
Practical Combination of Theorem Proving and

Model Checking for the Multi-facet Analysis:

a Case Study

J. Christian Attiogbé

LINA - FRE CNRS 2729 - University of Nantes - France
Christian.Attiogbe@lina.univ-nantes.fr

In Proceedings SOFSEM’05, ISBN 80-969255-4-7

Abstract. Theorem proving and model checking are recognized as for-
mal analysis techniques used to mechanize formal methods of software
development. However the tools based on them are not widely and sys-
tematically used as they should. One reason for this is the lack of practical
approaches to guide the users. Another reason is that the tools often fo-
cus on one specific aspect of analysis. Tool-assisted analysis of software
systems and convenient guidance to practise formal methods are still
motivating challenges. This paper addresses these challenges and shows
using a case study, how one can combine both analysis techniques.

1 Introduction

We present a stepwise approach that can be systematically (re)used during the
formal analysis and development where both theorem proving and model check-
ing techniques are needed. Very often these techniques require some specific
input languages or models. This may conduct to misleading results if there is
no insurance that the starting models are equivalent. Moreover it is a burden
for the developers. The contribution of this paper is an approach which shows
that a abstract reference model may be the basis of forthcoming specific models
and the basis of both analysis tracks, even if their input languages are different.
The proposed analysis approach consists of building a general reference model of
the system at hand, to derive systematically the specific models of each involved
analysis technique from the reference model, to perform the analysis directly on
the derived specific models or to extend them and then to perform the analysis
on the extended specific models. The result of each part of the analysis may help
to tune the reference model. In this paper we adopt a reference model described
with logical rules. The B method [1] and the Spin system [2,3] are respectively
chosen for theorem proving and for model checking. The choice of the B method
is motivated by the fact that it provides both theorem proving (for safety proper-
ties) and refinement to code. The Spin system is chosen because it has a powerful
model checking tool (for liveness properties) and it provides a user-friendly in-
terface. Some of the existing related works use the high automation of model
checking to master the lack of guidance of theorem proving [4]. Others focus on

the extension of model checking with theorem proving so as to decompose large
problems into smaller ones[5]. In constrast, our work concentrates on the use of
a single model and the complementary use of both techniques with respect to
safety and liveness properties verification.

The paper is organized as follows. Section 2 presents the cooling process
and its supervision system used as a working example. Section 3 shows how
to build a reference model for the multi-facet analysis. Section 4 and Section 5
deal respectively with the derivation of specific models devoted to safety analysis
facet and the liveness analysis facet. Section 6 concludes the paper.

2 The Cooling Process and an Initial Model

The system to be specified and analysed has to supervise a cooling process: the
cooling of a liquid circulating with a constant delivery, by using water. The sys-
tem is taken from [6] where the authors give a specification in the form of a
logical rule-oriented modelling. We refer to this latter as an initial model. The
cooling process is made of two parts: the first one is a water reservoir with the
associated feed pump (pump2) and a floodgate (fg2); the second part is the cool-
ing process itself; it uses water from the reservoir and makes it circulate to cool
the fluid. This part is equipped with a floodgate (fg1) connected to the reservoir,
followed by a circulation pump (pump1). The cooling system is a control sys-
tem which supervises both parts. However a particularity of the current cooling
system is that it doesn’t avoid bad states (those in which malfunctions are de-
tected) but it detects the bad states and it recommends to the human operator
the adequate operations to correct them. The cooling system interacts with a
human operator by indicating the state of the process and the recommended
operations (orders) to be performed. All the recommended operations are not
executed by the operator. He/She can decide which one is important and can
give execution orders to the system. A supervision part is about the water reser-
voir level. The system should adopt an appropriate reaction if the water level is
out of some given thresholds. Two all-or-none sensors1 (low-wlvl, high-wlvl)
are used to detect respectively ”too low water level” and ”too high water level” of
the reservoir. The other part of the supervision is about the temperature of the
liquid which is being cooled. Two all-or-none sensors (low-temp, high-temp)
are used to detect the overstepping of the liquid low and high temperature. The
system should help the operator to maintain the temperature between two given
thresholds. If the temperature is too high the circulation pump must be engaged;
if the temperature is too low, the circulation pump must be disengaged. This
corresponds to the recommended operations. The operator can give orders to
the cooling system from two control panels: a main panel (MP) and a rescue
panel (RP). A pump engagement order (eo) or a disengagement order (do) can
be given from a panel under certain conditions (too high liquid temperature,
lack of water in the reservoir, etc).

1 An all-or-none sensor is like a switch, it either signals an entire information or none
at all.

2.1 The Initial Logical Model

The initial logical model takes the form of implication rules. An example rule is
the following (adapted from [6]):
R1: (¬ pump1 av ∨ low wlvl) ∧ high temp ⇒ htemp unav circul

It expresses that the conjunction of the unavailability of circulation and a too high

temperature of the fluid results in a detectable malfunction named htemp unav circul .
The description of the variables used in the initial model follows: lack power (lack
of power supply), low temp (low temperature threshold of the fluid), high temp

(high temperature threshold of the fluid), pump1 en (circulation pump engaged),
pump1 av (circulation pump available), low wlvl (low water level threshold), high wlvl

(high water level threshold), pump2 (feed pump: engaged or disengaged), fg1 (cir-
culation floodgate: open or closed), fg2 (feed floodgate: open or closed), pump1 do mp

(circulation pump disengagement order from MP), pump1 do rp (circulation pump
disengagement order from RP), pump1 eo mp (circulation pump engagement or-
der from MP), pump1 eo rp (circulation pump engagement order from RP).
The other rules of the model have the same shape. We list only a few of them:

R2: (¬ pump1 av ∧ low wlvl) ⇒ unav circul

There is unavailability of the circulation if the pump is unavailable and the water level

is too low .
R3: (pump1 en ∧ low temp) ⇒ ex circul

There is excess of water circulation if the circulation pump is engaged and the liquid

temperature is too low .
R4: (pump1 eo mp ∨ pump1 eo rp) ∧ ¬ lack power

∧ ¬ (pump1 do mp ∨ pump1 do rp ∨ fg1 closed ∨ low wlvl)
⇒ pump1 ego

The conditions for global order of circulation pump engagement are: an engagement

order from main or rescue panel, lack of electric power supply, no disengagement com-

mand from main or rescue panel, floodgate open and reservoir level not low.

3 A Reference Model for the Multi-facet Analysis

The proposed multi-facet analysis is based on a formal model which is a refer-
ence model for the forthcoming analysis tracks. The reference model should be
consistent. Moreover it may be very abstract so as to enable some translations.

3.1 The Working Architecture for the Cooling System

The achievement of this step of the work may differ (due to their features) from
one study to another. A preliminary study shows that the model for the cooling
system can be completely derived from a control-oriented architecture due to the
nature of the cooling system: it is a reactive system. Therefore we elaborate a
suitable control-oriented architecture which emphasizes input and output vari-
ables. These variables will describe the states needed for the reference model:
that is the static part of the model. The links between the input and output
variables will determine the remaining dynamic part of the model. The resulting

architecture highlights interacting and concurrent processes which represent: i)
sensors (low wlvl sensor, high wlvl sensor , high temp sensor , low temp sensor); ii)
controlled processes (floodgate1, floodgate2, pump1, pump2); and iii) the cooling
system. The architecure distinguishes between the controlled process and the
software system. By combining the architecture and the initial model we can
extract the variables describing input informations and output variables of the
system. The input variables provide data from the sensors and orders given by
the operator. The outputs of the system are the recommended operations and
the states of the system components.

3.2 Building a Formal Reference Model

We build a model (of the entire system) to be used for both theorem proving
and model checking aspects. It is made of a static part and a dynamic one.

Capturing the Static Part We characterize the cooling system by an ab-
straction A = 〈I,S,O,R〉 where:

– I is a finite set of Boolean variables: the input variables,
– S is a finite set of Boolean variables: the state variables,
– O is a finite set of Boolean variables: the output variables and,
– R is a finite set of rules with the form: condition → variable. An ab-

stract form of a rule is a couple (condition, variable). Moreover we have
R ⊆ Lprop(I,S) ×O.
Lprop(I,S) is the set of conditions (logical expressions) built using logical
connectives and the variables in I and S. In the following, the functions rhs

and lhs denote respectively the right hand side and the left hand side of a
rule. For example we have ∀Ri ∈ R.rhs(Ri) ∈ O. Moreover we use the func-
tion vars to denote the set of variables appearing in the condition of a rule:
vars(lhs(Ri)).

R captures (through the given rules) the relationship between I,S and O.
Therefore, the logical rules express by their left hand sides the conditions of
some malfunctions or the conditions under which some actions (order execution
by the operator) are undertaken. The right hand sides of the rules are output
variables.
Input Variables (I): They describe the process. Mainly, they are informations
coming from the all-or-none sensors; they are modelled with Boolean variables.
The other inputs are the orders given by the operator. Logical propositions are
used to describe the inputs of the process. Some input variables are: lack power ,
low temp, high temp, low wlvl and high wlvl . If the operator triggers an action by
an order, the associated variable is set to true otherwise it remains false. The
orders given by the operator from the main panel and the rescue panel have
the value eo (engagement order), do (disengagement order), ego (engagement
general order), dgo (disengagement general order). The associated variables are
order pump1 mp, order pump1 rp and order pump2 mp.

State Variables (S): They describe the control system and they are used as in-
put and output informations. A state variable is associated to each malfunction.
If the system detects a malfunction, the associated variable will be true other-
wise the variable is false. In the same way, each engaged order has an associated
state variable which indicates that the order is engaged or not. If the system
engages an action by a command, the associated variable will be set. Therefore,
the global state of the system is described by Boolean variables which represent
the system component states. Besides this, pump1 (resp. pump2) represents the
circulation pump state (resp. the feed pump state). They can be engaged or
not, disengaged or not, available or not. Circulation floodgate states and feed
floodgate states are respectively modelled by the variable fg1 and fg2. They are
either closed or open.
Output Variables (O): Output variables (including recommended operations)
are calculated from input variables and state variables. If the system detects a
malfunction the corresponding variable is set. O is partitionned by the sets Om

and Oo.
Om contains the output variables giving information about the state of the sys-
tem: unav circul (unavailable circulation), htemp unav circul (high temperature
of the liquid and unavailable circulation), ex circul (excess of circulation).
Oo contains the output variables giving orders: pump1 dgo (disengagement global
order), pump1 ego (engagement global order), pump1 el1 (locking of engage-
ment of pump1 by losing of power supply), pump1 el2 (locking of engagement
of pump1 by losing of the liquid). The feed pump pump2 is treated in the same
way as pump1 ; hence the variables pump2 dgo (disengagement global order) and
pump2 ego (engagement global order).

We have described on the basis of the system architecture, the static part
of the reference model using appropriate type information, input, output and
state variables. It is basically a state model from which we will derive isomor-
phic structures.
We discovered that this part of our work is related to the four-variable method
suggested by Parnas to found rigorous software system development [7]. There-
fore the four-variable model can be used as a more general reference model. The
current experiment will prepare this purpose.

The Dynamic Part of the Model The cooling system scrutinizes current
state and inputs, detects malfunctions, and helps to solve these malfunctions by
interacting with the operator. This implies three main steps. The first consists
in reading the inputs and events from the environment. Second, the logical
rules are used to detect malfunctions and finally recommended operations are
computed in order to solve the malfunctions. These three steps of the dynamic
part will be detailed according to each analysis tool. For example concurrent
asynchronous processes are convenient for Spin whereas operation modelled as
generalized substitutions are used in B.

4 Safety Facet Study within B

We show in this section how the specific model for safety facet is systematically
derived and used for the analysis.

4.1 Expressing the Reference Model within the B-method

The general principle here is to find a target structure corresponding to the ref-
erence model; the use of the type systems is a practical solution. The B method
follows a state-oriented approach. Therefore, the static part of the B specifica-
tion is described by an invariant (a predicate) on the variables of the system.
The invariant describes the (good) state space of the specified system. It gives
the types of the variables as well as the general properties of the system. We use
the reference model variables to express the invariant. The state of the system is
described by Boolean variables indicating the (sub)state of the system compo-
nents. The B type system permits a straightforward translation of the reference
model. We have an isomorphic model. The specification unit of the B method
is an abstract state machine; it has a static part made of the variables and an
invariant and, a dynamic part made of several operations. Here we build a B
abstract machine (named Process) that describes the state space of the cooling
system and that allows us to act on the states according to the input variables.

4.2 Specifying the Dynamic Part of the Model

The cooling system uses the rules to detect bad states and to indicate the orders
to correct the bad states. The rules whose right hand side is an output variable,
member of Om, are used to detect malfunction. Those whose right hand side is
an output variable member of Oo are used to give orders. The rules are exploited
to detect malfunctions and to solve them (by computing orders which are given
to the operator).

Detecting Malfunctions The following is the transformation rule used to
derive systematically B operations from the initial rules. The resulting operations
are used to modify output variables.
Each logical rule with the form: malfunction condition ⇒ malfunc name is
systematically transformed into a B operation with the following shape:
set malfunc name = malfunc name := bool (malfunction condition)

The B notation var := bool(condition) stands for the classical conditional.
Formally, the derivation principle is a simple rewriting of the rule ri defined
as: ri ∈ {r ∈ R|rhs(r) ∈ Om}

Therefore, for each output variable (called malfunc name) appearing on the
right hand side of a rule identifying a malfunction, we have a corresponding B
operation (called set malfunc name).

Solving Detected Malfunctions It turns to be the calculation of output
(orders for the operator) or state variables according to the current state vari-
ables and the input variables. We characterize each state variable of our sys-
tem by a condition, called an occurrence condition and denoted by a func-
tion occur cond. Besides, an identified malfunction rule has a triggering con-
dition on its left hand side and a malfunction name on its right hand side:

(trigger condition, malfunc name). To derive the B operation that corresponds
to a rule to solve a malfunction, its triggering condition is examined. To solve
the malfunction consists in modifying the process in such a way that this condi-
tion becomes false (the operator achieves an appropriate reaction to the system
orders); then if the left hand side is false the malfunction has disappeared (the
right hand side should be false).

From this analytical point of view, several rules are interrelated: the right
hand side of the ones is used in the left hand side of the others. We derive
systematically the B operations we need to complement the dynamic part of our
model from these rules. For each rule with a right hand side malfunc name, we
have a B operation named solve malfunc name which has a body derived as
explained in the following.

The derivation principle is as follows. First we compute for each rule Rj

the set RRj
= {(sv, occur cond(sv))|sv ∈ vars(lhs(Rj))}. This associates to each

state variable (sv) appearing in the triggering condition of a rule Rj , its oc-
currence condition. We define the procedure RuleToB m which transforms a
couple (sv, occur cond) into sv := bool(occur_cond); the latter has the form of
a B substitution.
Applying this syntactic transformation (using RuleToB m) to the couples from
RRj

we get the set of substitutions in the body of the B operation which corre-
sponds to the malfunction rule (the same for orders). Formally we obtained the
substitutions of the B operations with:

⋃
Rvcond∈Rro

RuleToB m(Rvcond)

where Rro
=

⋃
Ri ∈ R|rhs(Ri) ∈ Om

{(sv, occur cond(sv))|sv ∈ vars(lhs(Ri))}.

These substitutions are then combined using the parallel operator ‖. An example
of a B operation derived by applying this derivation principle is as follows:

solve low wlvl = BEGIN

pump2 eo mp := bool(low wlwl = TRUE ∨ pump2 eo mp = TRUE) ||
fg2 := bool(low wlvl = FALSE ∧ fg2 = TRUE)
END

Now we have two kinds of B operations derived from the reference logical
model. We complement the static part of the Process abstract machine with a
dynamic part made of all the operations. We add an initialisation part where
all the system variables are initialised in such a way that the system starts with
a correct state.

Reading Inputs Due to the interactive nature of the process, the inputs cannot
be systematically derived. Therefore, in this step, we introduce some specific
operations to simulate the inputs from sensors and the inputs from the operator.

4.3 Verification of the Model: Consistency and Safety

Consistency and safety correctness preservation are handled conjointly through
the invariant which gathers together all the properties of the system. Some safety
properties are necessary so that the system works correctly. For example

– we cannot have sensors low wlvl and high wlvl detecting simultaneously a
low and a high level of water in the reservoir:

(low wlvl = FALSE ∨ high wlvl = FALSE)
∧ (low temp = FALSE ∨ high temp = FALSE)

– the system should not order simultaneously an engagement and a disengage-
ment of a pump:
¬ ((pump1 do mp = TRUE ∨ pump1 do rp = TRUE) ∧

(pump1 eo mp = TRUE ∨ pump1 eo rp = TRUE))
∧ (pump1 dgo = FALSE ∨ pump1 ego = FALSE)
∧ (pump2 dgo = FALSE ∨ pump2 ego = FALSE)

The invariant part of the abstract machine is increased with these safety
properties. Now every thing is in place for tool assistance. We use the tool Ate-
lier B [8] to check the machines. The tool generates proof obligations which are
the theorems to be proven. For the consistency one has to prove the following
theorems: i) the initialization of the machines establishes the invariant and ii)
each operation called under its precondition preserves the invariant. Since the
invariant already contains safety properties, proving the preceding proof obliga-
tions guarantees safety.

Verification Result We check all the B machines and their implementations
using the Atelier B. We have an amount of 239 proof obligations; they are all
discharged. Two conclusions can be made: first, the machines are consistent (the
model is consistent). Second, the correction (safety) of the system is established.
Additionally, as far as refinement, code generation and simulation of the cool-
ing system are concerned, we have refined the machine Process and elaborate a
machine specifying the cooling system. In this latter machine we define a main
operation as a supervision scenario. The scenario consists in doing a cyclic pro-
cedure (working cycle) where we have the previous three main steps.

5 Liveness Facet Study within Spin

The Spin (Simple Promela Interpretor) tool [2,3] is a model checker and more
generally a verification tool that supports the design and verification of asyn-
chronous processes. Promela is the input language of Spin. A Promela model is a
CSP-like description of communicating asynchronous processes. At this stage of
the work, we consider the two main parts of a Promela model: a static part made
of state variable declarations and a dynamic part made of several asynchronous
processes communicating via channels.

Expressing the Reference Model in Promela Using the type informations of
the reference model, the translation of the static part into Promela is straightfor-
ward. Promela provides a sufficient type system for the translation. In Promela,
process types are used to describe processes. A process type is the description
of a behaviour using statements (arithmetic and logical expressions, sequences,
repetitions, conditionals, guards, etc). Therefore we derive the dynamic part of
the model by transforming the logical rules into process types. In the same way

as in the Section 4, we define for each involved step (Detecting Malfunctions,
Solving Detected Malfunctions), the procedures to compute systematically the
main part of the Promela model from the rules of the reference model. This is
then complemented by processes which simulate the inputs from the sensors and
the operator. Input informations are passed through channels between processes.
After these steps, we have a Promela model made of the static part plus some
asynchronous processes. Every thing is now in place for using the Spin tool.

Verification of the Model: Liveness The final model of the cooling system
in Promela is a cyclic process (an iterative structure in Promela). Each cycle has
the three steps explained above. The remaining steps of the approach are about
the introduction of liveness properties and their validation on the model.
The Promela language offers some constructs to deal with property verification:
assertions, progress labels, acceptance labels and never claims [2]. We use never
claims in our experiment to capture the properties of the system. The never

claims mechanism is a very expressive construct used to detect undesirable or
illegal behaviours. Liveness properties are first specified using LTL formula and
then translated into never claims mechanism with the Spin translator. The Spin

translator gives the Büchi automata corresponding to the LTL formula [3]. In
general we have to prove that if a malfunction appears then it will be solved.
Some of these properties follow. P1: if a too high temperature of the fluid is
indicated then the circulation pump will be activated ; P2: if a too low water level
is indicated then the feed pump will be engaged.
The never claims associated to these properties (their negated form) are joined to
the validation model. Indeed we specify the desired properties and their negated
forms are used as errors (undesirable states).

Validation Result The validation consists in ensuring that the model satis-
fies certain correctness properties. Given the Promela model with the associated
properties described by never claims, we verify the correctness of the model us-
ing Spin. Spin explores the state space of the system, if an error occurs then it
stops the exploration. Since never claims are used to detect undesirable states,
it is required for a valid model to have zero error after a full state space search.
Here is a brief report on the analysis of the P1 property. In the case of full state
search, there were 4453 generated system states which are stored (but 58228
states are matched); the longest non-cyclic execution sequence depth is 175, and
no error is detected. 3.054 Megabytes are used (Spin uses a compressed form).
In the current analysis experiment the maximum of stored states is 17961 (for
a total of 787048 matched states); the non-cyclic execution depth in this case
was 181 and 2.586 Megabytes are used. It arises from this experiment that the
study is easily tractable with several small LTL properties (two or three modal
operators).

6 Conclusions and Future Work

We presented an approach to tackle the multi-facet analysis of software systems
using two tools (B and Spin) suitable to the facets of the system under anal-

ysis. The approach is illustrated with a case study where we considered safety
and liveness facets. First we build a state model of the system, then we de-
rive specific models using isomorphic structures. More generally the approach
may help to tackle a system study where one needs various tools. Indeed, this
leads to concentrate oneself on a single reference model plus some systematic
transformation rules instead of moving through several starting models; which
is error-prone. The proposed approach may be beneficially employed for the
mechanization of integrated approaches [9]. In the way it is presented here the
approach is a groundwork of an engineering framework to accompany the mecha-
nization of formal methods. It is possible with reasonable efforts to help the users
according to the characteristics of their systems to choose one reference model
or another provided that their transformations into the input formats of various
tools are known. Logic models, state models (for static aspects), labelled transi-
tions systems, symbolic transition systems [10] (for dynamic aspects) are good
candidates for such reference models with established transformation guides into
specific tool formats. We are currently working on these aspects. The SAL tool
[11,9] has similar goals. In addition, the generalization of the approach to various
logics may favor interaction between tools and between reasoning systems.

Acknowledgement.Thanks to the anonymous referees for their valuable comments.

References

1. Abrial, J.R.: The B Book. Cambridge University Press (1996)
2. Holzmann, G.J.: Design and Validation of Computer Protocols. Prentice Hall,

Englewoods, Cliffs (1991)
3. Holzmann, G.J.: The Spin Model Checker. IEEE Transactions on Software Engi-

neering 23 (1997) 279–295
4. Shankar, N.: Combining Theorem Proving and Model Checking through Symbolic

Analysis. In: Proc. of CONCUR’00. Volume 1877 of LNCS., Springer-Verlag (2000)
1–16

5. McMillan, K.L.: Verification of Infinite State Systems by Compositional Model
Checking. In Pierre, L., Kopf, T., eds.: Proc. of Correct Hardware Design and
Verification Methods. Volume 1703 of LNCS., Springer-Verlag (1999) 219–233

6. Gondran, M., Héry, J.F., Laleuf, J.C.: Logique et modélisation. Coll. DER - EDF.
Eyrolles, ISSN 0399-4198 (1995)

7. Parnas, D.L., Madey, J.: Functional Documents for Computer Systems. Science of
Computer Programming 25 (1995) 41–61

8. ClearSy: Atelier B V3.6. (Steria, Aix-en-Provence, France)
9. Attiogbé, C.: Mechanization of an Integrated Approach: Shallow Embedding into

SAL/PVS. In: Proc. of ICFEM’02. Volume 2495 of LNCS., Springer-Verlag (2002)
120–131

10. Henzinger, T.A., Majumdar, R.: A Classification of Symbolic Transition Systems.
In: Proc. of STACS 2000. Volume 1770 of LNCS., Springer-Verlag (2000) 13–34

11. Bensalem, S., Ganesh, V., Lakhnech, Y., Muñoz, C., Owre, S., Rueß, H., Rushby,
J., Rusu, V., Säıdi, H., Shankar, N., Singerman, E., Tiwari, A.: An Overview of
SAL. In Holloway, C.M., ed.: Proc. of the Fifth NASA LFM Workshop (LFM’2000),
Vancouver (2000) 187–196

