
A Stepwise Development of the Peterson’s

Mutual Exclusion Algorithm Using B Abstract

Systems

J. Christian Attiogbé

LINA - FRE CNRS 2729 - University of Nantes, France
Christian.Attiogbe@univ-nantes.fr

c©Springer-Verlag ZB’2005, LNCS 3455

Abstract: We present a stepwise formal development of the Peter-
son’s mutual exclusion algorithm using Event B. We use a bottom-up ap-
proach where we introduce the parallel composition of subsystems which
are separately specified. First, we specify subsystems as B abstract sys-
tems; then we compose the subsystems to get a first abstract solution for
the mutual exclusion. This solution is improved to obtain the Peterson’s
algorithm. This is achieved by refinement and composition of the former
abstract subsystems. Therefore the result is formally proved on the basis
of correctness (safety) properties added to the invariant. Atelier B (a B
prover) is used to check completely the development.

Keywords: Event B, Parallel Composition, Refinement, Mutual Ex-
clusion.

1 Introduction

The B method [1] resides in the category of formal techniques which deal with
correct system development starting from (abstract) model-oriented specifica-
tions. Stepwise refinement is undertaken until more concrete specifications are
obtained or code generated. The refinement steps are formally proved by theo-
rem proving. Consequently, one may build a correct system provided that the
initial abstract specification is judiciously captured from the analysis of the infor-
mal requirements of the problem at hand. The event-based approach of B [6,2]
allows the specification of abstract systems which may be used for developing
distributed and concurrent systems.
However, the B approach is a top-down approach and its application may be
tedious for large system development. In [8] we propose a bottom-up approach
to complement the top-down one; our approach provides parallel composition of
B abstract systems in order to build large interacting systems by combining their
components. This copes well with the practical need to focus on one subsystem
at time (without omitting the global identified properties) when developing large
systems. Practically it is difficult to formally reason on a very large system; but
a solution is to do it through decomposition and reasoning on the subsystems.

Thereby this requires compositionality property in order to have correct system
built from the composition of correct and separately built subsystems.

The current paper addresses the development of a system to control the
accesses to critical sections by processes or subsystems which run concurrently.
This topic is a well-studied one; it is known as the mutual exclusion of accesses to
critical sections. It is more generally related to the development of a concurrent
system from its subsystems. Therefore we concentrate on the illustration of our
approach instead of the problem details. The contribution of the paper is a
bottom-up technique to build, within Event B, correct interacting systems with
access to shared variables.

In the paper we focus on one aspect which concerns global shared variables
but our approach of abstract system composition is general; it also deals with
message passing (not discussed in the current paper), which is a more general
technique in distributed environments. Indeed, techniques of message passing
generalise to systems without common memory.

The paper is structured as follows. In Section 2 we present the technique
that we use for the parallel composition of B abstract systems. The Section 3
is devoted to the application to the mutual exclusion algorithm: we present a
stepwise construction (refinement and composition) of Peterson’s algorithm. In
Section 4 we discuss some related works and we finish by the Section 5 where
we give some concluding remarks.

2 Communicating B Abstract Systems: the Technique

In this section, we begin with the presentation of the working hypothesis and
then we present our approach (CBS: Communicating B Systems) through the
composition operator introduced to structure abstract systems and to make them
communicate. We examine the composition based on the classical communication
mechanism of shared state variables.

2.1 Fundamental Preliminaries

Proposition 1. An abstract system involving several events which cooperate to
achieve the same task may be split into several abstract (sub)systems on the basis
of the global state variables and the local variables used by these events.

Variables and Invariant Distribution The variables and the invariant of an
abstract system may be distributed over two or more abstract (sub)systems on
the basis of the variables used by its events. Some variables are shared by all
events, other variables are not. A common part (made of the shared variables
and the associated invariant part) of the abstract system is then shared by all
events. Accordingly, the remaining variables and invariant may be split to form
the desired distribution.

This constitutes a distribution policy which is an important working hypoth-
esis in what follows. We define a specific composition operator which composes
the abstract subsystems in such a way that the result is an abstract system.

Shared Variables and Multiple Substitutions Simultaneous composition of
generalized substitutions (S‖T) was initially defined when the generalized sub-
stitutions S and T have disjoint space of variables [1]. Here, for the composition
of abstract systems, we need the composition of substitutions with non-disjoint
space of variables. Therefore, we use the extension of ‖ proposed by Dunne
[18,19]. Several authors have dealt with this concern [14,18,19]. Dunne [18] ex-
tends the domain of the multiple composition operator ‖ and calls it parallel
composition of substitutions. He adds the following rule to the initial rewrite
rules of Abrial [1]

x := E || x := F =̂ E = F ⇒ x := E

Dunne points out that when the substitutions share the same variable space1, the
generalized composition ‖ corresponds to the more general2 fusion operator of
Back and Butler[11]. Moreover, Dunne’s ‖ parallel composition of substitutions
can have an arbitrarily overlapping variable spaces; It is not the case for the fu-
sion operator. The practical issues involved in adopting this approach are: shared
variables can be introduced in the specification of abstract systems; concurrent
composition is then tractable.

Working Structure of Abstract System We follow the approach presented
for abstract machines in [14] by considering the signature and the body of an
abstract system. The signature signature(S) of an abstract system S is the set
of the identifiers appearing in the static part (constants, variables) and in the
dynamic part of an abstract system (event names). Consequently, the identifiers
are gathered together according to their category (constant, variable, event). A
concrete shape of a signature with these features is:

{〈constant, {consId list}〉, 〈variable, {varId list}〉, 〈event, {evtId list}〉}

where consId list, varId list and evtId list are respectively the list of constant
identifiers, the list of variable identifiers and the list of event identifiers.
The signature is required for practical reasons: it is the interface for renaming
and comparison of systems. The body body(S) is made of the variables (V), the
invariant (Inv), the initialisation (U) and the set of events (E) of the abstract
system. We introduce auxiliary functions sets(Si), var(Si), inv(Si), init(Si),
events(Si) to denote respectively the set of sets appearing in the sets clause,
the set of variables, the invariant, the initialisation and the set of events of an
abstract system Si . We simplify the constituents3 and the notation by consid-
ering S = 〈Σ,B〉 with Σ representing signature(S) and B = 〈V , Inv ,U ,E 〉
representing body(S) = 〈var(S), inv(S), init(S), events(S)〉.

Thus, an abstract system Si = 〈signature(Si), body(Si)〉 is simply given by
〈Σi ,Bi 〉 or equivalently 〈Σi , 〈Vi , Invi ,Ui ,Ei 〉〉. Moreover, for each event ee mem-

1 It is called frame by Dunne.
2 It is defined in the general context of all monotonic predicate transformers.
3 We do not consider all the clauses of an abstract system, however the extension is

trivial.

ber of events(Si), guard(ee) denotes the guard part of ee and subst(ee) denotes
the generalized substitution which describes the action of ee.

Abstract System Renaming A renaming of an abstract system S = 〈Σ,B〉
is a consistent syntactic replacement of some identifiers used in S by other given
identifiers. Consequently, the renaming is defined on the signature Σ and ex-
tended to B . Let Σi and Σj be signatures (with Σi ⊆ Σ) and α ∈ Σi → Σj

be an injective signature mapping such that the types of the identifiers are pre-
served; α can be extended easily to B in such a way that each free identifier idt
in Σi used within B is replaced by its value α(idt) in α(B).

rename(〈Σ,B〉, α) =̂ 〈α(Σ), α(B)〉

On this basis and following [14], other auxiliary operations can be defined on
abstract systems.

Asynchronous versus Synchronizing Communication Communication in-
volves first the simultaneous evolution of two or more systems, and then the ex-
change of data. For this purpose, we need composition and communication mech-
anisms for abstract systems. Above all the involved systems are asynchronous:
there is no global clock. From a practical point of view, a simple communica-
tion involves a receiver and a sender. Two points of view are generally accepted
for communication mechanisms. The communication can be synchronizing (and
blocking until completion). This is referred to with the rendez-vous paradigm à
la CSP where one considers the final act of communication involving the commu-
nicating systems, provided that all the systems reach the communication point.
From asynchronous communication point of view, any time duration may pass
between the starting of the communication (by one of the involved systems) and
its completion (the other involved system participates). It means that systems
involved are not blocked before completion. In the scope of the event-driven B
approach, events are considered as atomic. Their occurrences are asynchronous,
and they do not consume time. They may be synchronizing when the effect of
one affects the guard of another one. This is explained in more detail below.

2.2 Composition and Communication with Shared State Variables

A composition operator may permit communication between several abstract
systems so as to achieve a common task. We begin with the definition of a
composition operator that makes abstract systems communicate through shared
state variables. The working hypothesis is that this composition should be com-
patible with the top-down approach. That means, following on from the result of
the composition, it may be possible to use refinement and decomposition[3]. The
subsystems to be composed may share some common state variables gv and the
associated global invariant properties I(gv). However if the subsystems do not
share state variables, the composition results in a pure interleaving. Addition-
ally, each subsystem Si may have its own local variables (lvi). The initialisation
operates on gv and lvi . In the following we use S1 and S2 for illustration (Fig.

1). Note that the invariant Invi of Si is rewritten with local and common state
variables of Si as: Ii (gv) ∧ Li(lvi) ∧ Ki (gv , lvi).

Li(lvi) deals with the local properties, Ki (gv , lvi) relates local variables and
global ones and expresses the associated properties. As already stated, Ii (gv) is
the common part of the invariant shared by the abstract systems under consid-
eration. If Ki(gv , lvi) is not explicit in a given invariant, it is interpreted as the
true predicate.

system S1

sets CS , SS1

variables gv , lv1

invariant Inv1

initialisation U1(gv , lv1)
events

ee1 =̂
any bv1 where

P1(lv1, bv1, gv) ∧ P2(gv)
then

S (gv , lv1, bv1)
end

end

system S2

sets CS , SS2

variables gv , lv2

invariant Inv2

initialisation U2(gv , lv2)
events

ee2 =̂
any bv2 where

Q1(lv2, bv2, gv) ∧ Q2(gv)
then

T (gv , lv2, bv2)
end

end

Fig. 1. Abstract systems S1 and S2

The shape of events in Figure 1 is used as a canonical form of the event.
Each abstract systemmay have several events. The guard guard(ee) of an event
ee is made of two predicate parts. The first one is expressed using local state
variables lv , bound variables bv (variables bound by any) and global variables
gv of the event: P1(lv1, bv1, gv). The second one is uniquely based on global state
variables: P2(gv). A before-after predicate BA(v , v ′) is associated to each event
and describes it as a predicate relating the values of the state variables before
(v) and after (v ′) the event occurrence.

An event is enabled if its guard holds otherwise the event is disabled . An
event eei enables another event eej if the action of eei contributes in enabling
the guard of eej . Event guards depend on the state variables. Some events of
one of the composed abstract systems may be affected by the action of certain
events of the other abstract systems. That means the guard of a particular event
may hold after the effect of the other event on the common variables. These
events which depend on each other are called related events. On the other hand,
unrelated events are events whose guards do not depend on the actions of the
others and vice versa.

Parallel Composition with Asynchronous Communication Asynchronous
communication generally refers to the fact that a communication between two or

more subsystems is non-blocking; an arbitrary time duration may pass between
the starting of an exchange and its effective completion. It may be contrasted
with the rendez-vous paradigm which is blocking and used in the synchronizing
case. The asynchronous parallel composition of two abstract systems S1 and S2

is denoted by S1]|[S2. This composition defines an abstract system AS obtained
by computing its state and event parts from those of S1 and S2. The notation
AS =̂ S1]|[S2 is then used. A procedure asynchronousMerging is used for the
computation of the composition result. The procedure is described by the forth-
coming inference rules which formalize the computation of each clause of the
resulting abstract system.
For the state part, the sets clause of the resulting abstract system is obtained
by merging the sets clauses of the composed abstract subsystems with a set
union: {CS ,SS1}∪{CS ,SS2}. This is formalized with the AsyncSetsRule rule.

AS = S1]|[S2

sS1 = sets(S1) sS2 = sets(S2) sS = sS1 ∪ sS2

sets(AS) = sS
AsyncSetsRule

In the same way we formalize using similar inference rules the computation of
the other clauses of the composed abstract systems. The variables clauses of S1

and S2 are merged with a set union to form the variables of S: {gv , lv1}∪{gv , lv2}.

AS = S1]|[S2

vS1 = var(S1) vS2 = var(S2) vS = vS1 ∪ vS2

var(AS) = vS
AsyncVarsRule

The initialisation of AS is defined with the merging (parallel composition of
substitutions à la Dunne) of the initialisations of S1 and S2: U1‖U2. We adopt
a simplification, the shared variables are not repeated.

The invariant of the resulting AS abstract system is the conjunction of the
S1 and S2 invariants: Inv1 ∧ Inv2 (AsyncInvRule). To avoid inconsistency, we
require that the invariants of subsystems do not express contradictory require-
ments. That means one does not imply the negation of the other and vice versa.
We note notContradict(Inv1, Inv2) for: K1(gv , lv1) ∧ K2(gv , lv2)

AS = S1]|[S2

iS1 = inv(S1) iS2 = inv(S2) notContradict(Inv1, Inv2)
iS = iS1 ∧ iS2

inv(AS) = iS
AsyncInvRule

The result of this stage of the procedure is presented in the Figure 2 (a).
As far as the event part is concerned, the events of S1]|[S2 are obtained by

the union of all the events of the abstract systems S1 and S2 (AsyncEvtRule).
The operator

⊎
denotes such a union of event sets (MergeEvtRule).

ee ∈ events(S1) ∨ ee ∈ events(S2)

ee ∈ events(S1)
⊎

events(S2)
MergeEvtRule

In case of event names conflict, a renaming should be performed before the
composition of the abstract systems.

AS = S1]|[S2

events(S1) ∩ events(S2) = ∅
eAS = events(S1)

⊎
events(S2)

events(AS) = eAS
AsyncEvtRule

The subsystems should be proved to be consistent with respect to their invariant.
Therefore, The events of S1 (resp. S2) preserve the part of the invariant involving
the free variables used in S1 (resp. S2) due to variable distribution. The resulting
abstract system AS evolves by one of the observable transition denoted by the
events of S1 or by the events of S2. The event part of the resulting abstract
system has the shape shown in Figure 2 (b). From the observational point of
view, the behaviour of AS is a non-deterministic interleaving of events from
S1 and S2. Since S1 and S2 share global variables, the actions of some events
coming from one abstract system may enable (a part of) the guards of some
other events coming from the other abstract system. An occurrence of an event
is then followed (non-deterministically) by any event (of S1 or of S2) whose guard
is true. There is a non-deterministic choice if several guards are simultaneously
enabled.
To sum up, given S1 = 〈Σ1, 〈V1, Inv1,U1,E1〉〉 and S2 = 〈Σ2, 〈V2, Inv2,U2,E2〉〉,
the parallel composition of S1 and S2 is defined using the previous rules as
follows:

S1]|[S2 =̂ 〈Σ1 ∪ Σ2, 〈V1 ∪ V2, Inv1 ∧ Inv2,U1‖U2,E1

⊎
E2〉〉

This formalizes the procedure we called asynchronousMerging which is the com-
bined use of the rules computing each part.

Algebraic Properties of the Composition

S1]|[S2 ≡ S2]|[S1

(S1]|[S2)]|[S3 ≡ S1]|[(S2]|[S3)

The parallel composition is commutative and associative. Indeed, firstly the in-
variant of the composition is the conjunction of the invariants of the components;
secondly, the parallel composition of substitutions (‖) is used for the initialisation
part; finally, for the event part, the composition results in a set of events.

Because of these two properties, the parallel composition of a finite set of
abstract systems Si is written]|[i∈1···nSi . The result is the successive (pairwise)
application of]|[. Therefore the notation is generalized as follows:

]|[i∈1···nSi =̂ 〈∪i∈1···nΣi , 〈
⋃

i∈1···n

Vi ,
∧

i∈1···n

Invi , ‖i∈1···nUi ,
⊎

i∈1···n

Ei〉〉

system S1]|[S2

sets

CS , SS1, SS2

variables

gv , lv1, lv2

invariant

Inv1 ∧ Inv2

initialisation

U1‖U2

(a) State Part

system S1]|[S2 (Cont’d)
· · ·
events

ee1 =̂
any bv1 where

P1(lv1, bv1, gv) ∧ P2(gv)
then

S (gv , lv1, bv1)
end

; ee2 =̂
any bv2 where

Q1(lv2, bv2, gv) ∧ Q2(gv)
then

T (gv , lv2, bv2)
end

end

(b) Event Part

Fig. 2. Abstract system corresponding to S1]|[S2

We emphasize that our composition approach remains in the initial B frame-
work. We have just temporarily worked on the abstract specification level with
composition, nevertheless the B process will continue with refinement (and de-
composition).

2.3 Modelling Style with Event B

From a methodological point of view, the presented technique permits a speci-
fication style close to the one widely used in the context of process algebra and
of action systems. To build larger systems we may specify several subsystems,
prove their consistency and compose them gradually. Therefore, this may also
help for mastering large systems development. The availability of concurrent
communication operators will facilitate the translation from existing related for-
malisms, based on such operators, into B. Consequently, the B tools may be used
following a first specification step based on process algebra and action systems
for instance.
Practically, one has to identify interacting subsystems, identify shared resources
and specify them in the same way in the subsystems. The interaction between
events should then be made explicit (using the composition operator). This is a
common working approach already used for programming concurrent processes
in operating systems for instance.

3 Development of the Mutual Exclusion Algorithm

We present a development of the well-known bakery algorithm for distributed
mutual exclusion. The development is based on the technique introduced in
the previous section. In the discussion we use the term ”subsystem” instead
of ”process” as is often encountered in the literature on the topic of mutual
exclusion.

3.1 Quick Overview on Mutual Exclusion: Abstract Solution

The bakery’s mutual exclusion algorithm was studied in many works[21,25]. In
[21] for example, the study is done within the context of temporal logic. We
begin with a very abstract version of the mutual exclusion algorithm and then
we give a more precise version named Peterson’s algorithm following its author’s
name.

The general problem is that of accesses of the critical sections of code state-
ments, where resources are used or updated by several subsystems. The goal
of the algorithm is to avoid simultaneous accesses to these critical sections. In
the abstract version one considers two subsystems P1 and P2. We specify the B
abstract system corresponding to each subsystem. The B specification is quite
straightforward. The subsystems to be composed are depicted in the Figure 3.

Each subsystem i has a variable pci which indicates if the subsystem is inside
(value 0) or outside (value 1) its critical section or interested in entering it
(value 2). The accesses to the critical section are protected by the use of Boolean
variables cs1 and cs2. They respectively indicate that the subsystem P1 (resp.
P2) is within its critical section. Initially the csi are set to 0 and the pci are
set to 1. Each subsystem desiring to enter its critical section sets its csi to 0
and additionally its pci to 2 (that means its it is ready to enter). A subsystem
enters its critical section if it asked for it and if the other subsystem is not within
its critical section. In this case the variable csi is set properly. On leaving the
critical section, the corresponding cs1 and pci are respectively set to 0 and 1.

3.2 The Asynchronous Composition of the Subsystems

The desired system is simply obtained by applying the parallel composition
operator to the already defined subsystems (Fig. 3):

P12 =̂ P1]|[P2

The abstract system resulting from this composition is depicted in Figure
4. It is computed by applying the rules which formalize the procedure asyn-
chronousMerging (section 2.2).

From the composition point of view, this first solution works well and il-
lustrates the idea of asynchronous parallel composition we have presented. The
main desired property for the system is mutual exclusion:

at most one subsystem is in its critical section at the same time

system P1

variables

cs1, cs2 /* global variables*/
pc1 /* local variables*/

invariant

pc1 ∈ 0..2 /* this is L1(v1) */
∧ cs1 ∈ 0..1 /* and now I1(gv) */
∧ cs2 ∈ 0..1
initialisation

cs1, cs2 := 0, 0 ‖ pc1 := 1
events

askCS1 =̂
select pc1 = 1
then cs1 := 0 ‖ pc1 := 2 end

; inCS1 =̂
select pc1 = 2 ∧ ¬ (cs2 = 1)
then cs1 := 1 end

; outCS1 =̂
select (cs1 = 1) ∧ (pc1 = 2)
then cs1 := 0 ‖ pc1 := 1 end

end

system P2

variables

cs1, cs2 /* global variables*/
pc2 /* local variables*/

invariant

pc2 ∈ 0..2 /* this is L2(v1) */
∧ cs1 ∈ 0..1 /* and now I2(gv) */
∧ cs2 ∈ 0..1
initialisation

cs1, cs2 := 0, 0 ‖ pc2 := 1
events

askCS2 =̂
select pc2 = 1
then cs2 := 0 ‖ pc2 := 2 end

; inCS2 =̂
select pc2 = 2 ∧ ¬ (cs1 = 1)
then cs2 := 1 end

; outCS2 =̂
select (cs2 = 1) ∧ (pc2 = 2)
then cs2 := 0 ‖ pc2 := 1 end

end

Fig. 3. Concurrent subsystems to be composed

system

P12

variables

/* global variables*/
cs1

, cs2
/* local variables*/

, pc1
, pc2

invariant

pc1 ∈ 0..2 /* this is L1(v1) */
∧ pc2 ∈ 0..2 /* this is L2(v2) */
∧ cs1 ∈ 0..1 /* and now I (gv) */
∧ cs2 ∈ 0..1
initialisation

cs1, cs2 := 0, 0
‖ pc1 := 1
‖ pc2 := 1

events

askCS1 =̂
select pc1 = 1
then cs1 := 0 ‖ pc1 := 2 end

; inCS1 =̂
select pc1 = 2 ∧ ¬ (cs2 = 1)
then cs1 := 1 end

; outCS1 =̂
select (cs1 = 1) ∧ (pc1 = 2)
then cs1 := 0 ‖ pc1 := 1 end

; askCS2 =̂
select pc2 = 1
then cs2 := 0 ‖ pc2 := 2 end

; inCS2 =̂
select pc2 = 2 ∧ ¬ (cs1 = 1)
then cs2 := 1 end

; outCS2 =̂
select (cs2 = 1) ∧ (pc2 = 2)
then cs2 := 0 ‖ pc2 := 1 end

end

Fig. 4. Mutually exclusive resulting system

¬ ((cs1 = 1) ∧ (cs2 = 1))

This safety property can be introduced into the invariant of the composed system
and completely proved using Atelier B [17].

However, the solution itself is not satisfactory for that it has some drawbacks.
For example it is not fair for the composed subsystems; a given event can be
observed many times (even infinitely) repeatedly (without allowing other events
to occur). We shall go beyond the composition and improve this abstraction by
using a refinement. This refinement results in the algorithm of Peterson.

3.3 Refinement: Peterson’s Algorithm

To overcome the drawbacks of the previous abstract solution, we consider the
Peterson’s policy and we show how it can be constructed within the B approach
augmented with parallel composition. We also study the correctness of the system
by strengthening the invariant after the composition. This leads to correctness
proofs that establish the soundness of the solution. Here, the main mechanism to
protect accesses to the critical section is based on the use of the (new) Boolean
variables y1 and y2. They are set to True by each subsystem desiring to enter
its critical section, and which is ready to do it. Additionally, a variable ss is
used to record the number (i) of the process which is the latest to request the
access. The other abstract variables pc1, pc2, cs1, cs2 are respectively refined by
the concrete ones pc1c, pc2c, cs1c, cs2c. As with the previous abstract solution,
y1, y2 and ss are system variables shared by the two subsystems and may be
considered as internal to the system. Therefore a subsystem i enters its critical
section if its request is not the latest (ss 6= i), or the other subsystem (say j)
does not request for its critical section: ss 6= i ∨ ¬ (yj = True).
Consequently, a subsystem i is within its critical section if its variable yi is set
and, the other subsystem is not within its critical section (¬ (yj = True)), and
if i is not the latest: ((csi = 1) ⇒ ((yi = True) ∧ ¬ (yj = True) ∧ ¬ (ss = i))).

Refining the previous B abstract subsystems We build the new solution
by refining the abstract system Pi . The B refinement process of an abstract
system may introduce new variables and new events in the resulting (less) ab-
stract system. The guards of the new system events may be strengthened. The
abstract system and its refinement are related by a gluing invariant. The refine-
ment should be proved correct by discharging some proof obligations [5,6,22]:
i) each introduced new event refines skip; ii) each abstract event is correctly
refined by its corresponding concrete form; iii) the introduced new events do
not take control for ever; this is achieved by decreasing a variant (included in
the refinement) by each occurrence of a new event; iv) deadlock-freedom is pre-
served; considering the disjunction of the event guards.
Consider an abstract system A with variables av and invariant I (av) which is re-
fined by a concrete system C with variables cv and a gluing invariant J (av , cv).

Consider BAA(av , av ′) and BAC (cv , cv ′) respectively as the abstract and con-
crete before-after predicates of the same event, for the correctness of event re-
finement we have to prove that under the conjunction of the abstract and the
concrete invariant, a concrete event (described with BAC (cv , cv ′)) can be sim-
ulated (∃ av ′) by an abstract one (described with BAA(av , av ′)) in such a way
that the gluing invariant is preserved. Formally

I (av) ∧ J (av , cv) ∧ BAC (cv , cv ′) ⇒ ∃ av ′.(BAA(av , av ′) ∧ J (av ′, cv ′))

In the following, we specify an abstract system Pet1 (Fig.5) which refines
P1; this is noted P1 v Pet1. We introduce the new variables ss , y1, y2. The in-
variant of the new system states the type properties of the three new variables.
The old variables are retained. The new initialisation trivially establishes the
new invariant. We introduce one new event readyP1; it refines skip. The other
events askCS1, inCS1 and outCS1 are the new specifications of their abstract
counterparts. The guard of the event askCS1 does not change. Its body is up-
dated using the new variables y1 and ss following the request policy explained
above. The event inCS1 is refined by changing slightly its guard according to the
considered policy. The new guard uses the link between abstract variables and
the new concrete ones.
The deadlock-freedom is stated by proving that:
i) the guard of each event ee implies that its substitutions is feasible; it does not
establish False. (this is proved from fis(v := E) = TRUE where v is a variable
and E is an expression):

guard(ee) ⇒ fis(subst(ee))

ii) one of the event guards is always true: (pc1c = 0) ∨ (pc1c = 1) ∨ ((pc1c =
2)∧ ((y2 = FALSE)∨(ss = 2))) ∨ (cs1c = 1)
This is true at the outset because on the initialisation we have pc1c = 0; from
then and cyclically, the event readyP1 is enabled. Then it establishes pc1c = 1
which in turn is the guard of the event askCS1. This one enables the events
inCS1 since y2 has not been changed; the body of outCS1 implies pc1c = 0 and
the cycle continues.

To sum up, each of the two concurrent subsystems to be composed has the
specification (upto a variable renaming) given in the Figure 5. The variables
related to P1 (resp. P2) are subscripted with 1 (resp. 2).

Composition Now we build the Peterson’s algorithm by the composition of
the components. First we compose two instances of the subsystem depicted in
the Figure 5. Note that the second instance may be obtained by our renam-
ing technique (see Section 2.1). Then, the asynchronous parallel composition is
performed in the same way as in the section 3.2.

Peterson Alg =̂ Pet1]|[Pet2

The result of the composition is given in the Figure 6.

refinement Pet1
refines P1

variables

/* global variables*/
cs1c, cs2c, ss, y1, y2

/* local variables*/
pc1c

invariant

pc1c ∈ 0..2 /* this is L1(v1) */
∧ cs1c, cs2c ∈ 0..1 /* I1(gv) */
∧ ss ∈ 1..2
∧ y1, y2 ∈ BOOL
∧ ((cs1c = cs1) ∨ (cs1c = 0))

/* glue */
∧ ((cs2c = cs2) ∨ (cs2c = 0))
∧ ((pc1c = pc1) ⇒ ¬ (pc1 = 0))
initialisation

cs1c, cs2c, ss := 0, 0, 1
‖ pc1c := 0
‖ y1, y2 := FALSE ,FALSE

events

readyP1 =̂
select pc1c = 0 then

cs1 := 0 ‖ y1 := FALSE
‖ pc1c := 1
end

; askCS1 =̂
select pc1c = 1 then

y1 := TRUE‖ss := 1
‖ pc1c := 2
end

; inCS1 =̂
select (pc1c = 2) ∧

((y2 = FALSE) ∨ (ss = 2))
then cs1c := 1 end

; outCS1 =̂
select (cs1c = 1)
then cs1c := 0 ‖ pc1c := 0
end

end

Fig. 5. Refinement of P1 with Peterson’s policy

system Peterson Alg
variables

/* global variables*/
cs1c, cs2c, ss, y1, y2

/* local variables*/
pc1c, pc2c

invariant

pc1c, pc2c ∈ 0..2 ∧ cs1c, cs2c ∈ 0..1
∧ ss ∈ 1..2
∧ y1, y2 ∈ BOOL
∧ ((cs1c = cs1) ∨ (cs1c = 0))

/* glue */
∧ ((cs2c = cs2) ∨ (cs2c = 0))
∧ ((pc1c = pc1) ⇒ ¬ (pc1c = 0))
∧ ((pc2c = pc2) ⇒ ¬ (pc2c = 0))
initialisation

cs1c, cs2c, ss := 0, 0, 1
‖ pc1c, pc2c := 0, 0
‖ y1, y2 := FALSE ,FALSE

events

/* they are unchanged */
readyP1 =̂

· · ·
; askCS1 =̂

· · ·
; inCS1 =̂

· · ·
; outCS1 =̂

· · ·
; readyP2 =̂

· · ·
; askCS2 =̂

· · ·
; inCS2 =̂

· · ·
; outCS2 =̂

· · ·
end

Fig. 6. Peterson’s algorithm: result of the composition

We may be confident in this result since it is exactly that of the widely known
Peterson’s algorithm. However, another advantage of our approach is that we can
formally state and prove the correctness properties of the obtained algorithm.
This is the subject of the following section.

Correctness of the algorithm The mutual exclusion property proved on the
abstract version should be maintained: at most one subsystem is in its critical
section at the same time:

¬ ((cs1c = 1) ∧ (cs2c = 1))

Additionally, we should verify that each subsystem respects the defined condi-
tions when it is within its critical section:

(cs1c = 1) ⇒ ((y1 = TRUE) ∧ ((y2 = FALSE) ∨ (ss = 2)))

∧ (cs2c = 1) ⇒ ((y2 = TRUE) ∧ ((y1 = FALSE) ∨ (ss = 1)))

Therefore in order to guarantee this within B, we augment the invariant of the
abstract system with the conjunction of these properties:

(¬ (cs1c = 1) ∧ (cs2c = 1))
∧ (cs1c = 1) ⇒ ((y1 = TRUE) ∧ ((y2 = FALSE) ∨ (ss = 2)))
∧ (cs2c = 1) ⇒ ((y2 = TRUE) ∧ ((y1 = FALSE) ∨ (ss = 1)))

Monotonicity of the composition We prove that: the refinement of the com-
position is the composition of the refinement.

P1]|[P2 v Pet1]|[Pet2

This confirms a general result established for our approach. Formally we have

S1 v S ′

1
S2 v S ′

2

S1]|[S2 v S ′

1
]|[S ′

2

Consider the context implicitly indicated by the subscripts for each abstract
system; by instantiating the refinement proof obligations given above (see 3.3),
we have:

I1(av1) ∧ J1(av1, cv1) ∧ BAC (cv1, cv
′

1
) ⇒ ∃ av ′

1
.(BAA(av1, av

′

1
) ∧ J1(av

′

1
, cv ′

1
))

I2(av2) ∧ J2(av2, cv2) ∧ BAC (cv2, cv
′

2
) ⇒ ∃ av ′

2
.(BAA(av2, av

′

2
) ∧ J2(av

′

2
, cv ′

2
))

The composed systems shared the variables gv only; therefore av1 ∩ av2 = gv .
For an event originating from one of the composed systems, it follows from the
definition of]|[(conjunction of invariants), the union of events (of composed sys-
tems), and that the shared variables are refined in the same way in the composed
systems, that its concrete description (BAC (cv1, cv

′

1
)) simulates the abstract one

(BAA(av1, av
′

1
)):

I1(av1) ∧ I2(av2) ∧ J1(av1, cv1) ∧ J2(av2, cv2) ∧ BAC (cv1, cv
′

1
) ⇒

∃ av ′

1
.(BAA(av1, av

′

1
) ∧ J1(av

′

1
, cv ′

1
))

This holds for the other events.
Several authors already establish this general result on the monotonicity of

composition in various contexts: [10] for the refinement calculus, [16] for action
systems, [21,25] for logical frameworks.

Experiment report We use Atelier B to check all the abstract systems and
their refinements. The management of shared variables (naming and initiali-
sation) are achieved manually. Note that Atelier B does not manage abstract
systems directly. But using an encoding into abstract machines, we generate the
proof obligations and completely prove the development. As far as this encoding
is concerned, the composition is first performed; the new events introduced in re-
finements are first specified with skip in earlier machines; proving the correctness
is then straightforward. There is a prototype tool (evt2b) originally developed
within the Matisse project [22] which may assist in a systematic translation from
B abstract systems into abstract machines.

4 Discussion

Composing systems in a bottom-up manner in B event systems is not a new
topic. It has been studied by several authors in the context of process algebra
and Action Systems for example. Our approach is therefore very close to the
Action Systems view as shown hereafter.
Action Systems View The Action System formalism of Back and Kurki-
Suonio [12] permits the description of parallel or distributed systems. Actions
are guarded statements and are executed atomically. An action Ai has the shape
gi → Si where gi is the guard and Si is the statement or the body. The statement
can be a non-deterministic choice (noted []) between several other statements Si .
Bottom-up composition has been introduced for action system in [9].

An action system enables one to specify the behaviour of a system by a
collection of actions. It takes the form:

Ai =̂ | [var xi ; ui ; doAi od] | : z

where x and z are (state) variables; x stands for local variables; z stands for
global variables which are used to interact with the environment; ui stands for
the initialisation condition.

The action system formalism provides a parallel composition operator to
model concurrent system. The parallel composition of two action systems is
achieved if they share some global variables but use disjoint local variables. The
composition results in another action system. The latter has the same global
variables and the union of the local variables. Its initialisation is the conjunction
of the initialisations of the component systems and its action part is made of the
choice ([]) of the action part of the component systems.

A1‖A2 =̂ | [var x2, x2; u1 ∧ u2; doA1 []A2 od] | : z

These composition ideas have also been studied in [16] and within B by Butler et
al [15]; they adapt the action systems view (for expressing distributed systems)
to the B formalism. Whilst, in [15] an experimental translation from action
systems to B machines is given, the specific formal rules for the composition are
not given. But these rules are now quite standard for the related formalisms;
further developments on these aspects are presented in [22].

We provide a similar composition approach using Event B (with abstract
systems instead of abstract machines). But the composition is here completely
defined within B. Moreover, the practical advantage of our B approach is the
tool availability to assist in the proof steps.

Abrial’s Decomposition Approach Abrial is also working on the decomposi-
tion approach of abstract systems to split a large system into smaller ones using
shared variables [4]. The ideas are similar in that the global system is a com-
position of several interacting subsystems. However he deals with the top-down
approach going from the global system to the subsystems. Moreover there is not
an explicit composition operator. In our bottom-up approach, the shared vari-
ables and the associated invariant are effectively elements of the top level. The
shared variables should be refined in the same manner; this is also a constraint
of the decomposition approach. We have an explicit composition operator (à
la Process Algebra) expandable to explicit message passing. Therefore the ap-
proaches are not orthogonal, they are complementary.

As far as the B method is concerned, there are some works related to composi-
tion and interaction between specifications. An example is the work by Schneider
and Treharne [24,23] on composing CSP and B. CSP processes [20] are used to
describe controllers for B machines. The controllers handle the control flow of
machine operations without sharing machine states. The machine model and
the controller model are developed separately. The composition of B machines
is done here through the CSP controllers of the involved B machines. This ap-
proach is highly CSP-driven even if the machines part may be developed within
the B framework. In our approach B systems are used and the control part is
incorporated in the event guards.

The Assumption-Commitment approach (also called Rely-Guarantee) [27,26]
has been proposed for the composition of concurrent systems with shared state
variables. Briefly, it consists for each system involved in the composition, to
establish correctness properties by making some assumptions about the other
systems which constitute its environment. Therefore, the design of the com-
ponent systems are not really independent and this makes the structuring of
specifications tedious. The Assumption-Commitment approach does not permit
independent refinement. Our composition approach does not constrain the com-
posed systems to reason about their environment. The components are inde-

pendent but the correctness properties are treated with proof obligations during
the composition. This simplifies the structuring of the global system and also
the independent refinement of the subsystems. Indeed, the interference between
global variables are considered only during the composition.

5 Concluding Remarks

In this paper, we presented a complete development of a concurrent system by
combining composition techniques, refinement and tools. First, a composition
approach (bottom-up) to build interacting concurrent systems within Event B
is presented. Then it is used for a development: the construction of Peterson’s
mutual exclusion algorithm by refinement from an earlier abstract version. Cur-
rently, we use global variables to ensure the communication between the interact-
ing subsystems. Atelier B is used to prove the complete development. Only safety
properties are considered here; but we have investigated liveness properties in
[7] for a subset of Event B, by combining B and the Spin Model checker.

As far as composition is concerned, in [16] Butler deals with the refinement
of communicating action systems. We share some features with his work: a com-
positional approach. But the main difference is that Butler’s approach is based
on communication with shared events (occurrences of system transitions which
are commonly named) instead of shared variables as we presented here.

The contribution of our work can be underlined through several points. First,
the systematic construction of software systems using well-defined techniques:
composition (bottom-up approach), refinement and theorem proving. Second,
the effective use of available tools to support this construction.

Some aspects of the presented work are the subject of ongoing development;
for example some dedicated interfaces in front of the B tools (including evt2b),
and the development of many other real size case studies to assess and improve
the proposed approach. Other communication operators are needed. Yet we have
experimented a technique for message passing; we use specific variables to handle
messages; but more work on this technique of message passing is necessary, to
make the development of large distributed systems practical. Besides, we are
working on a procedure to translate from process algebra specifications into
Event B systems.

Acknowledgments: Many thanks to my colleagues and to the anonymous
referees for their valuable comments on the current work.

References

1. J-R. Abrial. The B Book. Cambridge University Press, 1996.
2. J-R. Abrial. Extending B without Changing it (for developping distributed sys-

tems). Proc. of the 1st Conference on the B method, H. Habrias (editor), France,
pages 169–190, 1996.

3. J-R. Abrial. Event Driven Distributed Program Construction. MATISSE project,
August 2001.

4. J-R. Abrial. Discrete System Models. Internal Notes (available at www-
lsr.imag.fr/B, B Working Group), February 2002.

5. J-R. Abrial, D. Cansell, and D. Mery. Formal Derivation of Spanning Trees Algo-
rithms. In D. Bert et al., editor, ZB’2003 – Formal Specification and Development
in Z and B, volume 2651 of Lecture Notes in Computer Science, pages 457–476.
Springer-Verlag, 2003.

6. J-R. Abrial and L. Mussat. Introducing Dynamic Constraints in B. In Proc. of the
2nd Conference on the B method, D. Bert (editor), volume 1393 of Lecture Notes
in Computer Science, pages 83–128. Springer-Verlag, 1998.

7. C. Attiogbé. A Mechanically Proved Development Combining B Abstract Systems
and Spin. In Proceedings of the 4th International Conference on Quality Software
(QSIC 2004). IEEE Computer Society Press.

8. C. Attiogbé. Communicating B Abstract Systems (CBS). Technical Report 02.08,
IRIN, University of Nantes, December 2002.

9. R. J. Back and K. Sere. From Action Systems to Modular Systems. Software -
Concepts and Tools, 17(1):26–39, 1996.

10. R-J. Back and J V Wright. Refinement Calculus: A Systematic Introduction. Grad-
uate Texts in Computer Science. Springer, 1998.

11. R. J. R. Back and M. J. Butler. Fusion and Simultaneous Execution in the Refine-
ment Calculus. Acta Informatica, 35(11):921–949, 1998.

12. R.J. Back and R. Kurki-Suonio. Decentralisation of Process Nets with Centralised
Control. In Proc. of the 2nd ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing, pages 131–142. ACM, 1983.

13. D. Bert, J. P. Bowen, M. C. Henson, and K. Robinson, editors. ZB’2002: Formal
Specification and Development in Z and B, 2nd International Conference of B and
Z Users, France, volume 2272 of Lecture Notes in Computer Science. Springer-
Verlag, 2002.

14. D. Bert, M-L. Potet, and Y. Rouzaud. A Study on Components and Assembly
Primitives in B. Proc. of the 1st Conference on the B method, H. Habrias (editor),
France, pages 47–62, November 1996.

15. M. Butler and M. Walden. Distributed System Development in B. Proc. of the 1st
Conference on the B method, H. Habrias (editor), France, pages 155–168, 1996.

16. M. J. Butler. Stepwise Refinement of Communicating Systems. Science of Com-
puter Programming, 27(2):139–173, 1996.

17. ClearSy. Atelier B V3.6. Steria, Aix-en-Provence, France.
18. S. Dunne. The Safe Machine: A New Specification Construct for B. In Proceedings

of FM’99: World Congress on Formal Methods, pages 472–489, 1999.
19. S. Dunne. A Theory of Generalised Substitutions. In Bert et al. [13], pages 270–290.
20. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, NJ, 1985.
21. Y. Kesten, Z. Manna, and A. Pnueli. Temporal Verification of Simulation and

Refinement. In REX Symposium A Decade of Concurrency, volume 803 of Lecture
Notes in Computer Science, pages 273–346. Springer-Verlag, 1994.

22. MATISSE. Handbook for Correct Systems Construction. Technical Report IST-
1999-11345, EU-Project MATISSE: Methodologies and Technoloies for Industrial
Strength Systems Engineering,University of Southampton, April 2003.

23. S. Schneider and H. Treharne. Verifying Controlled Components. In E. Boiten,
J. Derrick, and G. Smith, editors, Proc. of the Integrated Formal Methods
(IFM’2004), volume 2999 of Lecture Notes in Computer Science, pages 87–107.
Springer-Verlag, 2004.

24. S. Schneider and H. Treharne. Communicating B Machines. In Bert et al. [13],
pages 416–435.

25. Q. Xu. On Compositionality in Refining Concurrent Systems. In J. He, J. Cooke,
and P. Wallis, editor, Proceedings of the BCS FACS 7th Refinement Workshop.
Springer-Verlag, 1996.

26. Q. Xu, W. P. de Roever, and J. He. The Rely-Guarantee Method for Verifying
Shared Variable Concurrent Programs. Formal Aspects of Computing, 9(2):149–
174, 1997.

27. Q. Xu and M. Swarup. Compositional Reasoning Using the Assumption-
Commitment Paradigm. Lecture Notes in Computer Science, 1536:565–583, 1998.

