that the
residual errors in velocity and acceleration are attenuated to greater extent by the 7th order polynomial.
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Figure 4.15: Error norm in the task space with a 6kg payload. Line styles: - Lamé, - - Clothoid, ... Polar

Lamé Clothoid Polar
Motion Profiles Position [mm]

7th order polynomial 0.9355 0.0009 0.3109
Bang-bang 4.8557 0.0007 0.5573

1
4 Trapezoidal 5.5411 0.0017 0.9366
1
8 Trapezoidal 8.7118 0.0049 0.2872
Motion Profiles Velocity [m/s]

7th order polynomial 0.0009 0.0053 0.4973
Bang-bang 0.0049 0.0050 1.0716

1
4 Trapezoidal 0.0055 0.0055 0.2611
1
8 Trapezoidal 0.0087 0.0062 0.8352
Motion Profiles Acceleration [m/s2]

7th order polynomial 0.5573 0.0045 1.3193
Bang-bang 0.4973 0.0087 3.8472

1
4 Trapezoidal 0.8352 0.0056 1.8212
1
8 Trapezoidal 1.8212 0.0083 3.0404

Table 4.9: Residual error norms at end effector end points for a payload of 6kg
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4.3 Simulation Set 3: 6.0kg tf = 0.215s

This section briefly looks the effect of halving the cycle time of the test studied in section 4.2. This
study is conducted to observe the effect of the deformations in the task space to a greater extent.
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Figure 4.17: Task space velocity and acceleration for a payload of 6kg and tf = 0.215s Line styles: -
Lamé, - - Clothoid, ... Polar

In figure 4.16, it can be seen that the deformations do indeed become visible. The resultant velocities
and accelerations are extremely high due to the short cycle time and the dominant inertial effects (figure
4.17).
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Lamé Clothoid Polar
Motion Profiles Torque [Nm]

7th order polynomial 422.36 409.52 420.02
Bang-bang 200.69 198.11 210.11

1
4 Trapezoidal 366.02 350.89 368.43
1
8 Trapezoidal 630.69 613.85 627.44
Motion Profiles RMS Acceleration Error [m/s2]

7th order polynomial 84.852 78.239 79.583
Bang-bang 36.81 36.294 44.308

1
4 Trapezoidal 58.564 53.32 63.981
1
8 Trapezoidal 172.95 161.75 148.51
Motion Profiles Max Deflection [mm]

7th order polynomial 0.44778 0.41406 0.41328
Bang-bang 0.26455 0.26118 0.21627

1
4 Trapezoidal 0.35171 0.33231 0.32705
1
8 Trapezoidal 0.78559 0.73566 0.6854

Table 4.10: Comparison of results for a cycle time of tf = 0.215s

Table 4.10 compares the various trajectories. As before, geometric paths sampled with the 1
8 trapezoidal

show require the highest torques and are associated with the greatest RMS errors and deflections. The
bang-bang profile requires the lowest acceleration for any given path, and shows better performance.
Interestingly, it would seem that at these extreme conditions, the smoothness of the 7th degree polynomial-
Lamé curve trajectory is not an adequate guarantee for a low RMS error.

Lamé Clothoid Polar
Motion Profiles Position [mm]

7th order polynomial 1.1 1.6 1
Bang-bang 0.1 0.6 0.4

1
4 Trapezoidal 0.6 1.1 0.6
1
8 Trapezoidal 2.5 1.7 2.2
Motion Profiles Velocity [m/s]

7th order polynomial 0.057 0.0599 0.0339
Bang-bang 0.0894 0.0883 0.1016

1
4 Trapezoidal 0.1435 0.1365 0.1104
1
8 Trapezoidal 0.4034 0.3958 0.3637
Motion Profiles Acceleration [m/s2]

7th order polynomial 148.05 136.74 130.50
Bang-bang 8.635 10.771 42.82

1
4 Trapezoidal 107.91 94.561 110.36
1
8 Trapezoidal 292.71 268.61 255.20

Table 4.11: Residual error norms at end effector end points for a payload of 6kg

The error norms shown for the extremely high speed simulation in table 4.11 correspond to the
findings in table 4.10. At the end of the cycle, the error norm is the best for the bang-bang profile as it
invokes the lowest acceleration.
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4.4 Simulation Set 4: Extended Curve Lengths
This section looks at the effect of varying the blending lengths of the clothoid pairs and the Lamé

curve. The blending curves with d = e = 25mm are compared with a Lamé curve with e = 125mm and
a clothoid pair with e = 44mm (referred to as extended curves). The curves and the associated velocity
and frequency behaviour in the task space are shown in figure 4.18.
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Lamé Clothoid Lamé Ext Clothoid Ext
Motion Profiles Total Path Length [mm]

N/A 0.3843 0.3840 0.3687 0.3751
Motion Profiles Torque [Nm]

7th order polynomial 73.634 70.046 29.145 46.408
Bang-bang 56.084 50.848 34.596 36.402

1
4 Trapezoidal 75.208 74.605 39.28 44.816
1
8 Trapezoidal 125.45 124.45 70.937 70.39
Motion Profiles RMS Acceleration Error [m/s2]

7th order polynomial 2.7168 3.3724 0.53046 2.3421
Bang-bang 4.5245 4.7786 3.9246 4.0618

1
4 Trapezoidal 6.0193 6.3989 4.859 5.2756
1
8 Trapezoidal 10.572 10.731 6.5765 8.4488
Motion Profiles Max Deflection [mm]

7th order polynomial 0.09700 0.09226 0.03833 0.06106
Bang-bang 0.07387 0.06696 0.04556 0.04791

1
4 Trapezoidal 0.09911 0.09832 0.05173 0.05902
1
8 Trapezoidal 0.16540 0.16408 0.10245 0.09252

Table 4.12: Comparison of short and extended cycle lengths

From table 4.12, it can be observed that the shortest trajectory, the extended Lamé curve, shows the
best performance on all counts. The extended Lamé curve drastically reduces the required torque, the
acceleration error and the maximum deflection observed along the path. Table 4.13 shows the error norms
in position, velocity and acceleration. In general it can be observed that shorter path lengths yield better
results, with the 7th order polynomial providing the best results in velocity and in acceleration.

Lamé Clothoid Lamé Ext Clothoid Ext
Motion Profiles Total Path Length [mm]

N/A 0.3843 0.3840 0.3687 0.3751
Motion Profiles Position [mm]

7th order polynomial 0.0524 0.0503 0.0606 0.0905
Bang-bang 0.0219 0.0293 0.0125 0.0461

1
4 Trapezoidal 0.0158 0.0221 0.0056 0.0320
1
8 Trapezoidal 0.0968 0.0919 0.0441 0.0659
Motion Profiles Velocity [m/s]

7th order polynomial 0.0014 0.0044 0.0005 0.0058
Bang-bang 0.0085 0.0102 0.0007 0.0039

1
4 Trapezoidal 0.0122 0.0130 0.0134 0.0138
1
8 Trapezoidal 0.0162 0.0253 0.0081 0.0283
Motion Profiles Acceleration [m/s2]

7th order polynomial 1.7121 2.0211 0.3816 0.2521
Bang-bang 1.6179 2.9177 0.2230 0.8533

1
4 Trapezoidal 1.6563 2.2635 1.0501 1.2532
1
8 Trapezoidal 18.1496 17.4328 8.9629 12.2502

Table 4.13: Comparison of error norms on short and extended cycle lengths

This concludes the chapter on simulation. A summary is made and conclusions are drawn in the final
chapter. Future work and perspectives are highlighted.
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Chapter 5

Conclusion

This master thesis investigated the use of an elastodynamic model to simulate the behaviour of a elastic
five bar mechanism performing pick and place tasks. The work covered in this report can be summarized
under the following categories:

• Geometric and Kinematic Modeling

• Elastodynamic Modeling

• Trajectory Generation

• Simulation

Geometric and Kinematic Modeling

A rigid and elastic model of the five bar mechanism was developed. The model is simple as the
number of DOF of the task and of each leg are the same. This section developed the kinematic relations
relating the dependent coordinates qd to the independent coordinates qi. The elastic model introduces
the elastic coordinates qe and increases the complexity. The deformations are incorporated by computing
the effective link lengths based on the elastic coordinates.

Elastodynamic Modeling

The section on elastodynamic modeling gave a detailed development of the inertial and stiffness matri-
ces. The method of assumed modes was chosen, and its accuracy was checked against a CASTEM finite
element model. The verification process showed an accuracy of 4% on the natural frequencies and 2.5%
on the static deformations. The distribution of natural frequencies in the robot workspace was obtained
and evaluated for various payloads.

The dynamic model was derived according to the Lagrangian formulation. Jacobian matrices were
used to obtain the closed loop dynamics of the system. The Coriolis and centrifugal efforts were obtained
through differentiation of the inertia matrices. The inverse and direct dynamic models were developed
in such a way that they could be used for simulation purposes.
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Trajectory Generation

The geometric paths were developed using Lamé curves, clothoid pairs and polar polynomials. A 7th
degree polynomial, bang-bang profile and two trapezoidal profiles were chosen as motion profiles and used
to sample the geometric paths. The motion profiles were constrained according to a certain cycle time
tf , giving insight into the type of motors required. A total of 12 trajectories could be generated and the
following was studied:

• Maximum velocities and accelerations

• Spectral content of joint trajectories

• The effect of varying the cycle time tf
• The effect of varying the blending lengths of the geometric paths

As expected, it was shown that a bang-bang motion profile requires the lowest acceleration for a given
tf , whereas a 1

8 trapezoidal profile requires the highest. It was found that the spectral content of the
joint trajectories would be concentrated on the first two natural frequencies of the five bar mechanism.
Decreasing the cycle time tf or blending lengths d and e showed an inflation in the spectral content of
these signals.

Simulation

The technical specifications given by Adept Technologies Inc. [13] were used to define appropriate
simulation tests. Simulations were conducted for the following:

Payload Cycle Time Blending Lengths
100g tf = 0.3s d = e = 25mm
6kg tf = 0.43s d = e = 25mm
6kg tf = 0.215s d = e = 25mm
6kg tf = 0.430s dLame = dclothoid = 25mm, eLame = 175mm, eclothoid = 44mm

The simulations were discussed and compared with respect to:

• Terminal state error in position, velocity and acceleration

• Maximum torque, deflection, velocity and acceleration

• RMS error in acceleration

The simulation results showed the following:

1. The pick and place trajectories only excite the first and second natural frequencies of the five bar
mechanism

2. The maximum deflection along the path is directly related to the maximum torque required to
complete the given trajectory in a given tf

3. The shorter the path length, the lower the required acceleration and as a result the lower the
required torque

4. The terminal state accuracy can be attributed to the smoothness of the trajectory, with 7th degree
polynomial-Lamé trajectories showing the best results

Future Work and Perspectives A substantial platform has been developed on which the following
future work is envisioned:

1. Modeling

• The development of a more comprehensive elastodynamic model for the IRSBot2

2. Optimality
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• Defining appropriate cost functions and optimization parameters to optimize the designed
trajectories

3. Controllers

• Design of conventional feedback controllers on the direct dynamic model of the system
• Implementing input shapers for the reduction of residual vibrations. Note that in the absence

of feedback controllers, these input shapers can be tested on the inverse dynamic model of
the system
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Thesis Summary

This master thesis investigated the use of an elastodynamic model to simulate the behaviour of a elastic
five bar mechanism performing high speed pick and place tasks. Pick and place tasks are performed at
high speed along the adept cycle, which moves an object from one position to another in a workspace.

The master’s thesis firstly develops an appropriate elastodynamic model using the method of assumed
modes. The elastodynamic modeling involved the development of the inertial and stiffness matrices.
Using shape functions in bending for actuated links and shape functions in tension and compression for
passive links. The elastic model is accompanied by the necessary geometric and kinematic relationships
relating the dependent and independent coordinates in the system. The elastodynamic model is verified
against a finite element model and the natural frequencies of the system are identified. The elements of
the elastodynamic model are used to develop the closed form direct and inverse geometric relationships
according to the Lagrangian formulation.

A further section was devoted to the development of various trajectories. The trajectories define the
desired behaviour of the end effector along a pick and place path. The trajectories are constructed by
sampling a certain geometric path by a given motion profile. Lamé, clothoid-pair and polar polynomial
blends are introduced to smoothen the geometric paths. 7th degree polynomials, bang-bang and trape-
zoidal profiles are used to sample the geometric paths. For a given cycle time, the bang-bang profile has
the lowest acceleration. The spectral content of the resultant trajectories in the joint space are identified
and discussed. The effect on the spectral content of the signal by varying the cycle times as well as the
blending lengths of the geometric curves was studied. It was found that the spectral content of the signals
would only coincide with the first and second natural frequencies of the system.

Simulations done in Simulink were used to excite the 5 bar mechanism along the defined trajectories.
The simulations were chosen based on cycle times and payloads used in industry. The simulated results
reveal the vibrational effect of the deformations arising from the inertial forces. The simulation results
are discussed compared. Indeed, spectral analysis of the resultant vibrations showed that only the first
and second natural frequencies of the system were excited. It was found that for longer cycle times the
residual error norms were improved by the smoothness of the motion profile. At shorter cycle times
however, higher accelerations in the smooth profiles deteriorate the performance. The shorter the length
of the geometric path, the lower accelerations for a given cycle time are needed.

The thesis work developed a substantial platform from which, in future, elastodynamic models of
more complex systems may be constructed. The elastodynamic model can be used to define appropriate
cost functions for the optimization of various trajectories. Alternate methods of feedback control and
command pre-shaping may also be used to reduce unwanted vibrations.
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