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Abstract

In the production robotics field, it is well known that parallel robots present several

operational advantages compared to the serial robots, such as higher stiffness, higher

payload, small inertia and higher speed and acceleration. However, due to their geo-

metric complexity in the kinematic chains, parallel robots present abundant singularity

problems that affect their performance. The most constraining singularities are the

Type 2 singularities due to the fact that in such singular configurations the workspace

is divided into different aspects corresponding to different assembly modes, and this

results in decreasing the reachable workspace size. Moreover, the parallel mechanism

gains one or more uncontrollable degrees of freedom, which makes the robot present an

underactuated behavior at singularity. In order to overcome the crossing through these

type of singularities, an advanced control law based on virtual holonomic constraints is

proposed.

The present research work explains and gives the rigorous mathematical deriva-

tions for synthesizing a feedback control law based on virtual holonomic constraints that

takes into account the analysis of the degeneracy conditions of the dynamic model, the

dynamic criterion to cross these singularities and the controlled and uncontrolled vari-

ables identified at singularity. This to define a control architecture that deals with the

continuous tracking of non-optimal trajectories both in the singularity locus and far

from the singularity. The case of study and experimentation is the five-bar mechanism

Dual-arm SCARA robot DexTAR (Dextrous Twin-Arm Robot).

Chapter 1 presents an introduction and state of the art in Type 2 singularity

techniques in the literature and also the dynamic modeling of parallel robots by recalling

the geometric model and the first and second order kinematics. Moreover, a validation

of the dynamic model is performed via Co-Simulation between ADAMS and MATLAB.

In addition to that, the degeneracy conditions of the Dynamic model of the five-

bar mechanism are analyzed. This analysis will be used for the computation of the free

dynamics and the modeling of the virtual holonomic constraints. In addition to that,

an overview of the crossing Type 2 singularity techniques is presented, this to ensure a
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complete analysis on the conceptual and technical context of this problem.

In chapter 2 and chapter 3, a novel approach based on virtual holonomic con-

straints, for addressing the underactuation of parallel robots at singularity is devel-

oped, including an analysis of the computation for the free dynamics, virtual holonomic

constraints modeling, dynamic model consistency at singularity and an input-output

linearization for the enforcement of the virtual holonomic constraints. Two different

solutions for dealing with the underactuation at singularity are proposed, the first one

by modeling the virtual holonomic constraints using joint space controlled variables,

and a second one by modeling the virtual holonomic constraints using cartesian space

controlled variables.

Finally, in chapter 4, a multi-controller architecture is proposed for a continuous

trajectory tracking including the parallel mechanism undergoing far from the singu-

larity locus and in the singularity locus, which is the critical position when the robot

becomes underactuated. Moreover, in order to define the transition between control

laws, a performance-based supervisory block is added in the scheme in order to define

the switching between control laws. Then, the results of testing the multi-controller

architecture with non-optimal trajectories are presented and discussed. In addition to

that, as a complementary validation process, an Inertial Measurement Unit IMU is

used to validate the Type 2 singularity crossing.
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Nomenclature

n degrees of freedom

nd passive joints present in the legs of the robot

qa n dimensional vector of active joints

q̇a n dimensional vector of active joint velocities

qd nd dimensional vector of active joints

q̇d nd dimensional vector of active joint velocities

x vector representing the robot pose

ẋ velocity of the platform

ẍ acceleration of the platform

t robot twist with parametrization of the end effector orientations

A (n× n) parallel jacobian matrix

B (n× n) serial jacobian matrix

i an integer

τ the (n× 1) vector of the robot input efforts

λ1, λ2 the (n× 1) and (nd × 1) vector of Lagrange multipliers

Jta, Jt, Jtd (nd × n), (nd × n) and (nd × nd) relating q̇d, q̇a and 0tp

Lt Lagrange of the virtual tree structure

τ ta (n× 1) vector of virtual input efforts in active joints

related to the Lagrange of virtual tree structure Lt

Lp Lagrange of the moving platform

wp (n× 1) vector of the wrench of the free platform related to Lp

foff1, foff2, fs11, fs21 friction terms for the five bar mechanism

τ td (nd × 1) vector of virtual input efforts in passive joints

related to the Lagrange of the virtual tree structure Lt

J Jacobian matrix relating t and q̇a

Jd Jacobian matrix relating q̇d and q̇a

q vector of active joints for five bar mechanism

q̇ vector of active joint velocities for five bar mechanism

xii



xiii

a distance between actuated joints of the five bar mechanism

l link lengths of the five bar mechanism

zz11R, zz21R inertias of the two proximal links of the five bar mechanism

m mass of the end effector of the five bar mechanism

ZZ positive diagonal matrix of inertias

f (n× 1) vector that groups active joint friction terms

M inertia matrix

H matrix that groups the gravitational, centrifugal and Coriolis terms

u n dimensional vector of control inputs

qd n dimensional vector of desired joint position

q̇d n dimensional vector of desired joint velocity

q̈d n dimensional vector of desired joint acceleration

x, y moving platform pose

ẋ, ẏ moving platform velocities

ẍ, ÿ moving platform accelerations

ts twist of uncontrollable motion at singularity

hi virtual holonomic constraint for both representations (joint and task space)

φi(y) desired evolutions of the controlled variables

A(y) (n× n) parallel jacobian matrix in y coordinates

B(y) (n× n) serial jacobian matrix in y coordinates

As n dimensional vector of reduced parallel jacobian matrix at singularity

υ1 n dimensional vector of virtual constraint controller

Kp proportional gain

Kd derivative gain

h n dimensional vector of virtual holonomic constraints

υ2 escalar control input for virtual constraint with cartesian controlled variable

β end-effector orientaton

u1 n dimensional vector of control inputs for Computed Torque Control

u2 (n× 1) control inputs with virtual holonomic constraint in joint space

u3 (n× 1) control inputs with virtual holonomic constraint in cartesian space

σ scalar supervisory control variable
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Context

During the last decades, the robotic research communities on studying dynamic re-

configurability of parallel mechanisms have kept special attention on addressing the sin-

gularity problems on such complex mechanical architectures in order to come up with

novel solutions for undergoing in the singularity locus of the parallel robots, describing a

stable behavior. Moreover, researchers have been attracted for parallel mechanisms due

to their operational advantages in processes, such as machine-tools processes, medical

applications, pick and place processes, etc.

Nevertheless, parallel robots present abundant singularity problems that influence

their performances in terms of reachable workspace, which is reduced due to these

problems. Therefore, the workspace size is reduced, and the accessibility performances

of the parallel robots are affected.

The literature review shows that some designers have overcome the problems of

workspace reachability by implementing more complex mechanisms, but this usually

leads to the design of robots with small workspace or parallel robots with low practi-

cability. On the other hand, in the last years it has been shown that it is possible to

pass through Type 2 singularities by planning a trajectory respecting a physical crite-

rion developed from the analysis of the degeneracy conditions of the dynamic model.

This last approach is promising since it has shown to cross the Type 2 singularities

and increase the reachable workspace. However, due to the dynamic model degener-

acy at the singularity locus, just by planning a trajectory respecting the criterion is

not enough. Thus, a last solution has proposed the implementation of a Multi-Model

Controller in order to track the trajectory that respects the physical crtierion, and by

swithing between two different dynamic models. Nevertheless, this solution neglects the

platform dynamics in the feedback linearization, and this may not succeed in crossing

and generate an overconstraint in the system at the singularity.

The results presented in this thesis show that it is possible to develop an advanced

feedback control law in order to cross Type 2 singularities. This is done, by modeling

virtual holonomic constraints to take into account the underactuation that appears in

the singularity locus. This virtual constraint can be modeled based on on the analysis of

the free dynamics of the robot at singularity and be enforced through feedback control

action. Moreover, it is shown that the virtual holonomic constraint technique is a novel

approach for crossing Type 2 singularities in parallel robots.
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Contributions

The main contributions of the present research work are listed as follows:

� The modeling of the free dynamics and its equivalence with the dynamic criterion

that must be respected in order to cross the Type 2 singularities. This leads to

the identification of the controlled and uncontrolled variables in order to develop

the virtual holonomic constraint and its controller at the singularity when the

robot is underactuated;

� Definition of the virtual holonomic constraint in the two different spaces, by using

controlled joint space variables and controlled cartesian space variables;

� Synthesize of a virtual constraint controller at the singularity for the enforcement

of the virtual holonomic constraint expressed with joint space and cartesian space

variabes. In addition to that, the feedback linearization of the system is computed

demonstrating consistency in the dynamic model;

� Development of a Multi-Controller architecture for a continuous tracking of non-

optimal trajectories with stable behavior undergoing far from the singularity and

in the singularity locus.





Chapter 1

Introduction

1.1. Parallel robots

1.2. Dynamic modeling of parallel robots

1.3. Parallel or Type 2 Singularities

1.4. Five bar mechanism: Benchmark in Type 2 singularity crossing

1.5. Summary

This chapter is dedicated to explain the definition and evolution of the paral-

lel mechanisms. First, by giving a brief historical overview, and then by stating the

advantages and drawbacks over the serial robots. Afterwards, it is presented a perfor-

mance analysis that involves changing assembly modes, which implies also to generally

talk about the most constraining drawbacks, which are the singularities. In the sec-

ond section the dynamic modeling of parallel robots will be addressed by computing a

general dynamic modeling formulation. This chapter seeks also to analyze the Degen-

eracy conditions of the Dynamic model due to the parallel jacobian matrix A. Then

an overview of crossing Type 2 singularities techniques will be given by analyzing the

technical and conceptual problems when meeting Type 2 singularities. Two main ap-

proaches that have been proposed in the literature will be discussed. First, a physical

criterion deduced from the Degeneracy conditions that must be respected while crossing

Type 2 singularities. And then, a Multi-Model Computed Torque Control for tracking

optimal trajectories respecting the criterion of the first approach. Then the dynamics

of the five-bar mechanism are modeled and the identified dynamic parametrization is

included and a cross-validation of the dynamic model is performed via a Co-simulation

ADAMS/MATLAB. Finally a summary of this chapter will be given by pointing out the

main details that will be used for further analyses of the present research work.
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1.1. Parallel robots

1.1.1 History of parallel robots

Parallel robots are robots whose base and end-effector are connected by several closed

kinematic chains in which not all joints are actuated. In [1], a fully parallel robot is de-

fined as a mechanism that includes as many elementary kinematic chains as the moving

platform does admit degrees of freedom. In addition, every elementary kinematic chain

possesses only one actuated joint. Moreover, no segment of an elementary kinematic

chain can be linked to more than two bodies. Parallel robots can be classified based on

the type of motion that their end-effector can produce, for example:

� 2 translations: 2T

� 2 translations and 1 rotation in the plane: 2T1R

� 3 translations: 3T

� 3 translations and 1 rotation (Shönflies motion): 3T1R

� 3 translations and 2 rotations: 3T2R

� 3 translations and 3 rotations: 3T3R

� 2 or 3 rotations (spherical robots): 2R or 3R

� 2 rotations and 1 translation: 2R1T

Some examples are depicted in Figure 1.1. The robot in the left is the Gough-

Stewart platform which is fully-parallel robot, whose base and end-effector are con-

nected by identical serial chains with only one actuated joint in each chain. This

parallel robot was the first development in the industrial environment by the Dr. Eric

Gough in 1962. The robot in the right is a Delta robot classified as 3T1R, which means

it can describe Shönflies motions, it was invented by Clavel in 1986.

There are also planar 2T parallel robots with fixed or mobile actuators and with

revolute or linear actuated joints. An example of a fixed linear actuated joint PRP-

PR architecture is depicted in the Figure 1.2. And also an example of fixed revolute

actuated joints architectures: RRR-RR (five-bar mechanism), Figure 1.3.



6

Figure 1.1: Gough-Stewart platform and Robot Delta[2]

Figure 1.2: PRR-PR mechanism architecture [4]

Figure 1.3: RRR-RR (five-bar mechanism) [4]

1.1.2 Advantages and drawbacks

There exist several advantages of parallel robots with respect to the serial robots, the

main advantages are listed as follows:

� High stiffness

� High payload

� Small inertia

� High speed and acceleration

The main drawbacks are:
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� Small workspace

� Abundant singularity problems

The main drawbacks of the parallel structures are related to the reachable workspace,

which is a primary operation condition which must be taken into account for a good

performance of the robot. If the robot can have more reachable points in the entire

workspace, then the operational time to perform a task can be reduced. However, in

order to address the problem of reachability, it is necessary to analyze the second main

drawback which is the singularity problems of the complex dynamics of a parallel robot.

1.1.3 Changing assembly mode for parallel robots

Parallel robots have multiple solutions from the direct kinematic model. It means

that the parallel robot can perform several configurations, which allow it to admit

several positions and orientations in the workspace for a given set of joint values.

Moreover, parallel robots have multiple inverse kinematic solutions. This means,

that the robot can admit several joint values to one given configuration of the end

effector [1][3]. Based on the previous notion of direct and inverse kinematic solutions,

two performance concepts of parallel robots are defined. A posture changing trajectory

is equivalent to a trajectory between two inverse kinematic solutions. Similarly, an

assembly mode changing trajectory is equivalent to a trajectory between two direct

kinematic solutions [2][4]. In figure 1.4, it is possible to observe the two possible direct

kinematic solutions for a five-bar mechanism P (X, Y ) and P ′(X, Y ), which depict the

assembly modes of the mechanism.

Figure 1.4: Assembly modes for a five-bar mechanism [4]
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1.1.4 Singularities of parallel robots

Singularities in parallel robots can be classified into three different types of singular-

ities based on the analysis of the kinematic models, this classification is proposed by

Grosselin and Angeles [5]:

Type 1 singularities : Also known as serial singularities occur when the robot loses

the ability to move in one given direction. It means that in such configuration there is

a direction in which no task space velocity can be performed.

Type 2 singularities : Also known as parallel singularities occur when the parallel

mechanism loses its ability to change from assembly mode. It means that in such

singular configuration, the robot cannot move from one configuration to another. These

singular configurations are located inside the workspace, which makes the workspace

be divided into different aspects. From Figure 1.5, it is observed that the parallel

mechanism is in a singular configuration, and the robot has an uncontrollable motion

along ts, which is perpendicular to
−−→
B1C and

−−→
B2C.

Figure 1.5: Parallel robot in a singular position [6]

Type 3 singularities : These singularities occur when both Type 1 and Type 2

singular postures appear at the same time. In such configurations, the robot loses

locally the ability to perform a motion along one direction of the workspace and gains

one or more uncontrollable motions along another direction.

1.2. Dynamic modeling of parallel robots

In order to compute the dynamic model, the methodology presented in [7] [8] will be

used. Let us assume a parallel robot composed of m links, n degrees of freedom driven

by n actuators and nd passive joints present in the legs of the robot. The position and
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velocity of the parallel robot can be described by the n dimensional vector of active

joint variables qa = [q1, q2, ..., qn]T , the n dimensional vector active joint velocities q̇a =

[q̇1, q̇2, ..., q̇n]T , and two nd vectors of passive joint variables and passive joint velocities.

The cartesian space of the robot can be described by: x = [x, y, z, φ, ψ, θ]T pose and t =

[ẋ, ẏ, ż, φ̇, ψ̇, θ̇]T velocities of the platform. The first input-output kinematic constraint

that relates the platform twist 0tp (expressed in the base frame) with the active joint

velocities q̇a, can be found by the following loop closure equations of the parallel robot:

A0tp + Bq̇a = 0 (1.1)

where:

A and B are the (n× n) parallel and serial Jacobian matrices, respectively.

Now, the computation of the passive joint velocities is necessary for obtaining the

dynamic model. Let us consider the Figure (1.6), which is composed of mi joints.

Figure 1.6: Moving platform, actuated joints denoted by color grey

By computing the twist of the platform at point Aimi
, it is possible to express the

following equation:

0tip = 0tp +

0ωp ×0 rPAimi

0

 (1.2)
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And by writing in its matrix form:

0tip =

13
0rPAimi

0 13

 0tp = Jti
0tp (1.3)

As the joint located at Aimi
also belongs to the leg i, its twist can be expressed

as:
0tip =0 Jimi

q̇i = [0$i1imi
...0$imi

imi
]q̇i (1.4)

where q̇i represents all the joint velocities of the leg i, 0Jimi
= 0Rimi

imiJimi
is the chain

i kinematic Jacobian matrix of dimension (6 ×mi) and $i1imi
is the twist representing

the displacement of the chain tip Aimi
when joint ik is only moving. Then the matrix

0Jimi
can be expressed as a group of sub-matrices 0Jai corresponding to the active joint

velocities q̇ai , and the sub-matrix 0Jdi corresponding to the passive joint velocities q̇di .

Thus (1.4), becomes:

0tip = 0Jimi
q̇i = [0Jai,

0Jdi]

q̇ai

q̇di

 =0 Jaiq̇ai +0 Jdiq̇di (1.5)

Then, the second constraint relation can be written as:

Jt
0tp − Jtaq̇a = Jtdq̇d (1.6)

where: Jta, Jt and Jtd are the (nd × n), (nd × n) and (nd × nd) matrices relating the

passive joint velocities q̇d, active joint velocities q̇a and platform twist 0tp. Then, by

using the Lagrange formalism, the dynamic model of the robot can be written as follows:

τ = τ ta −BTλ1 − JTtaλ2 (1.7)

wp = ATλ1 − JTt λ2 (1.8)

τ td = JTtdλ2 (1.9)

where:

� τ is the (n× 1) vector of the robot input efforts;

� λ1 and λ2 are the (n× 1) and (nd × 1) vector of Lagrange multipliers;

� τ ta is a (n × 1) vector, which corresponds to the virtual input efforts in the

actuated joints of the parallel robot related to the Lagrange Lt of the virtual tree

structure.

τ ta =
d

dt

(
∂Lt
∂q̇a

)T
−
(
∂Lt
∂qa

)T
(1.10)
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� wp is the (n × 1) vector, which corresponds to the wrench of the free platform

expressed in the base frame and related with the Lagrange Lp of the moving

platform, and it is computed as:

wp =
d

dt

(
∂Lp
∂ẋ

)T
−
(
∂Lp
∂x

)T
(1.11)

� τ td is the (nd × 1) vector, which corresponds to the virtual input efforts in the

passive joints of the parallel robot related to the Lagrange Lt of the virtual tree

structure, and can be computed as:

τ td =
d

dt

(
∂Lt
∂q̇d

)T
−
(
∂Lt
∂qd

)T
(1.12)

The Lagrange multipliers, which are the wrenches projected towards the platform

controlled point through the use of the matrix JTt , and can be expressed as:

λ2 = J−Ttd τ td (1.13)

and:

λ1 = A−T (wp + JTt J−Ttd τ td) (1.14)

Then, the dynamic model is written as:

τ = τ ta + JTwp + JTd τ td (1.15)

where:

J = A−1B is the Jacobian relating the platform twist 0tp and the active joint velocities

q̇a. And Jd allows to express the passive joint velocities q̇d as a function of the active

joint velocities.

1.3. Parallel or Type 2 Singularities

1.3.1 Degeneracy conditions of the Dynamic model

Let us analyze the dynamic model of the five-bar robot of figure 1.7, (Section 1.4 will

address the dynamic model of the five-bar mechanism in more detail). The vector

of active joints is given by q = [q11, q21]
T and the vector of active joint velocities

q̇ = [q̇11, q̇21]
T . The vector of moving platorm pose is given by x = [x, y]T and its

time derivatives ẋ = [ẋ, ẏ]T . And finally a is the distance between the actuated joints.

All link lengths are identical.
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Figure 1.7: five-bar mechanism

The dynamic model of the five-bar mechanism can be written as follows:

τ = ZZq̈ + BTλ (1.16)

wp = ATλ (1.17)

τ =

zz1 0

0 zz4

q̈11

q̈21

+

`sin(q12) 0

0 `sin(q22)

λ11
λ21



wp = m

ẍ
ÿ

 =

cos(q11 + q12) cos(q21 + q22)

sin(q11 + q12) sin(q21 + q22)

λ11
λ21


Parallel or Type 2 singularity is depicted in figure 1.8. In such configuration

the parallel robot gains an uncontrollable motion perpendicular to
−−−−→
A12A13 and

−−−−→
A22A13

(underactuation in the system).

Figure 1.8: Singular position (Type 2 singularity)

The wrench applied on the platform by the legs and external forces take the

following form:

wp = m

ẍ
ÿ

 =

1 1

0 0

λ11
λ21
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And it is possible to notice that the kinematic matrix AT becomes rank deficient

and therefore:

wp = ATλ =⇒ ATnot invertible

If the parallel robot is in a Type 2 singular configuration, the kinematic matrix

AT cannot be inverted, and then the dynamic model degenerates and cannot be solved.

Moreover, in the neighborhood of the singularity, the torques τ increase as their ex-

pression is proportional to the inverse of the determinant of AT , which is close to zero

in the singularity locus.

1.3.2 Overview of crossing Type 2 singularity methods

In order to address the problem of crossing Type 2 singularities, several approaches

have been proposed in the literature [6][11][12]. In this section two main approaches for

non-singular assembly mode changing are discussed. The first one is the develpment

of a physical criterion deduced from the degeneracy conditions of the dynamic model

[12]. The second one is the computation of a Multi-Model Computed Torque Control

for tracking optimal trajectories that respect the physical criterion through the use of

optimal trajectory planning [6].

Dynamic criterion for non-singular assembly mode changing

In the singularity locus it has been shown that the determinant of the kinematic

matrix AT tends to zero, and therefore the input torques may increase to infinite values.

The work in [12] proposes the deduction of a physical criterion through the degeneracy

conditions of the dynamic model as follows:

Knowing that in Type 2 singularity, the matrix A is degenerated:

λ = A−Twp =⇒ ATnot invertible (1.18)

There exists a non-null vector ts in the kernel of AT , such that:

tTs ATλ = tTs wp = 0 (1.19)

This is the condition of non-degeneracy of the dynamic model and implies that

equation 1.19 means that the wrench applied on the platform by the legs and external

forces wp must be reciprocal to the twist tTs of uncontrollable motion in the singularity

locus. In order to satisfy this physical condition, an optimal trajectory that respects

the dynamic criterion must be planned.
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Multi-Model Computed Torque Control

Planning optimal trajectories may not be enough for crossing Type 2 singularities

due to uncertainties between the mathematical model and the real robot. However,

it has been shown to be the most promising approach. Thus, the implementation of

a computed torque controller for tracking optimal trajectories based on the dynamic

model is proposed in [6] by using two dynamic models, one full dynamic model far from

the singularity and one dynamic model that does not degenerate in the singularity

locus. This allows crossing the singularity without torques discontinuities as long as

the trajectory to be tracked respects the dynamic criterion in the singularity locus.

The computed torque control [13] is an advanced controller that computes the

input torques that the actuators must apply to the robot, in order to track a given tra-

jectory. It is based on the dynamic model because the input torques are synthesized to

feedback linearized the system. The goal of the computed torque control is to minimize

the error in the joint or cartesian space. From [14] and [15], it is possible to rewrite the

dynamic model (1.16), and express it as follows:

τ = Mq̈ + H (1.20)

where M is the inertia matrix and H is the matrix that groups the gravitational,

centrifugal and Coriolis terms. By using an input-output linearization, and knowing

that the control input torques appear in the second time derivative, it is possible to

replace q̈, by a control signal u, then the dynamics of the system is linear with respect

to the control variable:

τ = Mu + H (1.21)

Then:

u = q̈ (1.22)

It means that a Proportional Derivative control law can be used to impose the

control signal:

u = q̈d + Kd(q̇
d − q̇) + Kp(q

d − q)⇒ ë + Kdė + Kpe = 0 (1.23)

where

� u is a (n× 1) vector;

� qd is a (n× 1) is the desired joint position;

� q̇d is the desired joint velocity;
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� q is the measured joint position;

� q̇ is the measured joint velocity;

� e, ė, ë are the position, speed and acceleration errors in the joint space;

� Kp, Kd are positive definite matrices of proportional and derivative gains to be

tuned.

This controller is based on the dynamic model, and if the model is not accu-

rate, then the tracking error can be noticeable, but the control signal still guarantees

the convergence to zero of the tracking error with the desired second order dynamics.

Figure 1.9 illustrates the CTC scheme. Finally, the CTC computes the input torques

that ensure the second order dynamics on the tracking error is given by the following

equation.

τ = M(q̈d + Kd(q̇
d − q̇) + Kp(q

d − q)) + H(q, q̇) (1.24)

Figure 1.9: Computed Torque Control scheme [6]

It is important to mention that in order to feedback linearized the plant dynamics

by means of the computed torque control, it is mandatory to be able to compute the

dynamic model 1.20, which means that it must be possible to compute the inertia and

Coriolis matrix. However, at singularity this is not possible because of the following

computation:

τ = Mq̈ + H = τ ta(q̈, q̇,q) + JTwp (1.25)

And,

JT = −BTA−T (1.26)

In the singularity locus the kinematic matrix AT is not invertible. Thus in [6]

also propose a new reduced dynamic model that does not degenerate at the singularity
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locus by vanishing the wrench applied the on the platform by the legs and external

forces, which means using a solution of (λ = 0) for the lagrange multipliers.

Vanishing wp =⇒ wp = 0, then JTwp = 0, JT = −BTA−T =⇒ is vanished, and

then:

τB = τ ta(q̈, q̇,q) (1.27)

τB = M′q̈ + H′ (1.28)

τB = M′(ë + Kdė + Kpe) + H′(q, q̇) (1.29)

where M′ is the inertia matrix of the reduced dynamic model and H′ is the matrix that

groups the gravitational, centrifugal and Coriolis terms of the reduced dynamic model.

To sum up, the authors in [6] proposed a Multi-Model Computed Torque Control

by using one full dynamic model τA far from the singularity and τB, which is a reduced

dynamic model that does not degenerate in the singularity locus and respecting the

dynamic criterion. And the Computed Torque Control is applied to both models for

tracking the optimal trajectory. Figue 1.10 shows the control scheme using the two

different models. Moreover, for the transition between control laws a sigmoid time

dependent function is used.

Figure 1.10: Multimodel Computed Torque Control scheme [6]

1.4. Five-bar mechanism: Benchmark in Type 2

singularity crossing

The control approach for crossing Type 2 singularities in the following chapters will

be developed taking as the case of study the parallel manipulator, five-bar mechanism

shown in figure 1.11. It is composed of legs attached to the base and the end-effector.

The five-bar mechanism is a planar parallel robot with two actuated joints at A11 and
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A21, and three passive joints located at A12, A22 and A13. The actuation is provided by n

active joints and nd passive joints. The vector of active joints is given by q = [q11, q21]
T

and the vector of active joint velocities q̇ = [q̇11, q̇21]
T . The vector of passive joints is

given by qd = [q12, q22, q13]
T and the vector of passive joint velocities q̇d = [q̇12, q̇22, q̇13]

T .

The vector of moving platorm pose is given by x = [x, y]T and its time derivatives

ẋ = [ẋ, ẏ]T . And finally a is the distance between the actuated joints. All link lengths

are identical.

Figure 1.11: five-bar mechanism

1.4.1 Mechanical Architecture of the DexTAR robot

The five-bar mechanism used in the experimentation is the Dual-arm SCARA robot

DexTAR (Dextrous Twin-Arm Robot) from the company Mecademic, it is shown in

figure 1.12. All link lengths are identical (l = 90mm), and the distance between the

actuated joints (a = 118mm).
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Figure 1.12: Robot DexTAR

The dyamic identified parameters used for the computation of the dynamic model

were computed based on [9][10] and they have the following values:

� Inertias of the two proximal links: zz11R = 0.0133 kg
m2 and zz21R = 0.0142 kg

m2 ;

� Mass of the end-effector: m = 0.537kg;

� Friction terms: foff11 = 0.0855 Nm
rad/s

, foff21 = 0 Nm
rad/s

, fs11 = 0.345Nm and fs21 =

0.430Nm

1.4.2 Dynamic model

The resulted dynamic model, from the identification of the dynamic parameters and

the methodology presented in the section 1.2 of dynamic modeling, has the following

form:

τ = ZZq̈ + BTλ+ f (1.30)

wp = ATλ = mẍ (1.31)

τ =

zz11R 0

0 zz21R

q̈11

q̈21

+

`sin(q12) 0

0 `sin(q22)

λ11
λ21



wp = m

ẍ
ÿ

 =

cos(q11 + q12) cos(q21 + q22)

sin(q11 + q12) sin(q21 + q22)

λ11
λ21


where:
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The kinematic parallel and serial matrices A and B are computed from the input-

output kinematic constraint relations 1.1 and 1.6. The matrix ZZ is positive diagonal

resulted from the identified dynamic parameters:

AT =

cos(q11 + q12) cos(q21 + q22)

sin(q11 + q12) sin(q21 + q22)


B =

`sin(q12) 0

0 `sin(q22)


ZZ =

zz11R 0

0 zz21R


f group the active joint friction terms:

f =

fs11sign(q̇11)

fs21sign(q̇21)

+

foff11
foff21

 (1.32)

1.4.3 Validation via Co-Simulation ADAMS/MATLAB

In order to validate the dynamic model of the robot DexTAR through a Co-Simulation

between ADAMS and MATLAB, first the preparation of the computerized model of the

robot was performed. Figures 1.13 and 1.14 show the CAD model done in CATIA.

Figure 1.13: Assembly DexTAR

Once the computerized model was performed, the parts and the assembly from

CATIA were exported to ADAMS software by following the next steps:
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Figure 1.14: Assembly Parts

1. Open the Assembly (.CATProduct file) and regenerate each part (.CATPart) of

the Assembly by selecting the option: Generate a CATPart from a Product. Do

this process with each part of the Assembly.

2. Save each part generated as a .stl file.

Remark: By regenerating the CATPart from the CATProduct, once the .stl files

are imported by ADAMS, ADAMS will respect the Assembly as it was in CATIA. The

process is illustrated in the figure 1.15.

Figure 1.15: CATIA-ADAMS

Once the process of exporting the CATIA model to ADAMS was done, the

ADAMS Mock-up was defined in order to perform the Co-simulation between ADAMS

and MATLAB, by exporting the ADAMS plant and use the state variables from the

plant of ADAMS into MATLAB, and then compare the dynamic model computed in
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matlab with the plant from ADAMS. The ADAMS Mock-up is shown in figure 1.16,

and it shows all the reference frames of each joint and end-effector. It was also included

the dynamic parameters in the Mock-up.

Figure 1.16: ADAMS Mock-up

Finally, having performed the preliminary set up for exporting the ADAMS plant

of the DexTAR robot modeled in CATIA to MATLAB. The cross-validation of the

dynamic model was performed obtaining the following results:

The trajetory given as an input for comparing the model and the ADAMS plant

was a sinusoidal signal of sin(t)
10

for the both active joints q11 and q21.
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Figure 1.17: Error in the torque of the joint q11

Figure 1.18: Error in the torque of the joint q21

It can be seen from the figures 1.17 and 1.18 that the error of the inverse dynamic

model seen from the error in the torques is minimum, having an error of the order 10−8.

From the minimum error in the dynamic model it is possible to make sure that the

mathematical model of the dynamics of the five-bar mechanism including the identified

dynamic parameters, is accurate and consistent.

Moreover, the built model of the five-bar mechanism developed in ADAMS would

be useful for testing the results presented in terms of the control law for crossing Type

2 singularities in the following sections.
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1.4.4 Summary

Firstly, in this chapter a general context of the present research work was discussed

by giving some insights of the use and challenges when studying complex robot architer-

tures, such as parallel robots. The description of the overall objective and contributions

of this master thesis were listed by pointing out the main results that will be shown

in this manuscript, and moreover the technical and conceptual mathematical problems

that will be addressed when talking about singularities were introduced, such as un-

deractuation, dynamic modeling consistency and performance indexes like degeneracy

of the dynamic model when approaching singularities. And also the impact of the

singularities in the overall performance of the parallel mechanisms.

In this chapter, first in section 1.1 a brief review of the parallel robots have been

presented including their definition, and short overview of their inclusion into the indus-

trial development. Parallel manipulators have been attracted for different researchers

and industries due to their operational capabilities, such as high stiffness, high payload,

small inertia and high speed and acceleration. Nevertheless, it has been listed the main

drawback, which is the reachablility of the workspace due to the abundant singularity

problems. Then, the assembly mode changing has been discussed by explaining how

this operational feature is affected by meeting the Type 2 singularity when changing

of configuration. Also an overview of the singularities in parallel robots have been

introduced by classifying the three main types of singularities.

Section 1.2 presented the modeling of the dynamics of parallel mechanisms by

recalling the dynamics principles of parallel robots going from the analysis of the closed

kinematic chain itself to the analysis and understanding of the virtual tree structures

and the Lagrangians. Moreover, important formulations, such as the two kinematic

constraint relations for computing the parallel and serial jacobian matrices were given.

Section 1.3 analyzed the Degeneracy conditions of the dynamic model, taking as

the case of study the five-bar mechanism, and also giving an overview of the cross-

ing Type 2 singularity techniques in the literature. The analysis of the degeneracy

conditions of the dynamic model, and the Control technique for tracking far from the

singularity presented will be required for the developing of further analyses. Further-

more, the overview of the crossing Type 2 singularity methods will give an insight of

how constraining these singularities are when talking about reconfigurability of parallel

robots. Thus, the reasons why studying dedicated controllers for dealing with these

singularities will be motivated.

Furthermore, in this chapter the conceptual and technical aspects of Type 2 sin-
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gularities is addressed, including as illustrative example, the five-bar mechanism used

for experimentation in the present research work. The degeneracy conditions of the

dynamic model were explained and deduced. Then, the most promising Type 2 singu-

larity methods in the literature were discussed, first the dynamic criterion deduced from

the degeneracy conditions of the dynamic model and then a Multi-Model Computed

Torque Control for tracking the optimal trajectories that respect the dynamic criterion.

In this chapter, in section 1.4., the case of study to be treated in this research was

described, the five-bar mechanism robot DexTAR. This was done by giving the main

mechanical characteristics, such as description of actuated and non-actuated joints, as

well as end-effector description.

In addition to that, the identified dynamic parameters and the resulted dynamic

model of the five-bar mechanism was deduced. Finally, in order to cross-validate the

mathematical model with ADAMS, the preparation of the CAD model of the DexTAR

robot was built, as well as the ADAMS Mock-up for validation of the mathematical

model with the ADAMS plant. Accurate results were presented in the validation of the

mathematical model by analysing the error in the torques of the actuated joints.

In the following chapters the main contributions of the present research work will

be presented. The next chapter will address the modeling of the free dynamics deduced

from the degeneracy conditions of the dynamic model and its equivalency with the

dynamic criterion, then the design of a virtual holonomic constraint to be enforced via

feedback in order to cross Type 2 singularities. This virtual holonomic constraint will

be presented by using controlled variables in both spaces, joint and cartesian space.





Chapter 2

Modeling of the Free Dynamics and the Virtual

Holonomic Constraints

2.1. Virtual Holonomic Constraints

2.2. Free Dynamics and its equivalence with the Dynamic criterion

2.3. Virtual Holonomic Constraints using the joint space controlled variables

2.4. Virtual Holonomic Constraints using the cartesian space controlled variables

2.5. Summary

This chapter will present two of the main contributions of this research work.

Firstly, a general definition of virtual holonomic constraints (VHCs) will be discussed by

giving illustrative examples and technical aspects to be taken into account. A definition

of zero dynamics will be stated by giving a general formulation for a system that by

means of a control input looks for enforce the output to zero. Then the derivation of

the free dynamics for the five-bar mechanism will be computed based on the degeneracy

conditions of the dynamic model at the singularity locus that were derived in chapter 1.

This analysis will be used for identifying the controlled and uncontrolled variables at the

singularity locus. Then, the development of the VHC in the joint and task space will

be computed, and a comparisson between them will be made by pointing out advantages

of each other. Finally, the summary of this chapter will be discussed by pointing out

further concepts related to the Advanced Controller developed in this work based on

virtual holonomic constraints.

26
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2.1. Virtual Holonomic Constraints

Virtual Holonomic Constraints are valuable useful tools that have emerged from

analysing complex mechanical architectures that deal with underactuation in its sys-

tem dynamics. Many mechanical systems are underactuated, they have less number

of actuators than the number of degrees of freedom. However, they are able to per-

form complex motions by intelligently coordinate their actuated joints. This is the

case of applications such as bioinspired robots, aerial vehicles, inverted pendulums,

etc. Researchers in non-linear control and complex mechanical systems have found

this subject of virtually constrained underactuated systems as powerful and challeng-

ing control tool for enforcing constraints to perform complex motions that from the

nature of the system configuration would be impossible. Among the main contributors

on control of underactuated systems via virtual holonomic constraints, there are several

authors. For instance humanoid walking in [17], inverted pendulum in [18], aerial sys-

tems in [21][22][23]. Moreover, rigorous mathematical formulations have been presented

in [18][24][26]. Furthermore, this mathematical dervations are important contributions

and tools that are presented as a methdology for orbital stabilization of underactuated

systems.

In figure 2.1 from [25], few illustrative examples for understanding the conceptual

meaning of virtual constraints are useful. In figure 2.1(a), it is possible to find a

geometrical relation among the piston variables and the angle θ in the driven shaft in

order to synchronize the rotation of the engine. Then in 2.1(b) for example, two bar

robot could be constrained to perform a desired motion in the vertical axis by finding a

geometrical relation between q1 and q2. The figure 2.1(c) shows the possibility of finding

a control strategy to perform coordinated longitudinal and lateral control between the

two vehicles. Finally in figure 2.1(4) it would be a typical humanoid example for a

walking gait, where the evolution of the links must be coordinated to perform a stable

orbital or periodic motion.

Typically the applications where VHCs are needed for addressing problems of

underactuation in system dynamics, are related to problems like humanoids walking,

for stabilizing periodic motions. Moreover, in such systems the problem is to orbitally

stabilize walking gaits. It has been shown that the application of VHCs is typically to

orbitally stabilize periodic motions in virtual tree sturctures, such as humanoids. Thus,

the concept and enforcement of virtual holonomic constraints is a useful technique to

enforce a constraint to deal with the stabilization of walking robots by enforcing limit

cycles or periodic orbits.



28

Figure 2.1: Virtual Constraints Examples [25]

When talking about virtual holonomic constraints, it is necessary to define what

zero dynamics are in underactuated systems. Normally in a given dynamical system the

zero dynamics are represented by the states of the system that in its state space repre-

sentation the matrix that maps from the control inputs to the control torques/forces,

is not full rank, and therefore those states are not controllable. And then the output

function of that system is represented by the virtual constraint that is enforced towards

zero by means of the states that are controllable directly by the control torques. Thus,

basically if the states that are not controllable due to the underactuation of the system,

can be included in the output function defined by the virtual constraint, then through

control action the tracking error of the virtual constraint can be driven towards zero.

Summing up, applying methods such as the VHCs by Shiriaev (2008) and others

[19], have demonstrated that the stabilization is feasible when there is underactuation

in the system. Typically this is done as a technique for orbital stabilization of walking

gaits, where the mechanisms are virtual tree structures.

Nevertheless, in the present research work the concept and technique of virtual

constraints will be used for addressing the problem in closed kinematic chains once the
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lagrange multipliers have been used to close the virtual tree structures.

In the case of parallel robots the problem is to dynamically reconfigure the robot,

which are closed kinematic chains, to change assembly modes. This implies to meet in

the process with Type 2 singularities, which brings the system to gain uncontrollable

degrees of freedom making the system underactuated at the singularity. It can be

then understood that the parallel robots are not underactuated by nature, but by the

degeneracy of the dynamic model at the Type 2 singularities.

Virtual Holonomic Constraints are constraints that can be enforced by the ap-

plication of control inputs that add auxiliary control laws for keeping the constraints

invariant [16]. The idea of VHCs is a useful paradigm for the control of underactuated

systems. Virtual constraints are geometric relations among the generalized coordinates

of the system. The constraint is virtual because it does not arise from a physical con-

nection between the generalized coordinates, but rather from the actions of a feedback

controller. Virtual constraints have emerged recently as a valuable tool to solve motion

control problems. For an underactuated Euler-Lagrange system, virtual constraints are

defined as relations among the system’s variables and are enforced by feedback, which

leads to reducing the system’s degrees of freedom [17][18]. To sum up:

� In the case of a fully actuated system, a given trajectory can be stabilized asymp-

totically by a linear controller, but if there exists underactuation it might not be

the case.

� The VHCs are geometrical relations among the generalized coordinates in order

to virtually constrained a system to perform a desired motion even if the system

is not fully actuated.

Why VHCs for addressing the problem of Type 2 singularities? It has

been shown in the Chapter 1 that when a Type 2 singularity occurs, the five-bar mech-

anism gains one uncontrollable motion perpendicular to
−−−−→
A12A13 and

−−−−→
A22A13 (Fig 1.8).

This means that the system is underactuated in the singularity locus, in the sense that it

has gained an uncontrollable degree of freedom. Thus, the use of VHCs for solving this

problem seems to be a promising solution for dealing with that uncontrollable variable

and cross the Type 2 singularity. In further analyses, it will be shown that by studying

the degeneracy conditions of the dynamic model, it is possible to identify from the five-

bar mechanism dynamics, the uncontrollable variable at singularity. And therefore, a

geometrical relation between the available controlled variables and the uncontrollable

or passive variable can be defined. This will be the virtual constraint to be enforced in
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order to deal with the underactuation. However, the operations in parallel robots are

typically to perform motions such as pick and place operations where assembly mode

changing is required. In addition to that, the region or where the robot is underactu-

ated is not for the entire workspace, but only when the kinematic jacobian matrix A

is numerically not invertible. This makes the problem of underactuation at singularity

even more interesting and challenging, because the five-bar mechanism by nature is not

underactuated, but only in the singularity. Then addressing the problem of underactu-

ation, due to Type 2 singularities, by modeling virtual holonomic constraints is a novel

approach to use. Finally, the goal will be then to find a VHC such that at singularity

it respects the dynamic criterion 1.19 and this criterion can be included in the VHC

to be enforced by the controller. And then, there will not be need of planning optimal

trajectories, but by the virtual constraint approach enforce the dynamic criterion. Thus

the design and implementation of VHCs in underactuated systems, which is the case of

parallel robots at Type 2 singularity, can be listed as follows:

� since virtual constraints are not physically present, the advantage of imposing

them in complex mechanical architectures, such as parallel robots for undergoing

in Type 2 singularities, brings the possibility of dynamically reconfigure the robot

through feedback control action rather than physically, this would be the case of

planning optimal trajectories for respecting the dynamic criterion;

� virtual constraints might be trivial to define in closed kinematic chains due to the

fact that through the input/output kinematic constraint relations it is possible to

easily map the joint space with the cartesian space. Thus, geometrical relations

can be found;

� advanced control techniques synthesized from imposing virtual constraints open

the possibility to develop dedicated dynamic controllers for crossing Type 2 sin-

gularities by virtually constrained the robot when becomes underactuated and

demonstrate consistency in its dynamics.

2.2. Free Dynamics and its equivalence with the

Dynamic Criterion

Let us recall the main goal to be pursued by defining VHC for the five-bar mechanism

in the singularity locus. So far, it has been shown that in the literature the most promis-

ing approach for crossing singularities is to define optimal trajectories that respect the
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dynamic criterion presented in chapter 1. Nevertheless, the objective is now to define a

novel Advanced Controller that is not restricted to optimal trajectories, but it can be

given any non optimal trajectory, and the controller is able to track continuously this

trajectory. In order to synthesized this control law, first is necessary to derive the VHC

that will be enforced in the singularity locus based on the analysis of the free dynamics

that will take into account the dynamic criterion.

2.2.1 Recalling the Dynamic model and its degeneracy condi-

tions

Recalling the five bar mechanism depicted in figure 1.7. The vector of active joints

is given by q = [q11, q21]
T and the vector of active joint velocities q̇ = [q̇11, q̇21]

T . The

vector of moving platorm pose is given by x = [x, y]T and its time derivatives ẋ = [ẋ, ẏ]T .

And finally a is the distance between the actuated joints. All link lengths are identical.

Figure 2.2 represents a particular posture of singular configuration when the end-

effector frame is aligned with the reference frame, it means (x = 0). Thus, the goal is

to apply the concept of virtual holonomic constraints to address the problem of parallel

or Type 2 singularities, first to the particular case when (x = 0) and then extend it to

a singular configuration in any other end-effector posture in the workspace as shown in

fig 2.3.

Figure 2.2: Singular Position (Type 2 Singularity)
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Figure 2.3: Singular Position when end effector frame is not aligned with the reference frame

Then, the first goal is to model a geometrical relation among the generalized

coordinates in such a way that the system is virtually constrained to perform a motion

in the vertical axis (x = 0) around the Type 2 singularity. Once the geometrical

relation is defined, a feedback control law is derived for the enforcement of this virtual

constraint.

In order to define the input/output relation among the generalized coordinates

to compute the virtual holonomic constraint, it is necessary to identify the controlled

variables and the uncontrolled variables at singularity. For the specific case when (x =

0), depicted in figure 2.2, the wrench applied to the platform has the following form:

wp = m

ẍ
ÿ

 =

cos(q11 + q12) cos(q21 + q22)

sin(q11 + q12) sin(q21 + q22)

λ11
λ21



wp = m

ẍ
ÿ

 =

1 1

0 0

λ11
λ21


Then:

mẍ = λ11 + λ21 (2.1)

mÿ = 0 (2.2)

Equation 2.2 represents the evolution of the passive variable, and therefore the identi-

fication of the controlled and uncontrolled variables can be done:

� y is uncontrollable at singularity (underactuation).

� x controllable at singularity (task space controlled variable) −→ VHC with carte-

sian space controlled variables. This can be prove by expressing the direct dynamic

model as follows: Knowing that ẍ has non-zero terms due to the fact that the

kinematic jacobian matrix becomes As =
[
1 1

]
.
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Then, the platform dynamics ẍ can be affected by the input torques τ , given

that the direct and inverse dynamic model can be computed by considering that

mẍ 6= 0. This states that locally even if y is uncontrollable, x(y) is controllable.

ẍ = f(τ ) (2.3)

In the next chapter, by synthesizing the control law for enforcing the virtual

constraints, this proof will be recalled and extended in more detail ,when devel-

oping the controller using the cartesian space controlled variable x, by computing

the dynamic model in the singularity and showing its consistency.

� qi1(y) (i = 1, 2) controllable at singularity (joint space controlled variables) but

compromising the dynamic model computation in the singularity due to the fact

that it will be shown that the second order kinematics of the VHC in joint space

is an approximation of q̈i1(y), and not an exact solution −→ VHC with joint space

controlled variables

Finally, it can be shown that for the controller, the VHC to be designed either

with joint or cartesian space controlled variables will consider the dynamic criterion

since the free dynamics is equivalent with the criterion as follows:

mÿ = tTs wp = 0 −→ Dynamic Criterion (2.4)

It is important to highlight that since the case of study in this research work is

the five-bar mechanism, the equivalency between the free dynamics and the dynamic

criterion shown in the present section is developed for this parallel mechanism. Never-

theless, for a general proof of the equivalency of the free dynamics with the dynamic

criterion, refer to Appendix A.

2.3. Virtual Holonomic Constraints using the joint

space controlled variables

Based on the previous analysis, the controlled and uncontrolled variables have been

identified, and therefore the goal is to find a geometrical relation of the form:

hi = qi1 − φi(y) (2.5)

where:

qi1 → set of controlled variables

φi(y) → the desired evolutions of qi1
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From the geometric model of the five bar mechanism is possible to derive the

following equations:(
x+

a

2
− `cos(q11)

)2

+

(
y − `sin(q11)

)2

− `2 = 0 (2.6)

(
x− a

2
− `cos(q21)

)2

+

(
y − `sin(q21)

)2

− `2 = 0 (2.7)

Since the goal is to virtually constrained the robot to perform a motion in the

vertical axis around the Type 2 singularity, it is simply necessary to impose (x(y) = 0)

in the geometric model as follows:(
a

2
− `cos(q11)

)2

+

(
y − `sin(q11)

)2

− `2 = 0 (2.8)

(
− a

2
− `cos(q21)

)2

+

(
y − `sin(q21)

)2

− `2 = 0 (2.9)

In the following chapter, it will be shown that in order to enforce the constraint

x(y) = 0, the derivation of a feedback control law must be computed.

Finally, from the equations 2.8 and 2.9, it is possible to find the virtual constraints:

h1 = q11 − φ1(y) = 0 (2.10)

h2 = q21 − φ2(y) = 0 (2.11)

which match perfectly with the desired form in equation 2.5

2.4. Virtual Holonomic Constraints using the carte-

sian space controlled variables

Similarly, the controlled and uncontrolled variables for imposing a motion in the

vertical axis, the geometrical relation can be modeled by using cartesian space controlled

variables as follows:

h = x(y) = 0 (2.12)

where:

x → set of controlled variables

y → the desired evolutions of x

From the modeling of the VHC with the cartesian space controlled variable x,

it can be seen that computationally is less complex than modeling virtual constraints
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using controlled variables in joint space. One of the reasons why is less complex to model

the virtual constraint in the cartesian space is because the uncontrollable variable is in

the cartesian space y, then the left controllable variable x is also found in this domain

. On the other hand, by computing the VHC with joint space controlled variables to

enforce an uncontrollable variable that belongs to the cartesian space, then the use of

the inverse geometric and kinematic models will be needed as shown in section 2.3.

Moreover, the virtual constraints in the cartesian space are more simple to express.

It is interesting to note the fact that linking complex mechanical architectures

with novel control techniques for stabilizing the system dynamics given any trajectory

is a research area which brings many challenges. Then, by analyzing degeneracy condi-

tions in system dynamics in order to deal with singularities in mathematical models is

a novel technique that allows to study at low level the uncontrolled and controlled vari-

ables. Thus, studying virtual constraints as a novel tool for dynamic reconfigurabilty

of parallel robots it is an interesting contribution of the present research work. Fur-

thermore, applying virtual constraints to singularity crossing techniques would bring a

new research area for the dynamic reconfigurability in parallel mechanisms in order to

deal with the underactuation that Type 2 singularities bring to the robots.

2.5. Summary

In this chapter it has been modeled the evolution of the uncontrolled variable at

the singularity for a particular case of singular posture when the end-effector frame

is aligned with the reference frame. This evolution of uncontrolled variable describes

the free dynamics of the robot at singularity. Then, once the free dynamics have been

identified from the wrench applied on the platform, its equivalency with the dynamic

criterion was presented, and it will be used in further analyses for the control design.

Finally, the identification of controlled variables in the joint and cartesian space

were useful for designing the VHC in the two different spaces. Moreover, the uncontrol-

lable variable was used for knowing how the controlled variables would need to evolve

in such a way that the VHC can be enforced around the singularity locus.

In addition to that some observations can be stated about the form it has been

found for the VHC in both joint and cartesian space. By imposing the constraint to

virtually constrained the system to perform a motion in the vertical axis, the form that

the VHC takes by using joint space controlled variables is more complex than the one

with cartesian space controlled variables. Nevertheless, both forms of the VHC are

equivalent, but it will be seen that there is more consistency for the dynamic model
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computation in the control design section by using cartesian controlled variables.

Furthermore, if dynamic criterions for dealing with certain physical problems

such as underactuation can be included in the enforcement of virtual constraints, then

reconfigurability problems could be solved in parallel robots. Moreover, the fact of

being able to synthesize inverse and direct geometric and kinematic models brings

the opportunity to map from one domain to another giving the possibility to design

virtual constraints by using controlled variables in both joint and cartesian spaces,

irrelevant of the uncontrollable variable at the singularity locus, as long as dynamic

model consistency is proved as will be shown in chapter 3.

The following chapter seeks to synthesized a Virtual Constraint Controller for the

enforcement of the VHC in both spaces. Moreover, a rigorous mathematical formulation

will be presented in order to demonstrate that the dynamic model is consistent at the

singularity. Moreover, the Virtual Constraint Controller will be generalized for the

entire workspace, and not just for dealing with the situation when the end-effector is

aligned with the reference frame.





Chapter 3

Virtual Constraint Controller

3.1. Virtual Constraint Controller: Part I (joint space controlled variables)

3.2. Virtual Constraint Controller: Part II (cartesian space controlled variables)

3.3. Control Formulation for VHC in the entire singularity locus

3.4. Summary

This chapter is dedicated for the development of a control law for the enforcement

of the VHC in the singularity locus. This is done by expressing the VHC with joint

and task space controlled variables. Then, the Virtual Constraint Controller is derived

by using an input-output linearization. Moreover, it is demonstrated that the computa-

tion of the inverse and direct dynamic model are consistent when deriving the dynamic

based feedback control law. Finally, it gives a general formulation of the control law

for extending the VHC to the entire workspace by premultiplying the wrench applied on

the platform with a Rotation matrix derived from the computation of the passive joints.

This means that the VHC designed for virtually constrained the five-bar mechanism to

move in the vertical axis can be extended to cross in other place of the workspace and not

when the reference and end-effector frames are vertically aligned. Finally, a summary

of the resulted contributions from this chapter are done by emphazising the main results

in terms of the theoretical Virtual Constraint Controller with the VHC modeled in both

spaces and showing consistency in the computation of the dynamic model. Furthermore,

the synthesized Virtual Constraint Controller will be used for the implementations in

the real robot presented in chapter 4.

38
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3.1. Virtual Constraint Controller: Part I (joint

space controlled variables)

Defining the VHCs for virtually constrained the five-bar mechanism to move along the

vertical axis around the singularity is not enough for dealing with the underactuation

at that singular configuration. The second challenge of the formulation of VHCs is to

find a control law, such that the geometrical relations (VHCs) are enforced to keep

invariant through this control action. In order to do that, firstly in this section we are

going to define a Virtual Constraint Controller for the VHC expressed with the joint

space controlled variables.

3.1.1 Computation of the Dynamic Model in the Singularity

locus

Since the control input appears in the second time derivative of the VHC expressed

in the joint space, it is necessary to differentiate twice the virtual constraints:

ḣ1 = q̇11 − φ
′

1(y)ẏ (3.1)

ḣ2 = q̇21 − φ
′

2(y)ẏ (3.2)

ḧ1 = q̈11 − φ
′′

1(y)ẏ2 − φ′

1(y)ÿ (3.3)

ḧ2 = q̈21 − φ
′′

2(y)ẏ2 − φ′

2(y)ÿ (3.4)

In addition to that, it is also possible to compute the first and second time deriva-

tives by means of the first and second order kinematic models. Firstly, since (x = 0) is

the constraint to be enforced, therefore (ẋ = 0) for the first order kinematic model and

then (x = 0), (ẋ = 0) and (ẍ = 0) for the second order kinematic model.

Then, for computing the first time derivative of the VHC (ḣ1 and ḣ2) meaning

that (x = 0 and ẋ = 0) for the first order kinematic model:

Aẋ + Bq̇ = 0 (3.5)A11 A12

A21 A22

0

ẏ

+

B11 0

0 B22

q̇11
q̇21

 = 0

where:

A11 = a
2
− `cos(φ1(y))

A12 = y − `sin(φ1(y))
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A21 = −a
2
− `cos(φ2(y))

A22 = y − `sin(φ2(y))

B11 = −`(a
2
− `cos(φ1(y)))sin(φ1(y)) + `(y − `sin(φ1(y)))cos(φ1(y))

B22 = −`(−a
2
− `cos(φ2(y)))sin(φ2(y)) + `(y − `sin(φ2(y)))cos(φ2(y))

From the equation 3.5 it is possible to define the first time derivative of the virtual

constraints in the form of expressions (3.1) and (3.2):

q̇ = −B(y)−1A(y)ẋy (3.6)

which is equivalent to:

ḣ = q̇− (−B(y)−1A(y)ẋy) = 0

Then, for computing the second time derivatives of the VHC (ḧ1 and ḧ2) meaning

that (x = 0, ẋ = 0 and ẍ = 0) for the second order kinematic model:

Aẍ + Ȧẋ + Bq̈ + Ḃq̇ = 0 (3.7)

By substituting q̇ from equation 3.6, into equation 3.7 and finally differentiating

A(y) and B(y), it is possible to compute the second time derivative of the virtual

constraint through the second order kinematic model:

q̈ = −B(y)−1(A(y)ẍy + Ȧ(y, ẏ)ẋy + Ḃ(y, ẏ)q̇) (3.8)

ḧ = q̈− (−B(y)−1(A(y)ẍy + Ȧ(y, ẏ)ẋy + Ḃ(y, ẏ)q̇)) = 0

which is equivalent to the relations 3.3 and 3.4, and:

A(y) is the 2× 2 parallel jacobian matrix in the y coordinates;

B(y) is the 2× 2 serial jacobian matrix in the y coordinates.

In order to compute the dynamic model let us express it in the following form:

τ = ZZq̈ + BTλ+ f (3.9)

wp = ATλ = mẍ (3.10)

Changing it of coordinates:

τ = ZZ

φ′′
1(y)ẏ2 + φ

′
1(y)�

��
0

ÿ

φ
′′
2(y)ẏ2 + φ

′
2(y)�

��
0

ÿ

+ B(y)Tλ (3.11)

wp = A(y)Tλ = mẍ
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Then, if the inverse dynamic model is multiplied by J(y)−T = A(y)TB(y)−T , it is

obtained:

A(y)TB(y)−Tτ = A(y)TB(y)−TZZq̈(y) + A(y)Tλ+ A(y)TB(y)−T f (3.12)

which can be rewritten by considering equation 3.13 as follows:

A(y)TB(y)−Tτ = A(y)TB(y)−TZZq̈(y) +mẍ + A(y)TB(y)−T f (3.13)

Now in order to compute the direct second order kinematic model without de-

generacy of the kinematic matrix A(y)T , only the information from ẍ is taking into

account. This is done because of the fact that from the free dynamics it is known that

for the controller at singularity ÿ = 0. So, basically in the computation of the input

torques we can take into account the fact that due to the free dynamics of the system,

the second line of equation 3.13 is mÿ = 0, and then the computations are performed

as follows:

ẍ = (−B(y)−1AT
s )+(q̈(y)− b(y)) (3.14)

where:

As =
[
1 1

]
From: wp = m

ẍ
ÿ

 =

1 1

0 0

λ11
λ21


Then,

b(y) = −B(y)−1(Ȧ(y)ẋ + Ḃ(y)q̇(y))

And:

ẋ = (−B(y)−1A(y))+q̇(y)

Furthermore, it is important to mention that by using the Pseudo-inverse in the

second order kinematic model, the solution found for the second order kinematic model

in equation 1.29 is the best approximated solution, but it is not always true. It means

that if we look for an exact solution of the second order kinematic model, it would

imply that the two lines of the second order kinematics would be equal.

Then, rearranging equation 3.13 and using the approximation of the second order

kinematics, the following equation can be formulated:

AsB(y)−Tτ = AsB(y)−TZZq̈(y)−m(B(y)−1AT
s )+(q̈(y)− b(y)) + A(y)TB(y)−T f

(3.15)

And finally the inverse dynamic model can be computed as follows:

τ = (AsB(y)−T )+(AsB(y)−TZZq̈(y)−m(B(y)−1AT
s )+(q̈(y)− b(y)) + A(y)TB(y)−T f)

(3.16)
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The pseudo-inverse in equation 3.16 ensure the solution for the dynamic model that

minimizes the input torques, and therefore any overconstraint in the system is rejected

by using this exact solution for the dynamic model.

3.1.2 Input-Output Linearization

Once the VHC in the joint space has been modeled, the free dynamics has been

included in the computation of the Dynamic model, and the information from (ẍ) has

been taken into account by the reduced kinematic Jacobian matrix As. Then the inverse

dynamic model has been proven to be consistent at the singularity locus.

Therefore, the challenge now is to synthesize a Virtual Constraint Controller for

enforcement of the constraint (hi = qi1 − φi(y)). In order to be able to derive the

control law, it was necessary to demonstrate consistency in the dynamic model. Thus,

now it is necessary to recall the second derivative of the VHC, given that in the second

differentiation, the control input appears:

ḧi = q̈i1 − φ
′′

i (y)ẏ2 (3.17)

Then, by expressing the inverse dynamic model from equation (3.16), and sub-

situting the auxiliary Proportional Derivative Controller 3.18 into this control input

equation, it is possible to obtain after having substituted, the input-output lineariza-

tion 3.19:

The control law for the enforcement of the VHC modeled in the joint space:

υ1 = q̈ = −Kph−Kdḣ = ḧ (3.18)

Control law with auxiliary law for virtual constraint enforcement:

τ = (AsB(y)−T )+((AsB(y)−TZZ−m(B(y)−1AT
s )+)υ1 + Φ

′′
(y)ẏ2

+m(B(y)−1AT
s )+b(y) + A(y)TB(y)−T f)

(3.19)

where:

Kp is a positive definite matrix of proportional gains to be tuned;

Kd is a positive definite matrix of derivative gains to be tuned.

And:

Φ(y) = [φ1(y), φ2(y)]T

Φ
′
(y) = [φ

′

1(y), φ
′

2(y)]T

Φ
′′
(y) = [φ

′′

1(y), φ
′′

2(y)]T
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Moreover, from the equation 3.19, it is important to mention that the auxiliary

control law υ1 comes from the approximation of the second order kinematics. Fur-

thermore, this control law is only valid locally, in the singularity locus. To sum up

the synthesized control law of this section of virtual constraint controller with joint

space controlled variables, it is worth it to mention that since the second order kine-

matics represents an approximation, then we could express the auxiliary control law

as υ1 = q̈ = −Kph − Kdḣ + e(h) = ḧ where e(h) can be thought as an error of

approximation.

3.2. Virtual Constraint Controller: Part II (carte-

sian space controlled variables)

Similarly for synthesizing the Virtual Constraint Controller for the VHC expressed

with cartesian space controlled variables, the challenge is to enforce (x(y) = 0) by

defining a feedback control law that takes into account the enforcement of this virtual

constraint and also the overconstraint presented in the last subsection.

3.2.1 Computation of the Dynamic model in the Singularity

locus

The control input is appearing in the second time derivative, thus it is necessary to

differentiate twice the VHC expressed in the cartesian space. In this case the compu-

tation is trivial, since the constraint is (x(y) = 0), then:

h = x(y) (3.20)

ḣ = ẋ(y) (3.21)

ḧ = ẍ(y) (3.22)

In order to compute the dynamic model, let us express it in the following form:

τ = ZZq̈ + BTλ+ f (3.23)

wp = ATλ = mẍ (3.24)

Then, if the inverse dynamic model is multiplied by J−T = ATB−T , it is obtained:

ATB−Tτ = ATB−TZZq̈ + ATλ+ ATB−T f (3.25)
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which can be rewritten by considering equation 3.24 as follows:

ATB−Tτ = ATB−TZZq̈ +mẍ + ATB−T f (3.26)

From the free dynamics we know that (ÿ = 0), and from equation 3.24 it is

possible to know that (mẍ = λ11 + λ21 = r1 + r2), which implies that we can express

the controlled dynamics from (ẍ) by reducing the kinematic Jacobian matrix AT as

follows:

Free dynamics analysis gives:

wp = m

ẍ
ÿ

 =

1 1

0 0

λ11
λ21


mẍ = λ11 + λ21

mÿ = 0

And recalling the two generated colinear forces r1 and r2:

mẍ = λ11 + λ21 = r1 + r2

We will express:

As =
[
1 1

]
(3.27)

Then, it is possible to express the dynamic model by using the reduced kinematic

Jacobian matrix As, which incorporates the information coming from ẍ and considers

that ÿ = 0 from the free dynamics, but knowing that the VHC (x(y) = 0) will be

enforced through an auxiliary control action in order to consider the evolution of the

controlled variable x according to the uncontrolled variable y. Then if we rearrange the

dynamic model by considering this last analysis, thus:

AsB
−Tτ = AsB

−TZZq̈ +mẍ + ATB−T f (3.28)

Then, by computing the inverse second order kinematic model in order to express

the dynamic model in the cartesian space:

q̈ = −B−1(AT
s ẍ + Ȧẋ + Ḃq̇) (3.29)

which is equivalent to:

q̈ = J−1s ẍ + b (3.30)

where:

J−1s = −B−1AT
s
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b = −B−1(Ȧẋ + Ḃq̇)

And:

q̇ = −B−1Aẋ

The dynamic model can be expressed:

AsB
−Tτ = −AsB

−TZZ(B−1AT
s ẍ + b) +mẍ + ATB−T f (3.31)

AsB
−Tτ = −AsB

−TZZB−1AT
s ẍ−AsB

−TZZb +mẍ + ATB−T f (3.32)

Rearranging the equation 3.32

AsB
−Tτ = (m−AsB

−TZZB−1AT
s )ẍ−AsB

−TZZb + ATB−T f

The inverse dynamic model that minimizes the input torques at the singularity locus

is expressed by using the Moore-Penrose pseudo-inverse:

τ = (AsB
−T )+((m−AsB

−TZZB−1AT
s )ẍ−AsB

−TZZb + ATB−T f) (3.33)

From the computation of the dynamic model at the singularity locus by using

virtual constraints in the cartesian space, it can be shown that no problems of ap-

proximation were ecountered. Moreover, the exact solution for inverse dynamic model

minimizes the input torques.

3.2.2 Input-Output Linearization

Once the VHC in the cartesian space has been modeled, the free dynamics has been

included in the computation of the Dynamic model, and the controlled dynamics from

(ẍ) has been taken into account by the reduced kinematic Jacobian matrix As. Then

the inverse dynamic model has been proven to be consistent at the singularity locus.

Therefore, the challenge now is to synthesize a Virtual Constraint Controller for

enforcement of the constraint (x(y) = 0). In order to be able to derive the control

law, it was necessary to demonstrate consistency in the dynamic model. Thus, now

it is necessary to recall the second derivative of the VHC, given that in the second

differentiation, the control input appears:

ḧ = ẍ(y)

Then, by expressing the direct dynamic model from equation (3.33), it is possible

to obtain ẍ, then by substituting into the equation 3.22, which is the second differenti-

ation of the VHC, it is possible to obtain:

ḧ = ẍ =
(AsB

−Tτ + AsB
−TZZb−ATB−T f)

(m−AsB
−TZZB−1AT

s )
(3.34)
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After having substituted, the input-output linearization is computed:

τ = (AsB
−T )+((m−AsB

−TZZB−1AT
s )υ2 −AsB

−TZZb + ATB−T f) (3.35)

where:

υ2 = ẍ = −Kpx−Kdẋ (3.36)

And υ2 is the control law that enforce the VHC.

where:

Kp is the proportinal gain;

Kd is the derivative gain.

As a final note in the derivation of the control input torques with auxiliary control

law υ2 for virtual constraint enforcement, there are two important remarks. The first

one is that there are no problems of approximation in the computation of second order

kinematics and the second one is that the solution for the inverse dynamic model is an

exact solution that minimizes the input torques by using the pseudo-inverse.

3.3. Control Formulation for the Virtual Holo-

nomic Constraint in the entire singularity lo-

cus

Let us depict the five-bar mechanism in singular position when the end-effector is not

vertically aligned with the reference frame. Recalling the vector of passive joints given

by qd = [q12, q22, q13]
T and the vector of passive joint velocities q̇d = [q̇12, q̇22, q̇13]

T . Also

the vector of moving platorm pose including the orientation of the end-effector is given

by xφ = [x, y]T . From figure 3.1, it is possible to observe that in order to know the

orientation of the end-effector with respect to the reference frame, it is simply necessary

to know the value of the passive joints and then relate them with the end-effector. This

is trivial due to the fact that the passive joints and the end-effector orientation can be

measured both in the distal links. Thus, the passive joints can be computed as follows:

q12 = atan2(y − lsin(q11), x+
a

2
− lcos(q11))− q11 (3.37)

q22 = atan2(y − lsin(q21), x−
a

2
− lcos(q21))− q21 (3.38)

q13 = q21 + q22 − q11 − q12 (3.39)

β = q11 + q12 + q13 → by using Leg 1 (3.40)
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β = q21 + q22 → by using Leg 2 (3.41)

Then, in order to compute the inverse dynamic model to synthesized the input-

output linearization for the Virtual Constraint Controller for the entire singularity locus

for a crossing different than (x(y) = 0), it is necessary to premultiply wp by the rotation

matrix around z and with angle β. Moreover, the reduced kinematic jacobian vector

As must be used in order to take into account the information from the controlled

dynamics x.

Rz(β)Wp = Rz(β)AT
s λ (3.42)

where:

Rz(β) =

cos(β) −sin(β)

sin(β) cos(β)

 (3.43)

Figure 3.1: Singular Position when end effector frame is not aligned with the reference frame

The goal is to compute the rotation matrix and integrate it into the controlled and

uncontrolled variables for developing the virtual constraints in the entire singularity lo-

cus. This is done to ensure the perpendicular alignment of the end-effector with respect

to the uncontrollable motion wherever the robot is undergoing of the workspace. Thus,

basically even if the robot is not vertically align with the reference frame at (x(y) = 0),

the premultiplication of the virtual constraints with the rotation matrix allows to al-

ways align the end-effector frame perpendicular to the direction of the uncontrollable

motion which at (x = 0) would be trivial because the end-effector frame is align with

the reference frame, then β = 0.

In order to prove the aforementioned statement, let us consider the following

computations:

At the singularity locus with the virtual constraint (x = 0) and crossing the Type

2 singularity in the center (β = 0), the numerical solution for Rz(β)AT
s is:cos(0) −sin(0)

sin(0) cos(0)

cos(0)

cos(0)

 =

1 0

0 1

1

1

 =

1

1

 = AT
s (3.44)
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Now, if we want to cross the Type 2 singularity with the same virtual constraint

(x = 0), but at a different value of β, which it would mean that the robot does not

cross in the center of the singularity locus, the solution would remain the same equal

to AT
s .

Let us assume that the five-bar mechanism has deviation with respect the vertical

alignment with the end-effector at the singular positions x = [−0.06745, 0.03989] which

means β = 0.4373 rad= 25 deg, and indeed (x 6= 0) as shown in figure 3.2.

Figure 3.2: End-effector position at x 6= 0

Then let us prove that the solution for the first row will be always AT
s =

[
1 1

]
.cos(β) −sin(β)

sin(β) cos(β)

cos(q11 + q12) cos(q21 + q22)

sin(q11 + q12) sin(q21 + q22)


=

cos(0.4373) −sin(0.4373)

sin(0.4373) cos(0.4373)

cos(3.1218− 2.6846) cos(2.0933− 4.7977)

sin(3.1218− 2.6846) sin(2.0933− 4.7977)


=

0.9059 −0.4235

0.4235 0.9059

0.9059 0.9060

0.4235 0.4235

 =

1 1

0 0


(3.45)

And then finally by taking the ẍ information for the computation of the reduced

kinematic matrix AT
s , it is proved that by premultiplying by the rotation matrix, the

uncontrollable direction is still perpendicular to the distal links in the singularity and

the virtual constraint works and can be enforced in any part of the workspace.

The derived control law for extending the VHC to the entire workspace still follows

the same methodology, with the only difference that the terms that group the wrench

applied on the platform with information different from zero from ẍ are premultiplied

by the deduced Rotation matrix presented in this analysis.
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3.4. Summary

In this chapter, the theoretical part of one of the main contributions of the present

research work have been presented. First, the development of a feedback control law

for the enforcement of the VHC modeled in the joint space has been presented. Then,

the control law based on the dynamic model as well was synthesized for the VHC in the

cartesian space. It is important to mention that since the controller developed through

the VHC is dynamic-model-based, then consistency of the inverse and direct dynamic

model was shown.

As a second remark of the present chapter, it could be seen that computationally,

the modeling of the VHC in joint space was more complex. On the other hand, by

expressing the VHC in the cartesian space, the control law is more trivial to rigorously

prove consistency in the dynamic model.

Finally, there are three very important remarks to say in this chapter:

1. This control law has been developed for the particular virtual holonomic constraint

when the end-effector frame and the reference frame are aligned, which means that

the constraint is x = 0. Nevertheless an extension of the control law was presented

by premultiplying the wrench applied on the platform by the Rotation matrix

that takes into account the alignment of the end-effector through the information

known from the passive joints.

2. The expression of the dynamic model derived from the VHC and then the Virtual

Constraint Controller apply only in the singularity locus, which is the situation

when the five-bar mechanism is underactuated since it gains an uncontrollable

motion. Moreover, it is important to mention that the controller evolves in the

cartesian space.

3. In order to control the robot behavior far from the singularity it is necessary to

implement a different controller dedicated for the robot far from Type 2 singulari-

ties. This strategy will be presented in the next chapter, as well as, the integration

of the two different control laws, far from the singularity and in the singularity

locus.





Chapter 4

Multi-Controller scheme with Virtual Constraint

Controller to cross Type 2 singularities

4.1. Supervisory Control Architecture

4.2. Results of Simulations

4.3. Results of experimentation

4.4. Summary

This chapter presents a dedicated controller for tracking far from the singularity

based on the Computed Torque Control technique derived in the chapter 1. Afterwards,

the integration of the two different control laws, including the Virtual Constraint Con-

troller for crossing the Type 2 singularity is performed by using a Supervisory Control

Architecture. Then, in order to have a smooth and continuous transition between con-

trol laws, a performance based supervisory block is designed. Moreover, an Adaptive

Gain strategy is added in order to avoid discontinuities in the tracked variables of the

Multi-Controller architecture. Finally, the results of Co-simulation are presented and

also the experimentation in the real five-bar mechanism with non optimal trajectories.

Also a validation of the Control Laws is performed via the extraction of the platform

dynamics using an IMU. Furthermore, the resulted contributions of this chapter are em-

phasized including the Multi-Controller schemes by using VHC modeled in both spaces,

the task and joint space. Also after this chapter the final conclusion of this research

work is given by also pointing out future works for dedicated advanced controllers for

singularity crossing.
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4.1. Supervisory Control Architecture

In [20], the Supervisory Control Architectures are defined as schemes for switching in

control systems. The reasons for switching in a Supervisory Control Architecture could

vary . For instance, the nature of the control problem, sensor or actuator limitations,

large modeling uncertainties or a combination of all of them. The types of supervision

that have been discussed in the literature are:

� Prerouted supervision

� Performance-based supervision

� Estimator-based supervision

Considering the nature of the control problem presented in this research work,

it seems to be a promising idea to implement a Multi-Controller scheme based on the

Supervisory Control Architecture. This, in order to have a list of candidate controllers

to be activated during the robot trajectory, i.e. controllers for the situation when the

robot is undergoing far from Type 2 singularity and another specific controller based

on virtual constraints when the robot is underactuated (around Type 2 singularity).

(Figure 4.1)

Figure 4.1: Robot trajectory from initial position to final position

Supervisory Control Architectures seems to be a promising technique in order to

integrate a set of different candidate controllers in order to track continuously the ref-

erence trajectory and avoiding issues in terms of discontinuities in the tracked variables

among the different candidate controllers.
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One more interesting aspect of the flexibility that these schemes present is the

fact that it allows to define the kind of supervision, according to the nature of the

application. In the case of integrating a list of candidate controllers for crossing Type

2 singularities, it seems natural to choose a Performance based supervision, due to the

fact that it has been shown that in the singularity locus the kinematic Jacobian matrix

AT is not numerically invertible. Thus, this could be taken as a performance index

to be taken into account for desigining the Supervisory block. Moreover, by imple-

menting performance-based supervision, all the decisions are made inside the Control

Architecture.

There are four main challenges in order to synthesize a Multi-Controller scheme:

1. Define the controllers for the Multi-Controller Architecture

2. Synthesize the Multi-Controller Architecture

3. Design a performance-based supervisory block for the transition among the con-

trollers

4. Avoid discontinuities of the tracking controlled variables when switching control

laws

4.1.1 Integration of Candidate Controllers for non-singular as-

sembly mode changing

In order to address the first challenge of choosing the candidate controllers for the

Multi-Controller, it is necessary to recall the Control Laws synthesized in the chapter

1 and chapter 3.

In chapter 1 it has been shown that a Computed Torque Control law in the joint

space is ideal for controlling far from the singularity locus with the full dynamic model,

irrelevant if the trajectory is optimal or not, the control law is recalled from equation

1.24:

u1 = τ = M(q̈d + Kd(q̇
d − q̇) + Kp(q

d − q)) + H(q, q̇)

Now, for controlling in the singularity locus, the two control laws derived in the

chapter 3 by using VHC in both spaces will be used, recalling the control law derived

by using VHC modeled with joint space controlled variables from equations (3.19 and

3.18):

u2 = τ = (AsB(y)−T )+((AsB(y)−TZZ−m(B(y)−1AT
s )+)υ1 + Φ

′′
(y)ẏ2

+m(B(y)−1AT
s )+b(y) + A(y)TB(y)−T f)
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where the control law for the enforcement of the VHC modeled in the joint space:

υ1 = q̈ = −Kph−Kdḣ = ḧ

And then, recalling the control law derived by using VHC modeled with cartesian

space variable (h = x(y)) from (3.35 and 3.36):

u3 = τ = (AsB
−T )+((m−AsB

−TZZB−1AT
s )υ2 −AsB

−TZZb + ATB−T f)

where:

υ2 = ẍ = −Kph−Kdḣ

Having defined the control laws for tracking the robot trajectory, the previous

list of three candidate control laws will be integrated in a supervisory scheme. First

by using the Virtual Constrint Controller modeled by using VHC with joint space

controlled variables, and then with the one modeled with the cartesian space controlled

variable. Thus, the supervisory schemes will be grouped as follows:

1. Candidate Controllers (Figure 4.2):

Computed Torque Control (u1): controller in the joint space for undergoing

far from Type 2 Singularity (Matrix AT is numerically invertible);

Virtual Constraint Controller (u2): controller in the task space modeled by

using VHC with joint space controlled variables for undergoing around Type 2

Singularity.

Figure 4.2: Supervisory Control scheme for first list of Candidate Controllers

2. Candidate Controllers (Figure 4.3):

Computed Torque Control (u1): controller in the joint space for undergoing

far from Type 2 Singularity (Matrix AT is numerically invertible);
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Virtual Constraint Controller (u3): controller in the task space modeled by

using VHC with cartesian space controlled variables for undergoing around Type

2 Singularity.

Figure 4.3: Supervisory Control scheme for second list of Candidate Controllers

4.1.2 Performance-based supervisory block

In order to design a performance-based supervisory block for the multi-controller

architecture that takes decisions on the control laws transition, it is necessary to define

a performance index to be taken into account in order to switch the control laws. The

performance index to be modeled in the Supervisory block is the proximity to the

singularity locus by computing the condition number of the matrix cond(A), which is

the kinematic matrix that degenerates in the singularity locus.

Thus, the performance based supervisory block is defined as follows:

σ is equal to 0 far from the singularity and equal to 1 in the singularity locus.

� σ = 1, if
(

1
cond(A)

)
≥ 2ε

� σ =
(1−cond(A)ε

cond(A)ε

)
, if ε <

(
1

cond(A)

)
< 2ε

� σ = 0, if
(

1
cond(A)

)
≤ ε

ε is a threshold to be tuned experimentally.

Finally, for the first list of candidate controllers in figure 4.2, the computation of

the control laws u and its transition will be stated by the following equation:

u = (1− σ)u1 + σu2 (4.1)

And similarly for the second list of candidate controllers in figure 4.3:

u = (1− σ)u1 + σu3 (4.2)
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4.1.3 Adaptive Gain Tuning Strategy

One main issue when implementing Multi-Controller architectures is that the vari-

ables to be tracked may or may not be in the same space, being in the joint space

or in the task space. Thus, when switching control laws a main issue is how to avoid

discontinuities in order to have smooth and continuous tracking. This is the case of the

Multi-Controller developed in the present research work, the Computed Torque Control

has been implemented in the joint space, while the Virtual Constraint Controller, in

the task space. In order to deal with the problem of discontinuities when switching

control laws, even if the performance-based supervisory block has been implemented,

an error-based Adaptive Gain algorithm is performed as follows:

� Initialize Proportional and Derivative Gains Kp,Kd

� Get Errortaskspace = |ErrorxCTC
− ErrorxV HC

| 6 errorlim and Errortaskspace2 =

|ErroryCTC
− ErroryV HC

| 6 errorlim

� Get Erroroutput = |xCTC − xV HC | 6 errorlim and Erroroutput2 = |yCTC − yV HC | 6
errorlim when switching from Virtual Constraint Controller to Computed Torque

Controller and viceversa

– if→ |Errortaskspace−Erroroutput| 6 errorlim || |Errortaskspace2−Erroroutput2| 6
errorlim

Kpgain = Kp

Kdgain = Kd

– else →
Kpgain = Kpα

Kdgain = Kdα

where α and errorlim are thresholds to be set experimentally.

4.2. Results of Simulations

In order to validate the theoretical formulations derived for the control laws far from

the singularity and in the singularity locus, presented in chapters 3 and 4, tests are

carried out on the five-bar mechanism DexTAR.

Let us define a non-optimal trajectory by using a fifth order polynomial which can

fix the position, velocity and acceleration of the five bar mechanism at the trajectory
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extremities (Pinitial and Pfinal), (Figure 4.4). This means that in the trajectory there is

not information regarding the singular position. Moreover, the controller must be able

to bring the end-effector from Pinitial to Pfinal, irrelevant if the singular position must

be met during this assembly mode changing.

Figure 4.4: Only Pinitial and Pfinal given for the trajectory planning

The first non-optimal trajectory will be defined by giving initial and final points

where x = 0, this is to validate the enforcement of the VHC, which means that both

multi-controller schemes must be able to track the motion of the five bar mechanism in

the vertical axis, which would mean to cross in the middle.

Let us define the first trajectory between two points Pinitial(xPinitial
= [xPinitial

, yPinitial
] =

[0, 0.15]m) and Pfinal(xPfinal
= [xPfinal

, yPfinal
] = [0, 0.02]m). The trajectory is a return

motion (figure 4.5), it means that first it goes from Pinitial to Pfinal and return again to

Pinitial. Therefore, the robot will cross twice the singularity.

Figure 4.5: Middle crossing trajectory with the sequence: A → B → A

Finally for generating the polynomials, the initial and final conditions are:

x(t0) = xPinitial
; ẋ(t0) = 0; ẍ(t0) = 0 (4.3)
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y(t0) = yPinitial
; ẏ(t0) = 0; ÿ(t0) = 0 (4.4)

x(tf ) = xPfinal
; ẋ(tf ) = 0; ẍ(tf ) = 0 (4.5)

y(tf ) = yPfinal
; ẏ(tf ) = 0; ÿ(tf ) = 0 (4.6)

It is important to mention that no condition for singularity is included.

Let us first simulate the behavior of the robot when using the Multi-Controller

scheme for the first list of candidate controllers, which use the Virtual Constraint Con-

trol modeled by using the the VHC with joint space controlled variables.

The figures 4.6 and 4.7 show the results in terms of the input torques and the

tracking error of the VHC expressed through the joint space controlled variable qi1 =

φi(y). It can be seen that for the non-optimal trajectory given as a reference to the

Multi-Controller scheme of the first list of candidate controlles, the robot can cross the

singularity with finite torques. Moreover, it can be seen that the tracking error of the

VHC is almost zero, having an error of order 10−4. Finally, it is important to mention

that also the performance-based supervisory block works for switching between the

control laws. An important last remark is that, for this set of candidate controllers, the

use of Adaptive Gain was necessary due to the fact of uncertainties in the computation

of the dynamic model when doing the input-output linearization with VHC in joint

space and therefore the model is less accurate with respect to the real robot.
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Figure 4.6: Evolution of the Torques with the Supervisory Control scheme for the first list

of candidate controllers

Now let us simulate the behavior of the robot when using the Multi-Controller

scheme without Adaptive Gain for the second list of candidate controllers, which use

the Virtual Constraint Control modeled by using the VHC with the cartesian space

controlled variable.
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Figure 4.7: Error of the VHC qi1 = φi(y)→ x(y)

The figures 4.8 and 4.9 show the results in terms of the input torques and the

tracking error of the VHC expressed through the cartesian space controlled variable x.

It can be seen that for the non-optimal trajectory given as a reference to the Multi-

Controller scheme of the second list of candidate controllers, the robot can cross the

singularity with finite torques. Moreover, it can be seen that the tracking error of the

VHC is almost zero, having an error of order 10−4. Finally, it is important to mention

that also the performance-based supervisory block works for switching between the

control laws. An important last remark is that, for this set of candidate controllers,

the use of Adaptive Gain was not necessary due to the fact that the consistency in

the dynamic model for the input-output linearization with VHC in cartesian space is

more rigorous mathematically and therefore the model is more accurate, contrary to

the VHC expressed with joint space controlled variables, where the Adaptive Gain was

needed.
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Figure 4.8: Evolution of the Torques with the Supervisory Control scheme for the second

list of candidate controllers
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Figure 4.9: Error of the VHC (x(y))

Finally, let us define a non-optimal trajectory with multiple crossings to test

the derived Virtual Constraint Controller with model of VHC extend it to the entire

singularity locus by using the rotation matrix presented in chapter 3. In order to test

this Controller, we are going to use the Multi-Controller scheme for the second list of

candidate controllers. This is done because the cartesian space controlled variables are

computationally less complex to use and more accurate in terms of its dynamic model.

Thus, let us define initial and final points for the multiple crossing non-optimal tra-

jectory as follows: A = [0, 0.15], B = [0, 0.035], C = [−0.025, 0.025], D = [−0.025, 0.125],

E = [0.025, 0.025], F = [0.025, 0.125]. And the sequence of the trajectory is defined as

the figure 4.10 depicts. The results of the non-optimal multiple crossing trajectory are

shown in figures 4.11 and 4.12. It can be seen that the robot can cross the singularity

with finite torques. Moreover, the tracking error of the VHC is of order 10−3.

Figure 4.10: Multiple crossing trajectory with the sequence: A → B → A → B → A → C

→ D → A → E → F → A
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Figure 4.11: Evolution of the Torques with the Supervisory Control scheme for the second

list of candidate controllers for a multiple crossing non-optimal trajectory
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Figure 4.12: Error of the VHC (x(y)) multiple crossing trajetory

4.3. Results of experimentation

Now, once the two list of candidate controllers in the Multi-Controller scheme have

been satisfactory validated, it has been shown that due to rigorous modeling aspects,

the VHC modeled in the cartesian space shows mathematically more consistency in the

dynamic model and there is no need of adaptive gain. Whereas in the controller with

VHC modeled in the joints space, the adaptive gain is necessary.

Now, let us load the middle crossing fifth oder polynomial trajectory into the

real five-bar mechanism DexTAR in order to test the Multi-Controller schemes. The

sequence of the trajectory was depicted in figure 4.5.

In figure 4.13 it can be observed that for the middle crossing non-optimal tra-

jectory and the second list of candidate controllers, the robot can cross the singularity

with finite torques.
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Figure 4.13: Input torque for the first and second actuator of the robot DexTAR crossing

Type 2 singularity locus with second Multi-Controller tracking non-optimal trajectory

Now, in order to validate that the trajectory is actually being correctly tracked by

the Multi-Controller scheme, the platform dynamics are extracted through an Inertial

Measurement Unit shown in figure 4.14. Then, a comparisson between the measurement

of the robot acceleration and the desired one is shown in figure 4.15 by depicting the

tracking error of the magnitude of the acceleration.

Figure 4.14: IMU attached to the end effector of the robot DexTAR
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Figure 4.15: Tracking error of the magnitude of the acceleration for the Multi-Controller

using VHC with the cartesian space variable (x(y)).

Finally, the test of multiple crossings trajectory are carried out in the real robot

DexTAR. The trajectory and sequence of the points to be reached in the trajectory

were depicted in figure 4.10. In figure 4.16, it can be observed that for the multiple

crossings non-optimal trajectory and the second list of candidate controllers, the robot

can cross the singularity with finite torques multiple times. Moreover, it is shown that

the supervisory block change to virtual constraint controller for the singularity crossings

and also the robot is able to cross in the workspace where (x 6= 0). Then, in figure 4.17,

the tracking error of the magnitude of the acceleration extracted from the IMU shows

convergence towards zero. It is worth to notice that the continuous variation in the

acceleration may be due to assembly issues of the external sensor in the end-effector.

Nevertheless, the Multi-Controller and specially the Virtual Constraint Controller is

able to track the reference acceleration.
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Figure 4.16: Input torque for the first actuator and second actuator of the robot DexTAR

crossing Type 2 singularity locus with second Multi-Controller tracking multiple crossings of

non-optimal trajectory
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Figure 4.17: Tracking error of the magnitude of the acceleration for the Multi-Controller

using VHC with the cartesian space variable (x(y)) for multiple crossings in the workspace.

4.4. Summary

In this last chapter the main results of the present research work were presented. The

implementation of the theoretical results from chapter 2 and chapter 3 were carried out

by simulation and experimentation. The simulation was performed by Co-Simulation

between MATLAB and ADAMS. It was seen that in the simulation for non-optimal tra-

jectory for crossing in the center of the singularity, which means test the VHC (x = 0),
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the results were satisfactory since the torques at singularity locus were finite and more-

over the tracking error of the VHC was minimum. Then, it was shown that experimen-

tally the implementation of the Virtual Constraint Controller in the Multi-Controller

Architecture worked, which also was cross-validated through an Inertial Measurement

Unit.

Finally, for extending the synthesized controller to the entire singularity locus,

the use of the Rotation matrix presented in chapter 3 was implemented in the con-

troller. The results showed that the robot in simulation and experimentally in the real

environment was able to cross Type 2 singularities with finite torques and tracking

non-optimal trajectories, which is the main contribution of the present research work.

Moreover, the cross-validation of the Multi-Controllers were performed by the addition

of an external sensor in the end-effector of the five-bar mechanism in order to extract

the platform dynamics and then make a comparisson of the desired accelerations with

the measured ones from the sensor. It was shown that the tracking error of the acceler-

ation was minimum proving that the Virtual Constraint Controller synthesized for the

singularity locus was working as the theoretical and simulated results shown. It is im-

portant to mention that also in the next section of Conclusion, the main contributions

of this research work are recalled and future works on dedicated advanced controllers

for singularity crossing are mentioned.





Conclusion

Summary and resulted Contributions of this thesis.

The topic of this thesis was to develop an automatic dynamic controller in order to

cross Type 2 singularities. Moreover, the most important requirement for this task was

that the crossing would need to be achieved by considering non-optimal trajectories. It

means that the dynamic criterion would not be included in the trajectory generation.

Thus, given an initial point in one assembly mode and a final point in a different

assembly mode, the controller would be able to achieve the trajectory tracking between

these two points without having any information regarding the position at which the

singularity would be met.

The first chapter of the present research work gave a general description and def-

inition of parallel robots including its advantages, such as high paypload, small inertia,

high speeds and accelerations, and also the drawbacks, like abundant singularity prob-

lems that reduce the reachable workspace. In addition to that, an insight of what chang-

ing assembly mode for parallel robots was given, this included a general explanation of

its consequences in terms of the constraining Type 2 singularities when performing this

change in assembly modes. Then, also in this chapter, a general conceptual description

of the three types of singularities that exist in parallel mechanisms was given.

Also in chapter 1 the modeling of dynamics in parallel robots was addressed, first

by explaining a general methodology including the analysis of virtual tree structures

and then lagrange multipliers for closing the kinematic chains.

Then, the Parallel or Type 2 Singularities were explained in a technical and con-

ceptual approach. This is done by recalling the Degeneracy conditions of the dynamic

model due to the kinematic matrix A. Once the conditions of degeneracy of the dy-

namic model were stated, an overview on the crossing Type 2 singularities methods

was discussed. Firstly by recalling the dynamic criterion that needs to be respected by

implementing optimal trajectories, and then by discussing the Multi-Model Computed

Torque Control proposed in the literature. So far, the first chapter of this research work

gave preliminary and very important concepts and technical aspects that were needed
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for the evolution of the following chapters which present the main contributions of the

present research work.

In chapter 2, the case of study of the present research work was a five-bar mech-

anism (robot DexTAR), thus in this chapter the dynamic model of this parallel mech-

anism was deduced, including the identification of the dynamic parameters and then

performing a validation by doing Co-simulation ADAMS/MATLAB. In addition to

that the robot DexTAR was computerized and then exported to ADAMS in order to

do cross-validation of the mathematical model and the ADAMS plant. The results were

satisfactory in the sense that the error in the dynamic model was minimum. Moreover,

the ADAMS Mock-up was useful for further testings in the control development part.

Then, two main contributions of the present research were performed, modeling the

free dynamics and the VHC. This chapter has presented the theoretical and conceptual

analysis for the identification of the controlled and uncontrolled variables at the singu-

larity locus. This study was done by analyzing the underactuation happening in the

five-bar mechanism in the singularity locus. From the wrench applied on the platform,

the free dynamics or evolution of the uncontrolled variable was stated and moreover its

relation or equivalency with the dynamic criterion was given. The VHC, modeled from

the analysis of the free dynamics, was presented and implemented in the two spaces,

by using joint space controlled variables and cartesian space controlled variables.

Chapter 3 and 4 are the main contributions in terms of the development of the

automatic dynamic controller for crossing Type 2 singularities. Chapter 5 synthesized

an Input-Output linearization in order to develop the Virtual Constraint Controller

needed for enforcing the VHC at singularity. In addition to that, it has shown the

rigorous mathematical consistency of the dynamic model in order to compute the in-

verse dynamic model and the direct dynamic model to feedback linearize the system

and generate the control law for enforcing the VHC in both spaces. Finally in chapter

6, two Multi-Controller schemes were synthesized based on performance-based Super-

visory Control techniques. Moreover, two list of candidate controllers for a continuous

trajectory tracking far from the singularity and in the singularity locus were integrated

in the two Multi-Controller schemes. In addition to that, to ensure avoiding disconti-

nuities in the controlled variables, the addition of an Adaptive Gain strategy was added

in the Controllers. Finally, the most important results are that the Multi-Controller

schemes by using VHC in the joint space and in the cartesian space demonstrated

continuous tracking of non-optimal trajectories.
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Future works.

The future researh on the development of Advanced Controller techniques for

dealing with the underactuation at the Type 2 singularities, it would be interesting to

take the Virtual Constraint Controller developed in this research work and extend it

to a controller that could work not only in the singularity locus, but also far from the

singularity. And then, make a comparisson in terms of performance with respect to the

Multi-Controller Architecture presented in this research work. Comparing performance

capabilities, such as workspace reachability, stability analyses and rigorous dynamic

model consistency.

In terms of the validation of the presented Multi-Controller architectures, an

Inertial Measurement Unit has been used. Nevertheless, it would be interesting to im-

plement a visual servoing scheme and validate the singularity crossing by using external

camera information. Moreover, an interesting issue to deal with, it would be to develop

the driver and interface between the external sensor and the software architecture al-

ready developed for the robot DexTAR.

Another line of research related to the Virtual Constraint approach that it would

be interesting to study, is the development of a virtual holonomic constraint that it

could be valid to enforce even if the robot is not underactuated, which it would be

related to have a single controller working for the entire workspace by extending the

approach of Multi-Controllers presented in this work.

Finally, it could be really ambitious and interesting to synthesize a dedicated con-

troller to deal with the three type of singularities, which it would make the robot to be

more intelligent when approaching to the singularity locus, irrelevant of the singularity

which it is approaching. Typically in order to avoid Type 1 singularities in parallel

robots, controllers in joint space are synthesized which means the kinematic matrix B

would not degenerate. However, extending the concept of virtual constraints to the

three type of singularities seems to be an interesting challenge. Moreover, supervisory

schemes seems to be promising techniques due to the fact that performance indexes

coming from the dynamic model can be used for taking decisions on-line when the

robot is performing any given task, and these performances can be integrated in su-

pervisory blocks for switching control laws depending on the singularity that the robot

would approach.
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Appendix A

Let us consider the wrench applied on the platform by the legs and external forces:

wp = ATλ (4.7)

At singularity, equation 4.7 is partially affected by the control inputs due to the degen-

eracy of the kinematic matrix A. However, the evolution of the uncontrollable variables

or free dynamics can be deduced. Now, let us express the singular value decomposition

of the kinematic jacobian matrix A, that degenerates in singularity is:

A = UTΣV (4.8)

but also can be expressed as:

AT = VTΣU (4.9)

Σ is a diagonal matrix of singular values of the matrix A. And the matrices U and V

are orthonormal. Thus:

Σ = diag(εn) (4.10)

UUT = UTU = I (4.11)

VVT = VTV = I (4.12)

At singularity, the last singular value is null εn = 0. If we substitute equation 4.9 into

equation 4.7, then:

VTΣU = wp (4.13)

And by rearranging, it is possible to express the following relation:

ΣU = VTwp (4.14)

Now, since the last line of the matrix VT is in the Kernel of the matrix A, the following

expressions can be derived:

[v]1wp = 0 (4.15)
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where indeed

[v]1 = tTv (4.16)

Atv = UTΣVtv (4.17)

tv ∈ Kernel(A) (4.18)

Then, the uncontrollable motion:

ts ∈ Kernel(A) 6= 0 (4.19)

And finally since:

tv = αts (4.20)

[v]1wp = αtTs wp = tTs wp = 0 (4.21)

where α is a scalar and the equality 4.21 gives the general derivation for expressing the

equivalence with the dynamic criterion.
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