Systematic Derivation of a Validation Model from a Rule-oriented Model :
A System Validation Case Study using Promela/Spin

J. Christian Attioghé
LINA FRE CNRS 2729 - Université de Nantes

Christian.Attiogbe@lina.univ-nantes.fr

In Proceedings IEEE ICTTA’04, ISBN 0-7803-8483-0

Abstract

We propose an approach to walidate a rule-
oriented specification by a systematic embedding of
this kind of specification into a Promela wvalidation
model. The approach is illustrated with a case study
about a nuclear power station cooling system. We
start with an initial logical specification given as a
rule-oriented model of the system. The study focusses
on the systematic derivation of a Promela validation
model from the initial model and then its validation.
The rule-oriented model is matched with a Promela
model on the basis of a control-oriented architecture.
The obtained model is complemented by correctness
properties and is then validated with respect to these
properties using the Spin tool.

1. Introduction

We propose an approach to validate a logical rule-
oriented model by a systematic derivation of the asso-
ciated Promela[5] validation model. The derivation is
done on the basis of a control-oriented system archi-
tecture which is carefully built. The obtained model
is increased with correctness properties (safety and
liveness properties) and is then validated with re-
spect to these properties using the Spin tool [5], [6].
Spin is a model checker and more generally a verifi-
cation tool that supports the design and verification
of asynchonous processes. Promela is the input lan-
guage of Spin. A Promela model is a CSP-like de-
scription of communicating asynchronous processes.
Promela/Spin have been used for numerous studies
4, [10], [7], [9)-

The interest of our proposal is that an initial logi-
cal model can be systematically reused for the valida-
tion instead of specifying a particular state machine
model. This paper presents the approach and its ap-
plication to an industrial case study about a nuclear
power station cooling system.

The case study is taken from [3] where the authors
present the system and give a logical specification.
The cooling system has to supervise the cooling pro-
cess —using water— of a fluid circulating with a con-
stant delivery. The process is depicted in the Fig-

ure 1. The water used for cooling is drawn from a
reservoir by a circulation pump with its associated
floodgate. A feed pump is used to supply the reser-
voir with water via a floodgate. The cooling system
must detect malfunctions and consequently recom-
mend operations to control the system. The recom-
mended operations are assumed to be executed by a
human operator. A detected malfunction persists un-
til the appropriate treatment is perfomed. Therefore
the cooling system should help the operator to main-
tain the system in a good operating condition. The
systematic aspect of the approach is very important
for reuse purpose.

The paper is organized as follows. We present the
cooling system in Section 2. In Section 3, we intro-
duce the initial logical model. In Section 4, we show
the systematic approach used to derive the valida-
tion model from the initial model. In Section 5, we
describe the correctness verification of the obtained
model and the experimental results. In Section 6 we
draw some conclusions and present future work.

2. The Cooling Process and System

The cooling process is made of two parts: the first
is a water reservoir with associated pump (pump?2)
and floodgate (fg2) to feed it; the second part is the
cooling process itself; it uses water from the reservoir
and makes it circulate to cool the fluid. This part
is also equipped with a pump (pumpl) and a flood-
gate (fgl). The cooling system is the control system
which supervises both parts. However a particular-
ity of the current cooling system is that it doesn’t
avoid bad states (those in which malfunctions are de-
tected) but it detects bad states and recommends to
an operator the adequate operations to correct them.
The cooling system interacts with a human operator
by indicating to him the state of the process and the
recommended operations to be performed. All rec-
ommended operations are not executed by the oper-
ator. He can decide which one is important and give
execution orders to the system. A supervision part
is about the water reservoir level. The system should
adopt an appropriate reaction if the water level is out
of some given thresholds. Two all-or-none sensors
(low-wlvl, high-wlvl) are used to detect respec-

pump2

(=)

feed pump

high_wlvl

water reservoir

low_wivl

fluid to be cooled

V

—

.

pumpl

T

*:O high_temp

0

——

| =

——

\>

| =

*:O low_temp
—

—

—|

circulation pump l

Fig. 1. The Cooling process

tively too low water level and too high water level
of the reservoir. The other part of the supervision
is about the temperature of the liquid being cooled.
Two all-or-none sensors (low-temp, high-temp) are
used to detect the overstepping of the liquid low and
high temperature. The system should help the oper-
ator to maintain the temperature between two given
thresholds. Then if the temperature is too high the
circulation pump must be engaged, if the temperature
is too low, the circulation pump must be disengaged.
This corresponds to recommended operations. The
operator can give orders to the cooling system from
two control panels: a main panel (MP) and a res-
cue panel (RP). A pump engagement order (EO) can
be issued from a panel under certain conditions (too
high temperature of the liquid, lack of water in the
reservoir, etc). A disengagement order (DO) can also
be issued from the panels.

3. The Initial Logical Model

It takes the form of several implication rules. These
rules relate the system variables. We classify them
into input, state and output variables. An example
rule is the following (adapted from [3]) :

R7 (pumpl_eo_mp V pumpl_eo_rp) A
= lack_power
A = (pumpl_do_mp V pumpl_do_rp V
fgl_closed V low_wlvl)
= pumpl_ego

It expresses that the conditions for global order of
circulation pump engagement are: an engagement or-
der from main or rescue panel, electric power sup-
ply, no disengagement command from main or rescue
panel, reservoir level not low and floodgate open.

Here are the description of the variables used in the
initial model.
lack _power
low_temp

: Lack of power supply (380 Volts).
Low temperature threshold of the

fluid.

high temp High temperature threshold of the
fluid.

pumpl_en : Circulation pump (pumpl) engaged.
pumpl_av : Circulation pump available.
low_wlvl : Low water level threshold.

high wlvl : High water level threshold.
pump2_en : Feed pump (pump2) engaged.
pump2_dis : Feed pump disengaged.

fgl _closed : Circulation floodgate (fg1) closed.
fg2_closed : Feed floodgate (£g2) closed.
pumpl_do_mp : Circulation pump disengagement or-
der from MP.

pumpl_do_rp : Circulation pump disengagement or-
der from RP.

pumpl_eo_mp : Circulation pump engagement order
from MP.

pumpl_eo_rp : Circulation pump engagement order
from RP.

The other rules of the model have the same shape

R1 (= pumpl_av V low_wlvl) A high_temp
= htemp_unav_circul

The conjunction of the unavailability of circulation
and a too high temperature of the fluid results in a
detectable malfunction (named htemp_unav_circul).

R2 (= pumpl_av A low_wlvl) = unav_circul
There is unavailability of the circulation if the
pump is unavailable and the water level is too low.

R3 (pumpl_en A low_temp) = ex_circul

There is excess of water circulation if the circula-
tion pump is engaged and the liquid temperature is
too low.

R4 (pump2_en V - fg2_closed) = pump2_ego

Global order for engaging feed pump should be
given if the feed pump is engaged or its floodgate
is open.

R5 (pump2_dis V fg2_closed) = pump2_dgo

Feed pump global disengagement order should be
given if the pump is disengaged or its floodgate is
closed.

4. The Validation Model in Promela

Our experiment confirms that the validation model
can be completely derived from a control-oriented ar-
chitecture. Therefore a main stage is to elaborate
a suitable control-oriented architecture wich empha-
sizes input and output variables. These variables will
serve to describe the states needed for the validation
model: that is one part of the validation model. The
links between input and output variables will serve to
determine the remaining (dynamic) part of the vali-
dation model. This involves an architecture of a reac-
tive system [8] with inputs from its environment and
outputs to this environment.

The architecture is depicted in the Figure 2. It
enables us to completely separate the specification
of the process to be cooled from the cooling sys-
tem. Each part can be treated in more details. On
the other hand we consider the two main parts of
a Promela model: a static part made of state vari-
able declarations and a dynamic part made of several
asynchronous processes communicating via channels.
Then we match the reactive system architecture with
the Promela model.

The system architecture highlights interacting and
concurrent processes which represent :

e SENnsors (low_wlvl_sensor,high_wlvl_sensor,
high_temp_sensor,low_temp_sensor%

. conjroﬂed.processes (floodgatel, floodgate2, pumpl,
pump2) and

o the cooling system (CoolingSystem).

From the logical model we extract input variables
describing input informations and output variables of
the system. The outputs of the system are the rec-
ommended operations and the states of components.
The derivation work is divided in two parts, a static
part to deal with the global system modelling and a
dynamic part to deal with the behaviour of commu-
nicating processes. In Promela, process types are used
to describe processes. A process type is the descrip-
tion of a behaviour using statements (arithmetic and
logical expressions, sequences, repetition, conditional,
guards, etc).

4.1. Capturing the Static Part

The system reacts on input informations to super-
vise the cooling process behaviour. Therefore, the
logical model rules express by their left hand sides
the conditions of some malfunctions or the conditions

under which some actions (order execution by the op-
erator) are undertaken. The rule right hand sides
are considered as output variables (including recom-
mended operations and detected malfunctions). Then
we classify the logical variables into input, output and
state variables.

Input Variables Mainly, they are input informa-
tions from the sensors. The other inputs are the or-
ders given by the operator.

We reuse the logical propositions with associated vari-
able names to describe the inputs of the process. The
input variables are: lack_power, low_temp, high temp,
low_wlvl and high wlvl.

These variables are modelled as Promela variables and
they have been given Boolean type (here a bit):

bit low_temp, high_temp; /* from sensorsx/

bit low_wlvl, high_wlvl, lack_power;

If the operator engages an action by an order,
the associated variable is set to true otherwise it
remains false. The orders given by the operator
from the main panel and the rescue panel have the
value EO (engagement order), DO (disengagement
order), EGO (engagement general order), DGO (dis-
engagement general order). The associated vari-
ables are order_pumpl_mp, order_pumpl_rp and
order_pump2_mp.

State Variables They are used as input and output
informations. We stay at the same abstract level as
in the logical model. The system state is described
by (propositional) variables which represent the sys-
tem component states. On the one hand, there are
pumpl and pump2 which represent respectively cir-
culation pump states and feed pump states. They
have the values ENGAGED, DISENGAGED, AVAIL-
ABLE and are modelled with the byte type. On the
other hand there are fgl and fg2 which represent re-
spectively circulation floodgate states and feed flood-
gate states. They have the values CLOSED, OPEN
and are modelled as bit.

Output Variables Output variables (including rec-
ommended operations) are calculated from input vari-
ables and state variables. Some output variables in-
dicate malfunctions of the system. These malfunc-
tions have to be solved. They are named in the
sequel: unav_circul, ex_circul, htemp_unav_circul,
pumpl_ell and pumpl_el2. These variables have the
value TRUE or FALSE, they are Boolean (modelled
with the type bit of Promela). If the system detects a
malfunction the corresponding variable is set to true
otherwise the variable is set to false.

To summarize, we have described on the basis of
the system architecture, the static part of the val-
idation model, using input, output and state vari-
ables. These variables are extracted from the logi-
cal rules. The input variables are input informations

high_wlvl_sensor & y floodgatel
CoolingSystem
low_wilvl_sensor floodgate2
high_temp_sensor /////////////27 orders \\\\\\\\\\\\§ pumpl
warnings
low_temp_sensor pump2
operator

Fig. 2. The System architecture

from the sensors and orders given by the operator.
The right hand sides of rules are considered as output
variables (including recommended operations and de-
tected malfunctions). The output variables are calcu-
lated from input variables and state variables. Some
output variables indicate malfunctions of the system.
The state variables are those used as input and out-
put informations.

4.2. Capturing the Dynamic Part of the
Model

The cooling system should scrutinize current state
and inputs, detect malfunctions, and help to solve the
detected malfunctions by interacting with the opera-
tor. This implies three steps presented below. Con-
sequently, the logical model rules are used to detect
malfunctions and to calculate recommended opera-
tions. The associated Promela process type has a
cyclic behaviour. In each cycle, we distinguish three
steps: detecting malfunctions, trying to solve mal-
functions, reading inputs from operator and sensors.

Step 1: Detecting Malfunctions
Each logical rule (R;):

mal function_conditions = mal function_name

is captured in the Promela model as follows:

if

:: (malfunction_conditions) ->
malfucntion_name = TRUE;

:: else -> malfunction_name = FALSE;

fi

where all the branches of the conditional structure
are guarded statements (guard — statement).

For each output variable (called malfunction_name)
appearing in the right hand side of a rule and iden-
tifying a malfunction on the cooling process, we have
an associated conditional statement in the Promela
model of the cooling system. Applying this transfor-
mation to the other rules (R1 — R9) we get a part
of the model of the cooling system. Let us consider
the first rule (R1) as an example. This rule can be

divided into two sub-rules. The first (R1-a) indicates
that circulation is unavailable (unav_pump1 1low) if ei-
ther the circulation pump (pumpl) is unavailable or
the reservoir level is too low. The second sub-rule
(R1-b) indicates that circulation pump is unavailable
and the liquid temperature is too high.

if /* Rl-a x/
: (pumpl != AVAILABLE)
|l (low_wlvl == TRUE)
-> unav_pumpl_low = TRUE;
: else -> unav_pumpl_low = FALSE;
fi;
if /* R1-b */
:: (unav_pumpl_low == TRUE)
&& (high_temp == TRUE)
-> htemp_unav_circul = TRUE;
:: else -> htemp_unav_circul = FALSE;
fi

This part represents one working step in the cycle of
the cooling system.

Step 2: Solving Detected Malfunctions

The system must indicate to the operator appro-
priate operations to correct detected malfunctions.
To capture the corresponding behaviours, we exam-
ine the cause of each malfunction, that means the
left hand side of the corresponding rule. To solve the
malfunction consists in modifying the process such a
way that this left hand side becomes false, and then
if the left hand side is false (the malfunction has dis-
appeared) the right hand side is set to false.

To maintain the system in good operating condi-
tion, the operator handles malfunctions by executing
operations indicated by the system.

Solving a malfunction results in setting some vari-
ables in such a way that it leads to the engagement of
the appropriate order. The logical rules are exploited
for this purpose. For example R7 is used to indicate
a general engagement order of the circulation pump
(pumpl). The Promela specification is:

if /% R7 */
:: (((order_pumpl_mp == EO0)
| | (order_pumpl_rp == E0))
&& (lack_power == FALSE)
&& (fgl !'= closed) && (low_wlvl == FALSE)
) -> syspannel!order (pumpl_ego);
:: else -> skip;
fi

Step 3: Reading and Treating Inputs

Input informations are passed through channels be-
tween processes. A channel enables the operator to
send orders to the system. Thus, from this channel
the cooling system receives several orders and treats
them.

The Model of the Cooling System

The Promela model associated to the cooling sys-
tem is a cyclic process (an iterative structure in
Promela). Each cycle has the three steps explained
above (Stepl, Step2, Step3).

proctype CoolingSys()
{

start_cycle : cycle_step = NOTCHECKED;
/* step 1: the rules for

reading orders and input events */
/* step 2: the rules for

detecting malfunctions */
/* step 3: the rules for

solving malfunctions detected */
end_st : cycle_step = CHECKED;
goto start_cycle;

}

In this section, we have complemented the static
part with process behaviours which model the differ-
ent components of the system. Now we focus on the
validation of this model. The remaining steps of the
approach are about the introduction of correctness
properties and the validation of the obtained model.

5. Validation of the Model

The Promela language offers some constructs to
deal with property verification: assertions, progress
labels, acceptance labels and never claims [5]. We
use assertions and never claims in our experiment
to capture the properties of the system. The assert
construct enables the developper to check invariants:
properties that should always be true. The never
claims mechanism is a more expressive construct used
to detect undesirable or illegal behaviours. The Spin
tool is then used to verify the model complemented
with these properties.

5.1. The Properties of the System

We consider safety properties specified using the
assert construct and liveness properties expressed by
the never construct. Examples of the properties are
given below:

Py We cannot have sensors low_wlvl and
high_wlvl simultaneously detecting a low and a high

level of water in the reservoir.

Py: In the same way, we cannot have low_temp and
high_temp simultaneously.

P53, Py: pumps can not be engaged if associated flood-
gates are closed.
These safety properties expressed with assert are
introduced as shown above:

#define NOT_HIGH_AND_LOW

('low_temp || 'high_temp)
#define NOT_LOW_AND_HIGH_TEMP
('low_temp || 'high_temp)

#define ENGAGED_IF_FG_PUMP1
((fgl == closed) || (pumpl == DISENGAGED))
#define ENGAGED_IF_FG_PUMP2
((fg2 == closed) || (pump2 == DISENGAGED))

(cycle_step == CHECKED) ->
assert (NOT_HIGH_AND_LOW
&& NOT_LOW_AND_HIGH_TEMP
&& ENGAGED_IF_FG_PUMP2
&& ENGAGED_IF_FG_PUMP1)

We introduced a particular process which role is to al-
ways check this assertion as a system invariant. These
properties are checked at the end of each cycle; for
this purpose a variable cycle_step is modified at the
beginning and at the end of each cycle. For live-
ness, the properties are first specified using LTL for-
mula and then translated into never claims mecha-
nism with the Spin translator. The Spin translator
gives the Biichi automata corresponding to the LTL
formula [6]. The properties of the system are similar
and quite simple. In general we have to prove that if
a malfunction appears then it will be solved. Some of
these properties follow:

Ps: if a too high temperature of the fluid is indicated
then the circulation pump will be activated.

Ps: if a too low water level is indicated then the feed
pump will be engaged.

The associated LTL formula are shown in the fol-
lowing table, where the propositions used are pre-
defined pumpi_engaged stands for (pumpi == ENGAGED),
h_temp stands for (high temp == TRUE), pump2_engaged
stands for (pump2 == ENGAGED) and 1_temp stands for
(low_temp == TRUE).

| Property | LTL formula |

Ps [1(h_temp -> <> pumpl_engaged)
Py [1(1_wlvl -> <> pump2_engaged)

The never claims associated to these properties (the
negated form) are joined to the validation model.
Indeed we specify the desired properties and their
negated forms are used as errors (undesirable states).

5.2. Validation and Results

Validation involves ensuring that the model satis-
fies certain correctness properties. Given the Promela
model with associated properties described by assert

+ Partial Order Reduction

Full statespace search for:
never-claim +

cycle checks

4453 states, stored
58228 states, matched

3385 atomic steps
hash conflicts: 228 (resolved)

(max size 2719 states)

3.054 memory usage (Mbyte)

(never claims generated from LTL formulae are stutter-closed)
(Spin Version 3.4.1 -- 15 August 2000)

assertion violations + (if within scope of claim)
- (disabled by -DSAFETY)
invalid endstates - (disabled by never-claim)

State-vector 132 byte, depth reached 175, errors: 0O

62681 transitions (= stored+matched)

Fig. 3. Verification report for P5

and never, we verify the correctness of the model us-
ing Spin. Spin explores the state space of the system,
if an error occurs then it stops the exploration. Since
never claims are used to detect undesirable states, it
is required for a valid model to have zero errors after
a full state space search.

The report above 3 presents the result of the Ps
property verification. The other properties are veri-
fied in the same way. In this case of full state search,
there were 4453 generated system states; the longest
non-cyclic execution sequence depth is 175, and no
error is detected.

6. Concluding Remarks

Verification techniques are increasingly used to en-
sure correctness of concurrent reactive systems, es-
pecially critical systems. Spin is one among a lot of
model checking tools devoted to verification. Spin is
selected for this study for several reasons. Its input
language Promela is adequate for the specification at
hand, and for property specification. More generally
the quality of the software tool (equipped with graph-
ical interfaces which greatly help the user) is appreci-
ate. In this study we have successfully used Spin for
the verification of the cooling system. To build the
system model we started with a logical model as an
abstract specification and we extracted systematically
the Promela model. The extraction was achieved by
distinguishing a static part where we capture all in-
formation of the system with input, output and state
variables and a dynamic part where the rules of the
logical model are systematically used. This approach
can be used in similar cases and enables one to use a
simple logical model to begin the analysis of a reac-
tive system behaviour and then to derive a validation
model for the formal treatment of the system. To
validate our model, we describe and specify safety
and liveness properties of the system and check these
properties. Some errors in the model, especially on
state variables, have been corrected through the val-

idation step. We have also simulated the system be-
haviour for some scenarios and the results are satis-
factory. Current works focus on the automation of
the process to transform some rule-based specifica-
tions into Promela models for formal analysis pur-
pose. We may benefit from numerous existing works
[2], [1] on the translation of other input formats into
Spin/Promela.

References

[1] D. Bosnacki, D. Dams, L. Holenderski, and N. Sidorova.
Model Checking SDL with Spin. In S. Graf and
M. Schwartzbach, editors, Proc. of the 6th International
TACAS Conference, volume 1785 of Lecture Notes in
Computer Science, Berlin, 2000. Springer-Verlag.

[2] A. Browne, H. Sipma, and T. Zhang. Linking STEP with
SPIN. In Klaus Havelund, John Penix, and Willem Visser,
editors, Proc. of the 7th International SPIN Workshops,
volume 1885 of Lecture Notes in Computer Science, Stan-
ford, September 2000. Springer-Verlag.

[3] M. Gondran, J-F. Héry, and J-C. Laleuf. Logique et mod-
élisation. Coll. DER - EDF. Eyrolles, ISSN 0399-4198,
1995.

[4] K. Havelund, M. Lowry, and J. Penix. Formal Analysis of
a Space Craft Controller using Spin. In Proc. of SPIN’98
Conference. Paris, France, 1998.

[5] G.J.Holzmann. Design and Validation of Computer Pro-
tocols. Prentice Hall, Englewoods, Cliffs, 1991.

[6] G.J.Holzmann. The Spin Model Checker. IEEE Transac-
tions on Software Engineering, 23(5):279-295, May 1997.

[7] P. Maggi and R. Sisto. Using SPIN to Verify Security
Properties of Cryptographic Protocols. In D. Bosnacki
and S. Leue, editors, Proc. of the 9th International SPIN
Workshops: Model Checking Software, volume 2318 of
Lecture Notes in Computer Science, Grenoble, France,
April 2002. Springer-Verlag.

[8] Z. Manna and A. Pnueli. Temporal Verification of Reac-
tive Systems. Springer, 1995.

[9] J.S. Pascoe, R.J. Loader, and V.S. Sunderam. The Agree-
ment Problem Protocol Verification Environment. In
D. Bosnacki and S. Leue, editors, Proc. of the 9th Interna-
tional SPIN Workshops: Model Checking Software, vol-
ume 2318 of Lecture Notes in Computer Science, Greno-
ble, France, April 2002. Springer-Verlag.

[10] T. Ruys and R. Langerak. Validation of Bosch’ Mobile
Communication Network Architecture with Spin. In Proc.
of SPIN’97 Conference. Twente University, The Nether-
lands, 1997.

